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Abstract 11 

Wastewater characteristics prediction in wastewater treatment plants  (WWTPs) is valuable and 12 

can reduce the number of sampling, energy, and cost. Feature Selection (FS) methods are used 13 

in the pre-processing section for enhancing the model performance. This study aims to evaluate 14 

the effect of seven different FS methods (filter, wrapper, and embedded methods) on enhancing 15 

the prediction accuracy for total nitrogen (TN) in the WWTP influent flow. Four scenarios 16 

based on FS suggestions were defined and compared by three supervised Machine Learning 17 

(ML) algorithms, i.e. Artificial Neural Network (ANN), Random Forest (RF), and especially18 

Gradient Boosting Machine (GBM). Input parameters, as daily time-series including pH, DO, 19 

COD, BOD, MLSS, MLVSS, NH4-N, and TN concentration, were used. Data set divided into 20 

train and unseen test data-sets, and performance precision of all models was carried out based 21 

on Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and correlation coefficient 22 

(R2). Results reveal that scenario IV which was suggested by Mutual Information, including 23 

NH4-N, COD, BOD, and DO had the best result rather than other FS methods. Furthermore, 24 

decision tree algorithms (RF and GBM) revealed better performance results in comparison to 25 

neural network algorithm (ANN). GBM generalized the dataset patterns very well and 26 

Postprint of: Bagherzadeh F., Mehrani M. J., Basirifard M., Roostaei J., Comparative study on total nitrogen prediction in wastewater 
treatment plant and effect of various feature selection methods on machine learning algorithms performance, Journal of Water Process 
Engineering Vol. 41 (2021), 102033, DOI: 10.1016/j.jwpe.2021.102033

© 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/

mailto:s179532@student.pg.edu.pl
https://doi.org/10.1016/j.jwpe.2021.102033
https://doi.org/10.1016/j.jwpe.2021.102033
https://creativecommons.org/licenses/by-nc-nd/4.0/


2 

 

produced the best performance on unseen data-set, which shows the effectiveness of this state-27 

of-the-art ML algorithm for wastewater components prediction. 28 

Keywords: ANN; RF; GBM; Feature selection; total nitrogen 29 

1 Introduction  30 

Nitrogen is one of the major wastewater pollutions, which should be reduced to the standard 31 

level before discharging wastewater to the environment [1, 2]. Total nitrogen (TN) is primarily 32 

presented in wastewater as ammonia, nitrite, nitrate, and organically bonded nitrogen [3]. 33 

Monitoring the TN from the influent of wastewater treatment plants (WWTPs) plays a 34 

significant role in the performance of nutrient removal systems, controlling sludge production, 35 

and operation of different parts of wastewater treatment processes [4].  36 

Wastewater parameters especially nutrient compounds are really important for engineers to 37 

understand and calculate at the beginning and end of treatment [5]. To obtain the necessary 38 

information, the operator should determine the characteristics of the raw wastewater by 39 

receiving data from sensors or collecting samples and analyzing the influent/effluent flow of 40 

the plant. Insufficiently treated wastewater which is one of the nutrient sources can cause many 41 

health problems by entering into the water bodies like groundwater systems [6]. However, 42 

many facilities have been upgraded by WWTPs to progress in the removal of nutrient pollutants 43 

which resulting in a drastic decrease in the discharged nutrients from WWTPs [7, 8]. 44 

Artificial Intelligent (AI) technics, mostly used to predict natural or artificial processes in 45 

various disciplines. Machine learning (ML) as a subset of AI, is a process of recognizing a 46 

special pattern based on the given data for prediction or classification purposes [9]. Recently, 47 

modeling and prediction of environmental phenomena using AI technics are rapidly increased 48 

due to their high accuracy rather than mechanistic models [10]. These algorithms can learn 49 

sophisticated relations more efficiently than statistical methods [11-13].  50 

A fully connected neural network known as ANN model acts as a universal function estimator, 51 

and each neuron in the network contains learnable parameters (weight and bias). A feed-52 

forward ANN can be used for WWTPs influent and or effluent quality prediction [14, 15]. 53 

Many studies have been addressed to model the influent or effluent wastewater parameters. For 54 

instance, ANN models are employed to estimate the methane production in a biogas 55 
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optimization scenario while having (R2=0.87) [16]. Also, another similar modeling was 56 

conducted to follow the correlation of supplements membrane bioreactor of WWTP [17]. 57 

