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ABSTRACT A self-multiplexing SIW antenna based on hexagonal SIW cavity is proposed. The structure
consists of resonating elements of different sizes, which provide the hexaband operations. The antenna
resonates at 5 GHz, 5.17 GHz, 5.32 GHz, 5.53 GHz, 5.62 GHz, and 5.72 GHz by employing different
slot lengths between the resonating elements. The antenna geometry is arranged so that independent tuning
of individual operating frequencies is possible without affecting the remaining center frequencies. The
self-hexaplexing antenna exhibits a port isolation better than 29 dB between the resonating elements with
a low frequency ratio of 1.14. The simulated gain of the antenna is 5.32 dBi, 5.68 dBi, 5.41 dBi, 5.91 dBi,
5.43 dBi and 5.14 dBi at the respective operating frequencies. The proposed self-hexaplexer operates in the
NR band (n46) therefore being suitable for communication system applications.

INDEX TERMS Substrate-integrated waveguide, frequency ratio, isolation, self-hexaplexing antenna,
tunability.

I. INTRODUCTION
Multiband antennas developed for next-generation wireless
communication systems capitalize on their advantages such
as light weight, cost-effectiveness, and ease of manufactur-
ing. Various antenna designs for quad-band [1], [2], [3],
pentaband [4], [5], [6], and hexaband [7] operation have been
introduced that exhibit the aforementioned features. How-
ever, these designs require additional multiplexing circuitry
for selecting specific frequency bands, leading to increased
space occupancy. Self-multiplexing antennas are typically
employed in wireless transceivers instead of multiband anten-
nas. These antennas ensure better performance compared
to multiband antennas, which occupy a smaller footprint
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and do not require additional multiplexing circuitry. Self-
multiplexing substrate integrated waveguide antennas [8], [9]
offer several features such as improved port isolation, high
efficiency, low cost, and size miniaturization, making them
suitable for integration into various communication devices.

Another important specific requirement for
self-multiplexing SIW antennas is frequency ratio between
the antenna operating frequency bands. Low frequency ratio
is beneficial because it enables close allocation of distinct fre-
quency bands within the self-multiplexing antenna operating
frequency range. In particular, this allows a more efficient
use of available sub-bands by allocating more frequency
channels with in the given frequency range. Furthermore,
low frequency ratio provides high data rate capacity by using
a relatively small frequency range. Multiplexing antennas
designed with a low frequency ratio are compact, which is
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FIGURE 1. Geometry of the single port hexagonal SIW resonator [l = 19.5, s = 1.4, d = 1, lf = 6.69, wf = 2 (all are in mm)].

FIGURE 2. Schematic-view of the proposed hexaplexing SIW antenna
[l1 = 14.85, l2 = 14.25, l3 = 13.72, l4 = 13.22, l5 = 13.12, l6 = 13, w1 = 2,
w2 = 4, w3 = 1.75, w4 = 2, w5 = 2.5, w6 = 3 (all are in mm)].

FIGURE 3. Reflection coefficient plot of the proposed self-hexaplexing
antenna.

desirable in many applications. Another aspect is the sophis-
tication of antenna geometry, which should be preferably
low. For example, by utilizing simple slots, the design of
a self-multiplexing antenna is less complex and therefore
cost-efficient. Several SIW-based self-multiplexing antennas,
namely self-diplexers, self-triplexers, self-quadruplexers,

FIGURE 4. Reflection coefficient plot of the self-hexaplexing antenna
with uniform slot dimensions.

self-quintuplexer, and self-hexaplexers have been developed
for dual-band, triple-band, quad-band, penta-band, and hexa-
band operation, respectively. The self-diplexing antennas
based on bow-tie ring slot [10], rectangular and triangular
slots [11], Y-shaped slots and triangular slots [12] have
been developed to obtain dual-band operation and achieved
significant performance characteristics with a minimum
frequency ratio (f2/f1) of 1.03. A modified I-shaped
slot [13], rectangular slots [14], U-shaped slot [15], and
two eighth-mode and one quarter mode cavities [16] are
employed on different modes of SIW cavity backed antennas
such as half-mode SIW cavity (HMSIW), quarter-mode
SIW cavity and eighth-mode SIW cavity (EMSIW) and
achieved a minimum frequency ratio (f3/f1) of 1.18 with
self-triplexing functionality. Self-quadruplexer antennas have
been designed by utilizing different resonating patches [17],
U-shaped slots [18], capacitive slots [19], [20], C-shaped and
arc-shaped slots [21], and HMSIW with extended resonating
slots [22], with a low frequency ratio of 1.34, which is
difficult to achieve for a quadruplexing antenna. A self-
quintuplexing antenna developed by employing T-shaped
and phi-shaped slots [23] obtained a penta-band with a
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FIGURE 5. Transmission coefficients of the hexaplexing antenna.

