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Sum-over-state (SOS) expressions to simulate absorption spectroscopy and resonance Raman (RR)
scattering including Franck-Condon (FC) and Herzberg-Teller (HT) effects are described. Starting
from the general SOS method, several simplified SOS formulae are derived. In particular, within
the so-called independent mode displaced harmonic oscillator model, it is shown that including the
vibronic structure in the absorption and RR spectra only requires the calculation of FC overlap
integrals of the type



θg0|θev�, where g, e, and v stand for the electronic ground state, excited

state, and vibrational quantum number, respectively. Additionally, an approximation of the latter
approach is introduced, referred as the simplified Φe method, in which the FC factors are neglected.
This method is advantageous from the computational point of view and it is demonstrated that it
reproduces the main characteristics of the more involved approaches. The merits and drawbacks of
the different methods are discussed by applying them to the prototypical compound of Rhodamine
6G. Overall, this work intends to unravel and clarify some differences in the SOS theories of RR
scattering. C 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4941449]

I. INTRODUCTION

The spectroscopy of resonance Raman (RR) scattering is
a widely used technique, which has proven to be an excellent
tool for unraveling the dynamics and structure of molecular
excited states.1,2 Indeed, RR spectroscopy probes the dynamics
in the Franck-Condon (FC) region, which is generally short-
lived and thus structurally similar to the ground state. The RR
intensities, which are associated to the ground state vibrational
frequencies, carry specific information about the structure of
the resonant electronic states. For example, identification of
the vibrational modes with strong RR enhancements is used
in multichromophoric systems to determine the chromophore
involved in the excitation at a certain frequency and to
assign the type of the electronic transitions. Additionally,
the enhancement pattern reflects the geometric and electronic
structures of the excited state. Therefore, RR intensity analysis
is employed to elucidate the displacements of potential energy
surfaces (PESs) of excited states relative to the ground state to
extract changes in bond lengths upon electronic excitation and
to calculate reorganization energies, e.g., for charge transfer
processes.3–6

The interpretation of experimental RR spectra can
strongly benefit from accurate calculations of the RR
intensities, which can be obtained from the Kramers,
Heisenberg, and Dirac expression of the Raman polarizability
tensor.7,8 To this aim, several methodologies were proposed
recently in the literature, which can be classified into
two families. The first type of method is based on an
explicit evaluation of the sum-over-state (SOS) expression
for the Raman polarizability tensor. This type of method
is also referred as time independent. The second type of
method corresponds to a time dependent approach originally

developed by Heller and co-workers,9–12 which is based
on wave packet dynamics. In this formulation, the Raman
polarizability is expressed as a half-Fourier transform of
a time dependent overlap between the final and initial
vibrational states. While time independent methods require
the evaluation of an infinite summation over vibronic states,
the time dependent formulation necessitates a numerical
integration of an unbounded integral. Recent implementations
and applications of the time dependent approach are discussed,
e.g., in Refs. 13–18.

The purpose of the present work is to describe and
assess several SOS methods to calculate RR intensities.
This is motivated by the following facts: (i) SOS methods
are employed by several research groups to compute RR
intensities,19–28 (ii) SOS methods are efficient and accurate in
simulating RR spectra including large and complex molecular
systems,29,30 and (iii) several approximations/simplifications
have appeared in the literature, which creates demand for an
assessment of their respective merits. Therefore, the detailed
derivation of different SOS expressions is presented in order
to describe the involved approximations, to give the required
input quantities, and to estimate their computational cost.
The methods are applied to the well-known compound of
Rhodamine 6G (R6G).31,32 Thus, their ability in reproducing
different physical effects is investigated. This concerns (i) the
inclusion of non-Condon scattering, i.e., Herzberg-Teller (HT)
effects, (ii) the dependence of the RR intensities with respect
to the excitation frequency, (iii) the inclusion of Duschinsky
rotation effects, and (iv) the reproduction of the vibronic
structure in the absorption and RR excitation profiles. It is the
author’s intention that this contribution will help unraveling
and clarifying some differences in the SOS theories of RR
scattering.
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The paper is organized as follows: Section II presents the
main theory and the standard approximations used in absorp-
tion and RR spectroscopies. Section III provides the derivation
of several simplified SOS approaches. Section IV describes the
computational methods employed to calculate the properties of
R6G. Section V reports and discusses the simulated absorption
spectrum, RR intensities, and RR excitation profiles. Finally,
conclusions are given in Section VI.

II. THEORY AND MAIN APPROXIMATIONS

This section presents the definition of the absorption
and RR cross sections as well as the main approximations
employed to derive expressions for the FC and HT
contributions. The formalism described in this section was
already reported by different authors (see, e.g., Refs. 33, 24,
3, and 34) and is reproduced herein to introduce the employed
notations as well as to make the document self-contained and
intelligible to the reader.