Ansari et al. integrated a hybrid genetic algorithm with fuzzy logic (GA-FIS) model to increase 58 

the prediction of missing value in the wastewater parameters record like COD, BOD, and NH4-59 

N and compared it with fuzzy logic (ANFIS) model. Results presented that integrated GA-FIS 60 

had lower errors in contrast to ANFIS prediction [18]. In another study, Abba et al. studied an 61 

extreme learning machine (ELM) model combined with kernel principal component analysis 62 

(KPCA) for prediction of pH, turbidity, total dissolved solids, and hardness, which had the 63 

highest accuracy for almost all predicted components (R2> 0.95) [19]. Random forest (RF) and 64 

Gradient Boosting Machine (GBM) are other state-of-the-art and powerful ML methods [20- 65 

22]. An RF prediction model was found a useful and powerful method for the evaluation of 66 

reliability prediction of small WWTPs in the UK [23].  67 

On the other hand, the feature selection (FS) process is utilized in the pre-processing section 68 

for increasing the speed of training and enhancing the prediction precision as well as 69 

simplifying the models [24]. Although there have been many different FS methods, most 70 

forecasting studies just use correlation models, like the Pearson correlation method. Hence, a 71 

comparative evaluation of the FS effect on enhancing the accuracy of simulation for WWTPs 72 

components is still required. Also, prediction of WWTP components with RF and GBM is less 73 

used in comparison to other ML techniques i.e. ANN, SVM, etc. [23, 25, 26].  74 

This study aims to investigate the effect of various feature selection methods for enhancing the 75 

prediction performance of TN in the WWTPs. The specific objectives of this paper are: i) 76 

Defining scenarios according to the different FS suggestions and compare together, ii) Create 77 

ML models by using algorithms such as ANN, RF, and GBM for comparing scenarios and find 78 

the best TN forecasting model, and iii) Evaluate the potential of using a state-of-the-art GBM 79 

algorithm as a new ML model for TN prediction and compared with the conventional methods 80 

(RF and ANN). 81 

2 Methodology  82 

2.1 Case study of WWTP and data description  83 

In this research, a data set from North Torbat WWTP for nutrients removal which is located in 84 

the north of Iran was investigated. This WWTP is designed for a population of 350,000 PE 85 
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with a mean-daily influent flow of 71,500 m3/d. The WWTP consists of a primary 86 

sedimentation tank, anaerobic/aerobic reactors, and a clarifier. The pH and DO are monitored 87 

using online sensors, and the rest of the influent characteristics are recorded using sampling 88 

and analysis based on the standard for wastewater analysis method [27]. 89 

A data set consisting of 800 records (almost 2.5 years between 2015-2017) daily recording of 90 

total nitrogen (TN), Ammonia nitrogen (NH4-N), biological oxygen demand (BOD), chemical 91 

oxygen demand (COD), mixed liquor suspended solids (MLSS), Mixed liquor volatile 92 

suspended solid (MLVSS), pH, dissolved oxygen (DO) for the training of models. Also, 30 93 

days from the last data set was selected for the test of models (unseen data). 94 

Furthermore, for obtaining an accurate model, the data set should be normalized, and 95 

unnecessary (redundant) features should be eliminated (feature selection) to avoid overfitting 96 

issues [28, 29]. One of the main points of this study is to compare different applicable feature 97 

selection methods and their effects on model precision. TN was selected as a target of 98 

prediction in this study due to the level of importance in the WWTPs as a critical influent 99 

quality index and the rest of parameters were selected as input data based on feature selection 100 

ranking.  101 

 102 

2.2 Feature selection (FS) 103 

The main goal of feature selection (FS) is to obtain the most relevant input data from a dataset. 104 

Considering a dataset with 𝑀 features, then 2𝑀 subsets of features are available, and the FS 105 

methods are responsible for introducing the best subset. In each method, related to the criterion 106 

and application of the model several functions are responsible to optimize and evaluate the 107 

subset. The FS methods are divided into three major categories: filters, wrappers, and 108 

embedded methods [30- 32]. 109 

Filter methods emphasize on characteristics of each feature and they evaluate the features based 110 

on the properties without employing any clustering algorithm to guide the search [30]. Wrapper 111 

methods use clustering algorithms. If the introduced subset increased the accuracy of the 112 

clustering algorithms, then the subset earns a higher score [30]. Embedded techniques combine 113 

all the advantages of wrappers and filters. They construct an ML algorithm, and it performs 114 

feature selection while training the model [33]. 115 
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In this study, variance threshold [34], analysis of variance (ANOVA) [35], mutual information 116 