low frequency ratio of 1.37 between the frequency bands
and maintained a significant isolation between the ports.
Recently, self-hexaplexing SIW antennas based on two pie-
shaped slots [24], rectangular slots [25] and six different
patches [26] have been designed. However, design of
self-hexaplexing antennas featuring high isolation, low
frequency ratio, and high performance in terms of other
characteristics is still a significant challenge.

In this study, we propose a self-hexaplexing SIW antenna
developed by utilizing different lengths of slots. This
approach results in a topologically simple structure with
resonant frequencies easy to control by adjusting the slot size.
The antenna operates at six resonant frequencies f1 = 5 GHz,
f2 = 5.17 GHz, f3 = 5.32 GHz, f4 = 5.53 GHz, f5 = 5.62 GHz,
and f6 = 5.72 GHz with a low mutual coupling coefficient
not exceeding −29 dB. The proposed antenna achieves a
low frequency ratio of 1.14 with compact size compared to
the state-of-the-art self-multiplexing (triplexer, quadruplexer,
quintuplexer, and hexaplexer) antennas reported in the recent
literature.

II. SELF-HEXAPLEXING ANTENNA DESIGN AND
ANALYSIS
A. DESIGN GEOMETRY OF HEXAPLEXING ANTENNA
The hexaplexing SIW antenna is implemented on a Rogers
RT/Duroid 5870 with a relative permittivity of 2.33, loss
tangent of 0.0012 and a thickness of 0.787 mm. The
hexaplexing antenna is designed based on a full-mode
hexagonal substrate integrated waveguide (HSIW) cavity
resonator as shown in Fig. 1(a). The HSIW is effectively
modeled by using the direct approximation of circular
substrate integrated waveguide. The resonant frequency of
full-mode HSIW [27] is described as

f HSIWmn =
c

2π
√

εr

kcmn
l

(1)

FIGURE 6. Transmission coefficients of the hexaplexing antenna.

FIGURE 7. Electric field distribution at six resonating frequencies.

where, kcmn = 2.75 is the cut-off wave number, c is the light
velocity in the free space; ϵr is the relative permittivity and, l
is the length of the side of the hexagonal SIW. The resonant
frequency for TM01 mode of operation is given by

f HSIW01 ≈
2.75c

2π l
√

εr
(2)

The diameter of the via and spacing between the adjacent
vias are key parameters that affects the performance of the
SIW antenna andmust satisfy the condition formulated below
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FIGURE 8. Equivalent circuit of first resonator associated with Port 1 of
the suggested SHA.

FIGURE 9. Circuit and EM simulated reflection coefficient corresponding
to port 1.

to reduce the leakage of energy between the vias [8].

s ⩽ 2d (3)

The electric field distribution of full-mode HSIW is shown in
Fig. 1(b). The HSIW with a side length of l = 19.5 mm and
the fundamental mode of TM01 resonates at a frequency of
4.35 GHz, as shown in Fig. 1(c). The hexaplexing antenna
is designed by loading different lengths and widths of the
slots on a full-mode HSIW antenna by using microstrip
feed lines to provide impedance matching, as shown in
Fig. 2. The dimensions of slots are optimized in order to
achieve a low-frequency ratio, high isolation between the
adjacent ports, compact size, and independent frequency
tunable characteristics. The separation between the adjacent
resonant frequencies is important in order to ensure that the
antenna operates within the desired range of frequencies. This
can be ensured by the appropriate choice of dimensions of
the slots. The hexaplexing antenna operates at six resonant
frequencies: f1 = 5 GHz, f2 = 5.17 GHz, f3 = 5.32 GHz,
f4 = 5.53 GHz, f5 = 5.62 GHz, and f6 = 5.72 GHz with an
electrical size of 0.27 λ0

2 as shown in Fig. 3. On the other
hand, the influence of slots with the same dimensions on
operating frequencies is investigated, as shown in Figure 4.
The figure shows that the antenna lacks self-hexaplexing
capabilities since all six slots contribute the same operational
frequency of 5.15 GHz.