A. Absorption cross section

The absorption cross section for transitions from an initial
state |i⟩ to an ensemble of final states | f ⟩ is given by

σA (ωL) = 4π2

3c}
ωL


f


ρ={x, y,z}

�⟨i | µρ | f ⟩�2Γ
π

1
�
ω f i −ωL

�2
+ Γ2

.

(1)

In Eq. (1), ωL is the frequency of the incident light,
⟨i | µρ | f ⟩ is a component of the transition dipole moment,
and ω f i ≡

�
E f − Ei

�
/} is the Bohr frequency between the

initial (i) and final ( f ) states. A homogeneous broadening is
described by a Lorentzian function with a damping factor Γ,
i.e., the full width at half maximum (FWHM) is equal to 2Γ.

In the following, it is assumed that the Born-Oppenheimer
approximation is valid, that the vibrational modes and
frequencies are obtained within the harmonic approximation,
and that the transition occurs between the electronic ground
state (g) and an electronic excited state (e) of the molecule.
In this case, the initial and final vibronic states can be written
as a product of the electronic |φ⟩ and vibrational |θ⟩ wave
functions,

|i⟩ = �
φg

� �
θgu

�
, | f ⟩ = |φe⟩ |θev⟩ , (2)

u and v are multi-indices representing the harmonic quantum
numbers of the vibrational normal modes of the ground and
excited states, respectively, i.e., u ≡ u1,u2, . . . ,uM, where M
is the number of modes. Next, the transition dipole moment
can be written as

⟨i | µρ | f ⟩ = 

θgu

� 

φg

�
µρ |φe⟩ |θev⟩ = 


θgu
� �
µρ

�
ge

|θev⟩ , (3)

where
�
µρ

�
ge

is a component of the electronic transition dipole
moment between the electronic ground state and the electronic
excited state.

�
µρ

�
ge

depends on the nuclear coordinates and
can be developed as a Taylor series,

�
µρ

�
ge
=
�
µρ

�0
ge
+


l

*
,

∂
�
µρ

�
ge

∂Ql

+
-0

Ql + · · ·. (4)

�
µρ

�0
ge

and
(
∂
�
µρ

�
ge
/∂Ql

)
0

are, respectively, the electronic
transition dipole moment and the derivative of the electronic
transition dipole moment evaluated at the ground state
equilibrium geometry (denoted by 0). The index l indicates
a summation over all the mass-weighted normal coordinates
Ql of the ground state. An alternative choice is to expand
the transition dipole moment with respect to the excited state
normal coordinates.

The following steps are made in order to obtain an
expression for the square modulus of the transition dipole
moment

�⟨i | µρ | f ⟩�2:
(i) Eq. (4) is truncated after the linear term with respect to

Ql. Then, it is reported in Eq. (3).
(ii) The well-know identity for harmonic oscillators is

employed,



θgu

�
Ql |θev⟩ =


~

2ωl

�√
ul



θg ...ul−1...|θev�

+


ul + 1


θg ...ul+1...|θev�


, (5)

where ωl is the vibrational frequency of the lth mode
and



θgu |θev� denotes a FC integral describing the

overlap between the vibrational wave functions of the
ground state and excited state. Within the harmonic
oscillator approximation, the FC overlap integrals are
real quantities, i.e.,



θgu |θev� = 


θev |θgu�.
(iii) It is assumed herein that the initial state is in the

vibrational ground state
�
θg0

�
, i.e., ul = 0∀l. However,

the formalism can easily be generalized to describe
temperature effects by including a Boltzmann distribution
of initial states.

(iv) The dimensionless vibrational coordinates ql Eq. (6.1)
are introduced. Additionally, simplified notations are
employed for the transition dipole moment and its
derivative Eqs. (6.2) and (6.3). In the following, it is
also assumed that µρ and

�
µρ

�′
l

are real quantities,

ql =


ωl

}
Ql, (6.1)

µρ ≡
�
µρ

�0
ge

, (6.2)

�
µρ

�′
l
≡ *
,

∂
�
µρ

�
ge

∂ql
+
-0

=


}

ωl

*
,

∂
�
µρ

�
ge

∂Ql

+
-0

. (6.3)

After the steps (i)-(iv), the square modulus of the transition
dipole moment can be written as
�⟨i | µρ | f ⟩�2 = �

µρ

�2

θg0|θev�2

+

l

√
2µρ

�
µρ

�′
l



θg1l |θev

� 

θg0|θev�

+

l,l′

1
2
�
µρ

�′
l

�
µρ

�′
l′


θg1l |θev

� 

θg1l′|θev

�
. (7)

The notation
�
θg1l

�
means that ul = 1 and ui = 0∀i , l.