(MI) [36,37], Pearson correlation (PC) [38], backward elimination (BE) [39], random forest 117 

(RF) [40], and Least Absolute Shrinkage and Selection Operator (LASSO) were used [41,42]. 118 

The details of each method can be found in supplementary information. 119 

 120 

2.3 Modeling approaches  121 

2.3.1 Artificial neural networks (ANNs) 122 

An artificial neural network (ANN) is a fully connected multilayer perceptron (MLP) with 123 

three layers: input, hidden, and output (Fig. 1). The network may have several hidden layers 124 

concerning the level of complexity of the data set [43, 44]. 125 

In this study, the number of input neurons of the model is equal to the number of input features 126 

which depends on the scenario (considered subset). Also, two hidden layers with 15 and 10 127 

neurons are designed to capture the complexity of the model. For having a smooth and accurate 128 

connection between layers, we used the ReLU activation function for the hidden layers. Finally, 129 

there is a single neuron in the output layer to predict the target variable (TN). The optimization 130 

process was performed by Adam's algorithm concerning the mean squared error (MSE) as a 131 

loss function with 100 epochs. 132 

 133 

Fig. 1. Fully connected artificial neural network (ANN) 134 

 135 
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2.3.2 Random forest (RF) 136 

Ensemble learning is a technique that combines the prediction results of multiple algorithms to 137 

obtain a better final result. Random forest (RF) is an ensemble method that uses bootstrap 138 

aggregation to generate decision trees. The final output of the model is an aggregation of the 139 

prediction based on the decision trees (Fig. 2). This method helps to consider all potential 140 

features fairly and prevents trees to become highly correlated [45]. In this study, after many 141 

trials and errors, a random forest tree was developed considering, 400 trees in the forest, a 142 

maximum depth of 70 for each tree, minimum of 4 samples at a leaf, and a minimum number 143 

of 10 samples required to split. 144 

 145 

Fig. 2. Random forest architecture 146 

 147 

2.3.3 Gradient boosting machine (GBM) 148 

Gradient boosting machine is a decision tree based ML algorithm similar to RF, but it has a 149 

different constructive strategy of the ensemble formation. In a boosting approach, we add new 150 

trees to the ensemble sequentially according to the error of the whole ensemble prediction. As 151 

we add new trees with a constant learning rate, the estimation error regarding the dependent 152 

variable shrinks continuously until reaching the maximum possible precision. Due to the nature 153 

of GBM, hyper-parameters justification is extremely important [46]. In the current research, 154 

after many trials, we used a gradient boosting machine with considering the learning rate of 155 

0.05 for training, 2000 trees in the forest, subsampling of a total of 0.8, a min sample leaf of 156 

50, a tree depth of 6, and 600 as minimum split samples.  157 
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 158 

2.4 Model construction 159 

The total data set was divided into two groups: train data (almost 90% of total data-set) and 160 

test data (10% of the total data set) as unseen data, followed by applying to preprocess, and 161 

feature selection methods. Furthermore, four scenarios were defined to compare the feature 162 

selection methods. Also, for the prediction of the target (TN), three prediction models 163 

containing fully connected artificial neural network (ANN), random forest (RF), and state-of-164 

the-art gradient boosting machine (GBM) were selected and applied for all sub-data-sets. The 165 

normalized data were used as input data for training and testing all models. After defining 166 

different scenarios and model structures, the TN concentration was forecasted by noted models, 167 

then the predicted values were compared to the real data to evaluate the model accuracy (Fig. 168 

35).  169 

 170 

Fig. 3. Modeling and prediction structure 171 

 172 
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2.5 Model evaluation 173 

To measure the quality and performance of a model, several model metrics can be employed 174 

depending on the model task, data types, and scenarios. In this article, models are scored based 175 

on the coefficient of determination (R2) (Eq.1), root mean square error (RMSE) (Eq.2), and 176 

mean absolute error (MAE) (Eq.3) [47].  177 

R2 = 1 −
∑(ai−pi)2

(ai−μa)2                                                         (1) 178 

RMSE = √
1

n
 ∑ (ai − pi)2n

i=1                                                  (2) 179 

MAE =
1

n
∑ |ai − pi|

n
i=1                                               (3) 180 

 181 

Where 𝑖 = 1,2, . . 𝑛  is the number of observations, and 𝑛  is the total number of records. 182 

