
Chapter 12
Comparison of Classification Methods for
EEG Signals of Real and Imaginary Motion

Piotr Szczuko, Michał Lech and Andrzej Czyżewski

Abstract The classification of EEG signals provides an important element of brain-
computer interface (BCI) applications, underlying an efficient interaction between
a human and a computer application. The BCI applications can be especially useful
for people with disabilities. Numerous experiments aim at recognition of motion
intent of left or right hand being useful for locked-in-state or paralyzed subjects in
controlling computer applications. The chapter presents an experimental study of
several methods for real motion and motion intent classification (rest/upper/lower
limbsmotion, and rest/left/right handmotion). First, our approach to EEG recordings
segmentation and feature extraction is presented. Then, 5 classifiers (Naïve Bayes,
Decision Trees, Random Forest, Nearest-Neighbors NNge, Rough Set classifier) are
trained and tested using examples from an open database. Feature subsets are se-
lected for consecutive classification experiments, reducing the number of required
EEG electrodes. Methods comparison and obtained results are presented, and a study
of features feeding the classifiers is provided. Differences among participating sub-
jects and accuracies for real and imaginary motion are discussed. It is shown that
though classification accuracy varies from person to person, it could exceed 80% for
some classifiers.
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12.1 Introduction

The classification of EEG signals is an important part of the brain-computer inter-face
(BCI) application. It is required for the method to be highly accurate to maintain an
efficient interaction between a human and a computer application [6, 15]. Applying
a dedicated method of signal processing to EEG recordings allows for determining
emotional states, mental conditions, and motion intents. Numerous experiments of
imaginary motion recognition deal with unilateral, i.e. of left or right, hand motion.
Such a classification is useful for locked-in-state or paralyzed subjects, thus it can be
applied successfully to controlling computer applications [3, 11, 23–26, 31, 32, 52]
or a wheelchair [7, 12] and communicating with locked-in patients and diagnosis of
coma patients [8].

The motion intent classification can be performed in a synchronous or an asyn-
chronous mode. The former method uses a visual cue, e.g. an icon on the screen
flashing in timed intervals, and then verifies user’s focus by means of the P300 po-
tential induced in a reaction to this visual event [4, 5, 16, 33]. The latter approach
is suited for self-paced interaction, but it requires a method of distinction between a
resting and acting, in the latter case determining the type of the action [10, 40, 56].
The asynchronous approach is evaluated in our work, since the classification of left
and right, and up and down motion intents and real motions is performed by various
decision algorithms.

The main principle for detection and classification of imaginary motor activity
in brain-computer interfaces is based on an observation that the real and imaginary
motions involve similar neural activity of the brain [26]. It is indicated by an alpha
wave signal power decrease in a motor cortex in a hemisphere contra-lateral to the
movement side [25, 26, 31], usually registered by C3 and C4 channels [39, 43, 57].
It is related to a phenomena of event-related desynchronization (ERD) [20, 29, 58].
Such an activity can be detected and classified by various approaches.

Siuly et al. [42] employed a conjunction of an optimal allocation system and two-
class Naïve Bayes classifier in the process of recognizing hand and foot movements.
Data was partitioned in such a way that right hand movements were analyzed along
with the right foot (first set) movements and left hand movements were analyzed also
with right foot movements (second set). Left foot movements were not performed
in the experiment. The global average accuracy over 10 folds, for the first and the
second set, equalled to 96.36 and to 91.97%, respectively. The authors claimed to
obtain the higher accuracy for the two-class Naïve Bayes classifier than for the
Least Squares Support Vector Machine (LS-SVM), both cross-correlation (CC) and
clustering technique (CT) based, examined in their earlier works [41, 59].

Schwarz et al. [38] aimed at developing BCI system that generates control signals
for users with severe motor impairments, based on EEG signals processed using
filter-bank common spatial patterns (fbCSP) and then classified with Random Forest
which is a type of a random tree classifier, applied to experiments presented in their
paper. In their experiments users were asked to perform right hand and feet motor
imagination for 5 seconds according to the cue on the screen. For imagined right hand
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movement, each user was instructed to imagine sustained squeezing of a training
ball. For motor imagery of both feet, the user was instructed to imagine repeated
plantar flexion of both feet. The median accuracy of 81.4% over the feedback period
(presenting information to the user about the motion intention) was achieved.