Following the denomination introduced by Santoro et al.,35 the
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first, second, and third terms on the right-hand side of Eq. (7)
describe the FC contribution, the FC/HT interference, and
the pure HT contribution, respectively. The FC contribution
involves the square of the transition dipole moment, the FC/HT
contribution involves the products between the transition
dipole moment µρ and the derivatives

�
µρ

�′
l

with respect
to all normal coordinates, and the HT contribution involves
all products of the type

�
µρ

�′
l

�
µρ

�′
l′.

B. Resonance Raman cross section

The total and differential (for the commonly employed
90◦ scattering geometry) Raman cross sections for a transition
between the initial |i⟩ and final | f ⟩vibronic states are given by1,2

σi→ f =
ωLω

3
S

18πε2
0c4


ρ,σ={x, y,z}

���
�
αρσ

�
i→ f

���
2
, (8.1)

dσi→ f

dΩ
=

ωLω
3
S

16π2ε2
0c4

1
45

(45a2 + 5δ2 + 7γ2), (8.2)

where ωL is the frequency of the incident light, ωS is the
frequency of the scattered light, and a2, δ2, and γ2 are the
three Raman invariants for randomly oriented molecules (see
the supplementary material36), which depend on the Raman
polarizability tensor

�
αρσ

�
i→ f

,

�
αρσ

�
i→ f
=

1
~


k

 ⟨ f | µρ |k⟩ ⟨k | µσ |i⟩
ωki − ωL − iΓ

+
⟨ f | µσ |k⟩ ⟨k | µρ |i⟩
ωk f + ωL + iΓ


. (9)

The index k indicates a summation over all the vibronic states
of the molecule.

The following approximations are introduced.

(i) In Eq. (9), only the first “resonant” term is kept, while
the second “non-resonant” term is neglected. This is
a good approximation for an excitation frequency ωL

in close resonance with a set of vibronic states |k⟩
(ωL ≈ ωki).

(ii) The Born-Oppenheimer and harmonic oscillator approx-
imations are employed.

(iii) The transition dipole moments are expanded in a
Taylor series up to the second term according to
Eq. (4).

(iv) Only RR intensities for fundamental transitions are
considered herein, i.e., the initial state is

�
φg

� �
θg0

�
and

the final state is
�
φg

� �
θg1n

�
.

Under approximations (i)-(iv), the RR polarizability
tensor can be written in the form

�
αρσ

�
g0→ g1n

=
1

}
√

2


e,g

(FC)RR
e + (FC/HT)RR

e + (HT)RR
e


,

(10)

where (FC)RR
e , (FC/HT)RR

e , and (HT)RR
e are the FC,

the FC/HT, and the HT contributions to the Raman
polarizability tensor, respectively. The index e indicates
a summation over all the resonant excited states (e).
The derivation of Eqs. (10) and (11) made use of
the identity of Eq. (5) and of the notations introduced
in Eqs. (6),

(FC)RR
e =

√
2µρµσ


v



θg1n |θev

� 

θg0|θev�

ωeg + ωv0 − ωL − iΓ
, (11.1)

(FC/HT)RR
e = µρ


l

(µσ)′l

v



θg1n |θev

� 

θg1l |θev

�

ωeg + ωv0 − ωL − iΓ
+
�
µρ

�′
n
µσ


v



θg0|θev� +

√
2


θg2n |θev

� 

θg0|θev�

ωeg + ωv0 − ωL − iΓ

+

l,n

�
µρ

�′
l
µσ


v



θg1n1l |θev

� 

θg0|θev�

ωeg + ωv0 − ωL − iΓ
, (11.2)

(HT)RR
e =


l

�
µρ

�′
n
(µσ)′l

1
√

2


v



θg0|θev� +

√
2


θg2n |θev

� 

θg1l |θev

�

ωeg + ωv0 − ωL − iΓ

+

l,n


l′

�
µρ

�′
l
(µσ)′l′

1
√

2


v



θg1n1l |θev

� 

θg1l′|θev

�

ωeg + ωv0 − ωL − iΓ
, (11.3)

where ωeg and ωv0 describe the electronic and vibrational
transition frequencies, respectively. The index v indicates a
summation over all the vibrational states (described by the
harmonic quantum numbers ≡ v1, v2, . . . , vM) of the electronic
state (e). The notation

�
θg1n1l

�
means that un = 1, ul = 1, and

ui = 0∀i , n, l.

III. SUM-OVER-STATE EXPRESSIONS IN THE FRAME
OF THE INDEPENDENT MODE DISPLACED
HARMONIC OSCILLATOR (IMDHO) MODEL

The simulation of absorption and RR spectra requires
the calculation of the square modulus of the transition dipole
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moment (Eq. (7)) and of the RR transition polarizability
tensor (Eq. (10)), respectively. This demands the computation
of the electronic transition frequencies ωeg (i.e., adiabatic
transition energies), vibrational transition frequencies ωv0
(i.e., harmonic vibrational frequencies), components of the
transition dipole moment µρ, and their derivatives

�
µρ

�′
l
.