The proposed antenna is designed to operate within
the C-band. The existing multiplexing antennas in the
literature operate across multiple bands (like S-band, C-band,

X-band, etc) that limits their practical applicability. However,
operating within a specific frequency band (like only in
the C-band as in this manuscript) inherently restricts the
available bandwidth. The frequency ratio is defined as the
ratio of the upper operating frequency to the lower operating
frequency. In the case of a low frequency ratio, the difference
between the upper and lower frequencies is small, leading
to a narrower bandwidth. As a result of achieving six
different frequencies of operation within the available C-
band, achieving wide bandwidth and low frequency ratio
simultaneously is a not possible. Here, the objective of the
manuscript is to achieve independent tuning of frequency
bands by achieving high isolation between the ports. Due
to this important fact of independent tuning, the resultant
6-port antenna radiates frequencies with narrow bandwidth
in all six application bands. The suggested hexaplexing
antenna, with its narrow band, could be beneficial for pinpoint
applications in commercial wireless applications such as
WLAN (at 5.0 GHz), IEEE802.11a WLAN (at 5.25 GHz),
WiFi (at 5.4 GHz), and WiMAX (at 5.8 GHz). Moreover,
SIW antennas typically exhibit narrow bandwidths at the
closely spaced operating bands due to the guided nature of
the wave propagation within the substrate. In SIW structures,
electromagnetic waves propagate along the substrate inte-
grated waveguide, which confines the electromagnetic fields
and limits the frequency range over which the antenna can
effectively operate.

The port isolation characteristics between the adjacent
antenna elements are shown in Fig.5 and Fig.6. Port isolation
better than 29 dB is maintained between any two antenna
elements. To gain insight into the performance of the antenna,
electric field distributions are plotted at corresponding
resonant frequencies. Each port of the antenna can be excited
individually, and it can be clearly observed from Fig. 7 that
the electric field distribution between the antenna elements
is concentrated near the edges of the slots because the
conducting surfaces are terminated near the edges of the slots.
In any case, although the direction of the current and the
relative orientation changes from one port to another, it is
worth mentioning that the antenna is linearly polarized.

B. EQUIVALENT CIRCUIT MODEL OF THE ANTENNA
An equivalent circuit model of cavity-backed resonator
corresponding to Port 1 of the suggested self-hexaplexing
antenna is shown in Fig. 8. The cavity resonator is modeled
as shunt connected resistance (Rs1), inductance (Ls1), and
Capacitance (Cs1). The slot associated with the Port 1 is
represented by an extra shunt connected capacitance (Cr1).
The slot on the cavity-backed resonator increases the total
capacitive loading which allows to achieve smaller footprint
by reducing the resonant frequency. The electrical parameter
values are determined and shown in Fig. 8. To verify the above
concept, the suggested circuit is simulated by using Keysight
Advanced Design System (ADS) and the S-parameters are
depicted in Fig. 9. In a similar manner, additional ports’
analogous circuits may be modeled and verified.
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FIGURE 10. Individual tunability of the operating frequencies of the hexaplexing antenna.

FIGURE 11. (a) Photograph of the fabricated prototype of simulated and measured reflection coefficients, (b) measured transmission
coefficients of the antenna.

C. INDEPENDENT FREQUENCY TUNABILITY
The independent frequency tunability of the hexaplexing
antenna can be realized by varying the widths of the slots.
Fig. 10 (a)-(f) shows the variation of frequency with respect
to the design parameters. By varying the width of the
slots w1, w2, w3, w4, w5 and w6, a shift the resonant
frequencies f1, f2, f3, f4, f5 and f6, respectively, can be
obtained. Table 1 shows the independent frequency-tunable
characteristics of the hexaplexing antenna by the variation of
slot widths. Increasing the width of the slots decreases the

resonant frequencies, while decreasing the width increases
the corresponding resonant frequencies. This allows the
hexaplexing antenna to operate at different frequencies
within a desired frequency range. Thus, the ability to adjust
the width of slots allows the antenna to cover multiple
frequency bands or to operate at different frequencies within
a single band, which finds applications in modern commu-
nication systems where adaptability to different frequency
bands or channels is essential in multi-band communication
environments.
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FIGURE 12. Simulated and measured normalized radiation pattern in the XZ−plane and YZ−plane.