Kayikcioglu et al. [21] compared performance of k-NN , Multiple Layer Percep-
tron, which is a type of Artificial Neural Network tested herein, and SVM with RBF
kernel. Training datasets were created based on one-channel EEG signal. The authors
claim that the best accuracy was obtained for k-NN classifier but the presentation of
the results is vague, thus not convincing.

Beside observing ERD occurrences, the motion intent classification is performed
by: Linear Discriminant Analysis (LDA) [22, 31, 32, 58], k-means clustering and
Principal Component Analysis (PCA) [48], or Regularised Fisher’s Discriminant
(RFD) [51]. The work presented in this chapter is inspired by previous results in
applying Rough Set classifier of the real and imaginary motion activity over large
database of 106 persons performing real and imaginary motion, resulting in accuracy
exceeding 80%, and in some cases up to 100% [44, 45]. The main goal of this
research is to determine the best method of signal classification, by applying selected
classifiers, relatively simple and straightforward to use for practical applications.
Another goal was to determine the impact of reducing the EEG signal representation
on the accuracy: first by using a larger set of features (615), and then by limiting this
amount of features (to 120 and to 50).

Despite the observed advancements in EEG classification there still remains a
considerable group of users (15–30%) being “illiterate” in the Brain-Computer-
Interfaces, thus unable to perform recognisable mental actions in a repeated manner.
The exact reason is still unknown but the problem was formulated and studied [9,
53]. In this research there are subjects with relatively high and satisfactory results
but the same methods yield poor results for other group of persons. The personal
differences are discussed in Sect. 12.4.

The reminder of this chapter is structured as follows: Sect. 12.2 describes EEG
signals preprocessing and feature extraction, Sect. 12.3 contains details of classifiers
setup. Results are presented in Sects. 12.4, and 12.5 provides conclusions.

12.2 EEG Signal Parameterisation

EEG signals are parameterized in frequency bands associated experimentally with
mental and physical conditions [55]. Following frequency ranges and their most
popular interpretations are used: delta (2–4Hz, consciousness and attention), theta
(4–7Hz, perceiving, remembering, navigation efforts) and alpha (8–15Hz, thinking,
focus, and attention), beta (conscious focus, memory, problem solving, information
processing, 15–29Hz), and gamma (learning, binding senses, critical thinking 30–
59Hz). Electrodes are positioned over crucial brain regions, and thus can be used for
assessing activity of motor cortex, facilitating motion intent classification [1].
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Recordings of EEGare pollutedwith various artifacts, originating fromeye blinks,
movement, and heartbeat. Dedicated methods were developed for detecting artifacts,
filtering and improving signal quality. A Signal-Space Projection (SSP) [19, 50,
58], involving spatial decomposition of the EEG signals is used for determining
contaminated samples. Such an artifact repeatedly originates from a given location,
e.g. from eye muscles and is being recorded with distinct characteristics, amplitudes,
and phases, thus the artifact pattern can be detected and filtered out. Signal quality
improvements are also achieved by Independent Component Analysis (ICA) [19, 20,
50, 53].

The research approach presented in this chapter assumes an usage of Hilbert
transform of the signal and of several parametrization methods based on envelope,
power, and signal statistics, as well as a classification based on dedicated, carefully
examined and trained classifiers. For those experiments a large EEG database was
used: EEG Motor Movement/Imagery Dataset [14], collected with BCI2000 system
[2, 37] and published by PhysioNet [14]. This database includes 106 persons and
exceeds the amount of data collected by Authors themselves up to date, thus is more
suitable for training and examining classification methods over a large population,
facilitating also comparisons with research of others.