Considering 𝑎𝑖 for output, 𝑝𝑖 as real values, and 𝜇𝑎 as mean value. 183 

3 Results and discussion  184 

3.1 Data statistical information 185 

A brief demonstration of primary statistical properties (Min, Mean, Max, and standard 186 

deviation) is represented in Table 1.  187 

Table 1 188 

Data set statistical properties 189 

Parameters Units Min Mean Max SD 

pH - 6.94 7.26 7.90 2.14 

DO mg/L 1.22 1.34 1.80 2.18 

NH4-N mg/L 26.11 68.78 93.94 3.14 

BOD mg/L 205.40 505.83 858 4.21 

COD mg/L 367.36 1063.85 1881.6 4.87 

MLSS mg/L 148.80 554.17 1041.5 3.64 

MLVSS mg/L 99.7 366.39 697.87 3.51 

TN mg/L 35.81 91.60 125.73 3.16 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


9 

 

 190 

3.2 Summary of selected feature procedure 191 

Each FS method has a particular subset suggestion as described in Table 2. The variance 192 

threshold revealed the redundant features. Filter methods (ANOVA and MI) suggesting very 193 

similar subsets, and PC is indicating NH4-N with the highest correlation to the target variable.  194 

TN as the target of the prediction displayed a strong correlation with NH4-N, COD, and BOD 195 

respectively, and a weak correlation with pH and DO as can be seen in the Pearson correlation 196 

result (supplementary file, Fig.S6). The highest correlation (~1.0) among input parameters 197 

belonged to MLSS and MLVSS, and the lowest value was related to BOD and pH. 198 

Generally, FS algorithms are pointing at (NH4-N, COD, and BOD) as the best possible subset, 199 

while LASSO is showing a different result. Besides, four scenarios as shown in Table 3 were 200 

grouped based on FS suggestions and they were compared with ANN, RF, and GBM 201 

techniques to introduce the best scenario. Details for the result of each FS process can be found 202 

in the supplementary information file. 203 

Table 2  204 

Summary of feature selection application on the data set 205 

Method Subset Description 

Variance COD, MLSS, MLVSS, BOD, NH4-N Dropping redundant features 

ANOVA NH4-N, COD, BOD, MLSS Ranking based on the importance level 

Mutual 

Information 

NH4-N, COD, BOD, DO Ranking based on the importance level 

Pairwise 

correlation 

NH4-N Choosing highly correlated features (> 0.8) 

with target 

Backward  NH4-N, COD, BOD Choosing features that increase the 

regression model performance reasonably 

Random 

Forest 

NH4-N, COD, BOD, MLSS Ranking based on Gini importance level 

LASSO NH4-N, MLSS, MLVSS Ranking based on the importance level 

 206 
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Table 3 207 

Different scenarios defined in this study based on different feature selection methods 208 

Scenario Number of features Suggested by   Name of features 

I 1 Pairwise correlation  NH4-N 

II 3 LASSO NH4-N, MLSS, MLVSS 

III 4 
ANOVA, Random Forest, 

Backward Elimination 
NH4-N, COD, BOD, MLSS 

IV 4 Mutual Information NH4-N, COD, BOD, DO 

 209 

3.3 Prediction results 210 

After training the models in various scenarios, the whole dataset was predicted by models (Fig. 211 

4), then model metrics were calculated (R2, RMSE, and MAE) for both training and test dataset. 212 

The model metrics of each scenario are described in both data sets (Table 4).  213 

According to scenario I, with only one feature (NH4-N), RF has the best performance on the 214 

training set, but its performance dropped significantly on the test data set which shows serious 215 

overfitting issues. Similarly, ANN and GBM lost their precision, but with a lower difference. 216 

These two models with R2=0.52 had a better outcome for this scenario on the test data-set. 217 

In scenario-II, although more features were introduced to the models and accuracy on the 218 

training set was increased, the performance on the test data-set was decreased. This result is 219 

indicating the introduced subset is not adding precision to the models, but it is causing 220 

overfitting issues. For these features, GBM has the best result on the test dataset with R2=0.52. 221 