FIGURE 13. Simulated and measured gain and efficiency at the six
operating frequencies.

III. RESULTS AND DISCUSSION
The photograph of the fabricated prototype of the hexaplex-
ing antenna based on the aforementioned design specifica-
tions is shown in the inset of Fig. 11. The measurements of
the reflection coefficient and isolation are performed using
Keysight E5063A vector network analyzer. The simulated
and measured results for reflection and transmission coeffi-
cients of the hexaplexing antenna are shown in Fig. 11(a).

TABLE 1. Individual tunable characteristics of the self-hexaplexing SIW
antenna.

The alignment between simulations and measurements is
excellent. The measured and simulated isolation is presented
in Fig. 10(b) which are very close to each other. There
relative discrepancies of between the simulated andmeasured
results are lower than 2%, which may be attributed to manu-
facturing tolerances. The simulated and measured reflection
coefficients are below −15 dB, whereas the transmission
coefficients are lower than−29 dB at the corresponding oper-
ating frequencies. The simulated and measured normalized
radiation patterns in the XZ-plane and YZ-plane are shown
in Fig. 12. The patterns are unidirectional in the broadside
direction for both planes and the difference between the
polarization levels is higher than 20 dB at the respective
frequencies because of the SIW structure. Generally, SIW
antennas operate based on a waveguide structure integrated
within a dielectric substrate. The electromagnetic fields
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TABLE 2. Performance comparison with existing SIW-based multiplexing antennas.

in the proposed hexaplexing antenna primarily within the
waveguide structure, which is typically formed by metallized
vias that are embedded in the dielectric substrate. This
confinement of electromagnetic fields within the waveguide
of the antenna helps tomitigate the fringing fields and reduces
the coupling between orthogonal polarizations. This is one
of the reasons behind the reduced cross-polarization of the
antenna in the desired direction. The simulated (measured)
peak gains are 5.32 dBi (5.64 dBi), 5.68 dBi (5.42 dBi),
5.41 dBi (5.15 dBi), 5.91 dBi (6.26 dBi), 5.43 dBi (5.28 dBi)
and 5.14 dBi (5.65 dBi) at the corresponding resonant
frequencies of f1 = 5 GHz, f2 = 5.17 GHz, f3 = 5.32 GHz,
f4 = 5.53 GHz, f5 = 5.62 GHz and f6 = 5.72 GHz,
respectively, as shown in Fig. 13. Similarly, the simulated
and measured radiation efficiencies at six bands are > 80 %
as shown in Fig. 13. During measurements, each port was
excited individually with all other ports terminated using the
50� load.

The performance comparison of the proposed hexaplex-
ing antenna with the recent state-of-the-art multiplexing
antennas has been included in Table 2. The analysis
of the performance figures encapsulated in the table
demonstrates that the proposed antenna exhibits the lowers
frequency ratio of 1.14, while providing comparable gain
at the corresponding operating frequencies. Furthermore,
the proposed antenna achieved the highest isolation (better
than 29 dB) compared to the reported quadruplexing,
quintuplexing and hexaplexing antennas. These features
make our antenna suitable for communication system
applications.

IV. CONCLUSION
A self-hexaplexing antenna is presented for hexa-band
operations, which resonates at six different frequencies.

Individual tunability of the frequencies is achieved by varying
the selected geometry parameters of the antenna. Full-
wave simulations and experimental validation corroborate
excellent performance of the proposed structure with port
isolation at the lever higher than 29 dB between the antenna
elements, and gain better than 5.15 dBi at all operating
frequencies. More importantly, the proposed topological
arrangement of the antenna results in a low frequency ratio
of 1.14, which by far surpasses the capability of the state-
of-the-art self-multiplexing antennas reported in the recent
literature.
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