The dataset contains recordings of 4 tasks:

• A real movement of left-right hand,
• B real movement of upper-lower limbs,
• C imaginary movement of left-right hand,
• D imaginary movement of upper-lower limbs.

Sixty four electrodes were used located according to the 10–20 standard, with
sampling rate 160Sa/s, and timestampsdenoting start and endof particularmovement
and one of 3 classes: rest, left/up, right/down. Among the available channels, only 21
were used, obtained from motor cortex: FCZ ,1,2,3,4,5,6, CZ ,1,2,3,4,5,6, CPZ ,1,2,3,4,5,6

(Fig. 12.1).
All 21 signals were processed in a similar manner, decomposed into the time-

frequency domain (TF): delta (2–4Hz), theta (4–7Hz), alpha (8–15Hz), beta (15–
29Hz), and gamma (30–59Hz). Subsequently, each subband’s envelopewas obtained
byHilbert transform [27], reflecting activity in the given frequency band. This dataset
was pre-processed employing the Brainstorm software, where segmentation and fil-
tration of signals were performed [47]. Finally, 615 various features of envelopes
were extracted. Authors of this chapter proposed a parametrization of envelopes of
band-filtered signals. Consequently, 5 frequency subbands for each of 21 sensors,
are parametrized as follows:

1. For a particular subband j = {delta, . . . , gamma} from a sensor k =
{FC1, . . . ,CP6}, 5 activity features are extracted, reflecting the activity in the
particular brain region: the sum of squared samples of the signal envelope (12.1),
mean (12.2), variance (12.3), minimum (12.4), and maximum of signal envelope
values (12.5),
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Fig. 12.1 A top view of a human head with electrodes in 10–20 setup, motor cortex channels in
central region marked (Source [14])

2. For all 9 pairs of symmetrically positioned electrodes kL and kR (e.g. kL = C1,
and kR = C2) the signal envelopes differences are calculated and summed up
(12.6), to reflect asymmetry in hemispheres activity while performing unilateral
motion:

SqSum j,k =
N∑

i=1

(
e j,k[i]

)2

, (12.1)

Mean j,k = 1

N

N∑

i=1

(
e j,k[i]

)
, (12.2)

Var j,k = 1

N

N∑

i=1

(
e j,k[i] − Mean j,k

)2

, (12.3)

Min j,k = min(e j,k[i]), (12.4)
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Max j,k = max(e j,k[i]), (12.5)

SumDiff j,kL ,kR =
N∑

i=1

(
e j,kL [i] − e j,kR[i]

)
, (12.6)

where, e j,k[i] is an envelope of the signal from particular subband j of electrode k
and has length of N samples.

As a result there are 615 features extracted for every task. The result decision
table includes also task number, person number and decision (T0, T1 or T2).

The multidimensional problem of classifying EEG signal is not straightforward,
because personal biological and neurological features significantly influence values
of registered signals and extracted features. In the following data classification (Sect.
12.3) every person is treated separately, thus for every task a new classifier is created
with a different subset of useful and informative features.

EEG classification is hampered by personal biological and neurological differ-
ences, or other characteristics influencing EEG signal quality and features. There-
fore each person is treated as individual classification case, and thus customized
classifiers are created.

12.3 Data Classification Method

Data classification was performed in WEKA software package offering various data
mining techniques [54], and in R programming environment [13] with RoughSets
package [35].

All methods were applied in a 10 cross-validation runs, with a training and test-
ing sets selected randomly in a 65/35 ratio split. These sets contain 1228 and 662
signals for a single person performing a particular task of 3 different action classes
(rest, up/left motion, and down/right motion). The process is repeated for 106 per-
sons, achieved average classification accuracy records are collected. In the described
research three variants of features sets P were examined:

1. P615 with all 615 features.
2. P50 with features being the most frequently used in Rough Set classification rules

from the first variant [44, 45]. Reducts from all iterations of given classification
scenarios were analyzed for frequency of features and top 50 were used instead
of 615 to repeat this experiment (Table12.1). Other features appear in less than
3% of rules often matching only a single person, therefore are discarded to re-
duce overfitting. By this approach it is verified if a limited number of features is
sufficient for accurate description of classes differences. Rough Set was used as
a baseline, because of high accuracy achieved in previous experiments with this
method [44, 45].