In scenario-III, the RF has the highest accuracy on the training dataset and the lowest 222 

performance on the test dataset. In this scenario, ANN performance was increased slightly, so 223 

it is showing that this subset has a better outcome than the subset in scenario-II for neural 224 

network algorithms, while it is causing overfitting issues for decision tree algorithms (GBM 225 

and RF). 226 

The last scenario (IV) showed better results compared to previous scenarios. As indicated in 227 

Table 4, the RMSE of test data of this scenario is 0.092, 0.095, and 0.095 for GBM, RF, and 228 

ANN respectively. In this scenario, RF had less overfitting, ANN performance was increased, 229 

and GBM had the best performance both on training set R2=0.88 and test data-set R2=0.58. 230 
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GBM has the highest precision followed by RF and ANN in scenario-IV. Also, among FS 231 

methods, Mutual Information has better performance, because it was the only technique that 232 

considered DO as effective variable. 233 

The results revealed that how sensitive is ANN to selecting the wrong features. In scenario-II 234 

and scenario-III, with adding more features to the subset, the ANN metrics decreased on the 235 

test dataset. Similarly, RF with very high performance on the training dataset suffered from 236 

more overfitting issues due to introducing inefficient subsets in scenario-II and scenario-III. In 237 

contrast, GBM showed a more robust model. Introducing wrong features to GBM didn’t change 238 

the model performance considerably, and more or less it kept the performance level similar to 239 

previous subsets, but with introducing the best subset (scenario-IV), GBM showed an 240 

exceptional improvement in model evaluation. So, generally, it can be said that decision tree 241 

algorithms (RF and GBM) showed better performance than the neural network model (ANN). 242 

 243 

Table 4 244 

Model Metrics (accuracy and errors) of each prediction models 245 

  Training Data Test Data (unseen) 

 Model R 2 RMSE MAE R 2 RMSE MAE 

Scenario 

I 

ANN 0.77 77E-3 8E-5 0.52 94E-3 83E-4 

GBM 0.76 78E-3 3.5E-5 0.52 95E-3 57E-4 

RF 0.80 96E-3 5E-5 0.50 96E-3 104E-4 

        

Scenario 

 II 

ANN 0.75 79E-3 18E-3 0.42 104E-3 51E-3 

GBM 0.81 72E-3 1E-3 0.52 95E-3 34E-3 

RF 0.88 60E-3 1.4E-3 0.46 100E-3 34E-3 

        

Scenario 

 III 

ANN 0.79 74E-3 -5E-5 0.51 96E-3 28E-3 

GBM 0.84 68E-3 11E-4 0.51 96E-3 31E-3 

RF 0.89 55E-3 12E-4 0.48 98E-3 28E-3 
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Scenario  

IV 

ANN 0.81 73E-3 56E-4 0.55 95E-3 22E-3 

GBM 0.88 68E-3 4E-4 0.58 92E-3 17E-3 

RF 0.83 55E-3 9E-4 0.55 95e-3 19E-3 

 246 

According to Table 4 and Fig.4, comparing Scenario-I with scenario II and III, the accuracy of 247 

models on capturing the complexity of the training dataset was increased, while the model 248 

performance on the test dataset was not improved. This means that the model learned the 249 

training dataset very well, but not able to generalize the patterns perfectly. Among all models, 250 

RF has had the best match with real data on the training data set and faced more with overfitting 251 

issues. In Scenario-IV, GBM showed the best matching with real data, as well as, a great 252 

improvement in generalizing the patterns for the unseen dataset.  253 

 254 

 255 

 256 
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 257 

 258 

Fig. 4.- prediction of TN concentration for two sub-set of training (0-800 days) and unseen test data 259 

(800-830 days) for different scenarios, A) Scenario I, B) Scenario II, C) Scenario III, and D) 260 

Scenario IV 261 

Prediction of critical characteristics like TN in the WWTP influent is a topic in which many 262 

researchers attempt to propose various methods to enhance precision. In recent approaches with 263 

ML methods and data-driven decision techniques, better results are demonstrated (Table 4). 264 

It is noticeable that due to the sophisticated nature of different processes in WWTPs, there is 265 

no single adequate model for all types of similar issues. Consequently, this matter has required 266 

the improvement of more solid and effective models utilizing accessible information [48-52]. 267 

Table 5 shows the summarized information of recently TN prediction studies in various 268 

WWTPs  269 

 270 

Table 5 271 

C 

D 
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Summary of different studies on TN prediction in the influent/effluent flow of wastewater  272 

Feature selection 

methods 

Prediction 

Algorithm 

Model 

Accuracy 

(unseen data) 

Remarks References 

Forward selection  

parallel-

serial 

hybrid 

R2=0.81, 

MSE=N/A 

Combine ML models with 

mechanistic models (biological 

simulation) for increasing the 

model performance  

Hvala et al. 