3. PC3C4 with 120 features obtained only from signals from electrodes C3 and C4,
as these were reported by other research to be the most significant for motion
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Table 12.1 Top 50 features for classification rules in Rough Set method. A number of rules in-
cluding the feature is provided. The set is used for other classifier in this chapter, denoted as P50

Attribute No. of appear. Attribute No. of appear. Attribute No. of appear.

Vartheta,FCZ 420 Maxgamma,C3 279 Vartheta,FC6 253

Mindelta,C1 409 Mindelta,C5 277 Maxbeta,C4 252

Mindelta,FC5 389 Sumtheta,FC3 277 Maxgamma,FC2 250

Meangamma,C6 388 Mindelta,FC3 276 Mindelta,CP4 248

Sumalpha,CP4 378 Vargamma,C6 275 Mindelta,CPZ 248

Mindelta,FCZ 367 Minbeta,C1 274 Maxtheta,FC1 246

Meandelta,FC5 340 Mindelta,FC2 273 Sumbeta,FC2 246

Mindelta,C4 337 Sumbeta,FC4 272 Maxgamma,C1 245

Maxbeta,C1 327 Sumgamma,FC5 269 Sumalpha,CP2 244

Mindelta,CP5 326 Mindelta,C3 268 Sumgamma,C4 239

Sumdelta,FC6 316 Varbeta,CZ 268 Maxgamma,FC5 238

Vartheta,CP2 310 Mingamma,C4 260 Mindelta,CP3 238

Varalpha,FCZ 304 Sumtheta,FCZ 259 Vartheta,CP1 236

Sumgamma,FC1 299 Varalpha,FC3 259 Meantheta,FC3 231

Vartheta,CP6 290 Maxgamma,FCZ 258 Maxalpha,FC6 229

Mindelta,CP2 288 Vartheta,C4 258 Vartheta,CZ 229

Mindelta,C6 284 Mindelta,FC4 254

classification [25, 31, 43], for verifying if limiting the region of interest to two
regions on motor cortex decreases accuracy.

Five classification methods were chosen. Each have own parameters, and to deter-
mine the best setup a training-testing cycle with cross-validation was repeated with
automatic changes of parameters from an arbitrary defined values sets (Table12.2).
As a result, for each classifier the best configuration was identified for P615, P50 and
PC3C4 and then used for subsequent experiments. Following methods were used:

• Naïve Bayes (NB). Naïve Bayes method uses numeric estimator with precision
values chosen based on analysis of the training data [18]. A supervised discretiza-
tion was applied, converting numeric attributes to nominal ones.

• Classifier trees (J48). A pruned C4.5 decision tree was applied [34], with adjusted
confidence factor used for pruning C, and a minimum number of instances for a
leaf M. C was selected from a set {2−5, 2−4, . . . , 2−1}, M:{21, 22, . . . , 25}.

• Random Forest (RF). This method constructs I random trees considering K ran-
domly selected attributes at each node. Pruning is not performed. I and K were
from a set {23, . . . , 27}.

• Nearest-Neighbors (NNge). An algorithm of Nearest-neighbors using non-nested
generalized exemplars (hyperrectangles, reflecting if-then rules) was used [28,
36]. The method uses G attempts for generalization, and a number of folder for
mutual information I. G and I were from a set {20, . . . , 26}.
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Table 12.2 Classifiers parameters resulting with the highest classification accuracy for three used
features sets

Classifier Features set P615 Features set P50 Features set PC3C4

NB Not applicable Not applicable Not applicable

J48 C = 0.03125, M = 16 C = 0.03125, M = 16 C = 0.03125, M = 16

RF I = 64, K = 64 I = 64, K = 32 I = 64, K = 16

NNge G = 8, I = 2 G = 8, I = 8 G = 8, I = 4

RS Not applicable Not applicable Not applicable

• Rough Set classifier (RS). A method applying Pawlak’s Rough Set theory [30,
35] was employed to classification. It applies maximum discernibility method for
data discretization and it selects a minimal set of attributes (a reduct) maintaining
discernibility between different classes, by applying greedy heuristic algorithm
[17, 45, 46]. A reduct is finally used to generate decision rules describing objects
of the testing set, and applying these to the testing set.

12.4 Classification Results

Classification accuracies obtained for 106 persons by the best configuration of se-
lected 5 classifiers are shown below as box-whiskers plots [49] (Fig. 12.2).

It can be observed that Rough Sets (RS) are significantly more accurate in clas-
sification than other methods. Random Forest (RF) is the second, but the advantage
over Naïve Bayes (NB), J48 and Nearest-Neighbors (NNge) is not statistically sig-
nificant. Nearest-Neighbors is usually the worst. There are a few cases of very high
accuracy exceeding 90%, but also a few persons’ actions were impossible to classify
(observed accuracy lower than 33% is interpreted as random classification).

In each case the imaginary motion classification (task B and D) is not as accurate
as classification of the real motion (task A and C). This can be justified by inability
to perform a task restricted to only mental activity in a repeated manner, or subjects’
fatigue, incorrect positioning of electrodes, or even BCI illiteracy. Classification of
real upper/lower limbs movement (task C) is the easiest one for every method.

It can be observed that applying P615 to classification (Fig. 12.2) generally yields
better results than limited features setsP50 orPC3C4 (Fig. 12.3 and 12.4). The accuracy
decrease of ca. 5%.

Personal differences must be taken into account in application of EEG classifi-
cation, as our experiments show some individuals perform the best, and other the
worst repeatedly. For example, the subject S004 from the database was the highest
ranked in 103 cases of 192 classification attempts, followed by S072 being the top
ranked in 26, and S022 in 19 cases. The worst performing subjects were: S031 in 15,
S098 in 13, S047 in 12, S021 in 11, and S109 in 11 cases of 192 attempts. Subjects
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Fig. 12.2 Classification performance in 10 cross validation runs of selected classifiers for feature
set P615: (a)–(d) tasks A–D respectively

Fig. 12.3 Classification performance in 10 cross validation runs of selected classifiers for feature
set P50: (a)–(d) tasks A–D respectively
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Fig. 12.4 Classification performance in 10 cross validation runs of selected classifiers for feature
set PC3C4 : (a)–(d) tasks A–D respectively

are anonymous and no personal details are provided, so actual physical difference
between them cannot be determined.

12.5 Conclusions

A method of EEG signal pre-processing, parametrization, and classification with
selected 5 classifiers was presented. Among applied methods Rough Sets (RS) and
Random Forest (RF) achieved the highest accuracy, with the Rough Set (RS) signif-
icantly outperforming other methods.

The presented procedure can be employed in a simple interface involving motion
classification by EEG signals analysis. It opens a possibility to develop accurate
and responsive computer applications to be interacted by intents of rest, left, right,
up, and down motion. These five binary input controls are sufficient to perform
complex actions such as navigating, confirming or rejecting options in a graphical
user interface.

For each person the training and classification process must be repeated, because
each case could differ, albeit slightly, with electrodes placements, signal registration
conditions, hair and skin characteristics, varying level of stress and fatigue, varying
manner of performing the imaginary motion, etc.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Subjects were anonymous, so their physical differences are unknown, but large
discrepancy in classification accuracy was observed, probably impossible to be over-
come. Still, it must be yet determined whether satisfactory accuracy can be achieved
by applying processing and classification of signals from non-invasive registration
of brain activity through the skull and the scalp.

The results presented in this chapter were achieved without a necessity to apply
complex methods such as ICA or SSP described in literature, and blink and heartbeat
artefacts elimination or signal improvements methods were not employed. Therefore
main strength of the approach is its simplicity, and confirmed high accuracy, possible
to achieve provided the person is able to performdefined actions in a repeatedmanner.
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