2020 [50] 

Latin Hypercube 

One factor At a 

Time (LH-OAT) 

SVM, 

ANN 

R2=0.47, 

MSE=N/A 

ANN showed better result rather 

than the SVM algorithm 

Guo et al. 

2015 [48] 

Pearson 

Correlation 
LSTM 

R2 =N/A 

MSE=0.015 

LSTM needs lower training time 

and has high performance for 

predicting unseen dataset. 

Yaqub et al. 

2020 [49] 

Forward Selection, 

Genetic 

algorithms, 

Pearson 

Correlation 

k-fold 

model 
N/A 

five-fold cross-validation caused 

an increase in the  accuracy of the 

prediction 

Tomperi et 

al. 2017 [5] 

N/A 

SDAE, 

SVR, 

BNN, 

GBM, 

SAE 

R2=0.05 

MSE= 1.58 

Stacked denoising auto-encoders 

(SDAE) showed the best 

performance for predicting TN 

Shi and Xu 

2018 [53] 

Analysis of 

variance, Mutual 

Information, 

Backward 

Elimination, 

Pearson 

Correlation, 

LASSO 

ANN, RF, 

and GBM 

R2=0.58, 

MSE=0.0084 

GBM model showed the best 

performance on training and test 

data-set and less vulnerable to add 

or remove extra features. 

Also, the Mutual Information 

feature selection method 

suggested the best features. 

This study 

 273 

Based on table 5, Guo et al. [48] utilized SVM (support vector machine) and ANN to predict 274 

TN concentration in a WWTP. The models have trained 200 records and tested during the 90 275 

days. The model performance indicated the coefficient of determination  0.46 and 0.47 for 276 

SVM and ANN respectively. In a different approach, Tomperi [5] firstly, performed extensive 277 

feature selection methods such as stepwise selection, forward selection, and genetic algorithms, 278 

then they developed a k-fold model to predict TN with R2=0.69 without testing on unseen data. 279 

Also, Yaqub et al. [49] proposed a prediction method for TN by developing a two-layered 280 

stacked long short-term memory (LSTM) network on a large data set (6000 training and 1876 281 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


15 

 

testing) with a low average model error (MSE=0.015). In addition to that, hybrid simulation 282 

can be helpful for accurate prediction of TN. For example, [50] designed a parallel-serial hybrid 283 

model (machine learning and mechanistic models) on a data set (400 train and 250 test data-284 

set) with high accuracy (R2=0.81). Combining external biological simulation (mechanistic 285 

modeling) to ML algorithm caused high model precision. Hence, considering based on 286 

standalone ML prediction, the proposed model by this study is a high accuracy model for TN 287 

prediction among recent similar studies. 288 

4 Conclusions  289 

In the present study, the importance of using suitable FS as a booster of prediction was 290 

evaluated. Also, the following conclusions were derived from this study as follows: 291 

• Selecting a suitable feature selection for obtaining the best possible input-data increases 292 

the prediction precision (up to 20%).  293 

• Considering the outcome of recent literature for TN prediction in the influent/effluent 294 

flow of WWTP, this study demonstrated high precision prediction by Mutual 295 

Information FS model and GBM prediction algorithm. 296 

• Scenarios III and IV declared a more reliable performance of the model predictions 297 

which means that the wrapper feature selections (ANOVA, Random Forest, Backward 298 

Elimination, and MI) can select the level of features importance better than commonly 299 

used filter methods.  300 

• Decision tree algorithms (RF and GBM) revealed better performance results in 301 

comparison to neural network algorithm (ANN), and GBM has the highest accuracy 302 

(R2=0.58, RMSE=0.092, and MAE=0.017 for the test dataset respectively) followed by 303 

RF and ANN in the best scenario (IV). 304 

• GBM is less sensitive to add or remove features to the subset. In contrast, ANN 305 

accuracy drops significantly, if redundant features are added. 306 
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