These quantities can be obtained from quantum chemistry
calculations making use of density functional theory (DFT) or
wave function based approaches. Additionally, it is necessary
to evaluate the FC overlap integrals between the ground state
(g) and the excited states (e). In the general case, in which
the ground and excited states have different equilibrium
geometries, different vibrational frequencies, and different
normal coordinates (i.e., inclusion of Duschinsky rotation
effects), the FC overlap integrals can be computed using
recursive relations.37 This approach was applied to both
absorption and RR spectra including or neglecting HT
effects (see, e.g., Refs. 38, 31, 35, and 24). In particular,
it requires the calculation of a large number of FC integrals,
which can be classified according to the ground state (g)
vibrational state, i.e., values of the quantum number u.
Hence, integrals of the type



θg0|θev� and



θg1n |θev

�
are

necessary to calculate the absorption spectrum (Eq. (7)) as
well as the RR intensities within the FC approximation. In
addition, integrals of the type



θg2n |θev

�
and



θg1n1l |θev

�
are

required to simulate the RR spectrum including HT effects.
An accurate evaluation of the absorption cross section and
of the RR transition polarizability demands convergence
of the—in principle infinite—summations over v (Eqs. (1)
and (10)), which involve products of FC integrals of the
type



θgu |θev� 
θgu′|θev�. This task requires consideration

of a large number of vibrational states (u, u′, and v),
which may lead to convergence difficulties (i.e., a proper set of
vibrational states v need to be selected) as well as to a higher
computational burden for large molecules or when several
electronic excited states need to be included. Therefore,
even if efficient algorithms were implemented recently to
perform such summations,24 it is of interest to introduce
additional approximations to reduce the computational cost
and to overcome possible problems in the evaluation of the
summations. The purpose of this section is to introduce some
simplified expressions to simulate absorption and RR spectra.
Next, in Secs. IV and V, these expressions will be applied on
a typical model compound and compared to one another.

The most widely employed and simplest approximation
to describe the PESs of the ground and excited states is known
as the IMDHO model, in which it is assumed that the ground
and excited states share the same normal coordinates (neglect
of Duschinsky rotation) and the same vibrational frequencies.
This model was applied to many molecular systems and
provided in several cases a sufficiently accurate description
of the excited states PESs allowing a reproduction of the RR
intensities and an assignment of experimental bands (see,
e.g., Refs. 19, 32, and 29). In this case, the difference
between the ground and excited states (e) PESs is only
determined by the dimensionless displacements ∆e,l along
the normal coordinates (l). Within the IMDHO model, the
multidimensional FC integrals



θgu |θev� can be written as a

product of one dimensional FC integrals and simple recursive

relations39 can be used to compute them efficiently (see the
supplementary material36).

As presented below (Sections III A and III B), an
interesting feature of the IMDHO model resides in the fact
that it is possible to derive expressions for the absorption
cross section and RR polarizability tensor that depend only
on the FC integrals of the type



θg0|θev�. Therefore, the

use of such expressions only requires the calculation of a
set of FC integrals (defined by the quantum numbers v),
so that the sum of FC factors


v



θg0|θev�2 converges to

unity. This makes the approach computationally attractive as
integrals of the types



θg1n |θev

�
,


θg2n |θev

�
, and



θg1n1l |θev

�

do not need to be explicitly calculated. A further advantage of
these expressions is that they can be used as a starting point
to introduce additional approximations leading to simplified
sum-over-state expressions (Sections III C and III D).

A. Absorption

Starting from Eqs. (1) and (7), and making use of recursive
relations for the FC overlap integrals, the absorption cross
section can be written as

σA (ωL) = 4π
3c}

ωL


e,g

(FC)Ae + (FC/HT)Ae + (HT)Ae

,

(12)

where

(FC)Ae =


ρ={x, y,z}
µρµρIm{Φe(ωL)} , (13.1)

(FC/HT)Ae =

l


ρ={x, y,z}

µρ

�
µρ

�′
l
∆lIm{Φe (ωL)

− Φe(ωL − ωl)} , (13.2)

(HT)Ae =

l


ρ={x, y,z}

�
µρ

�′
l

�
µρ

�′
l

1
2

Im{Φe(ωL − ωl)}

+

l,l′


ρ={x, y,z}

�
µρ

�′
l

�
µρ

�′
l′
∆l∆l′

4
Im{Φe (ωL)

− Φe (ωL − ωl) − Φe (ωL − ωl′)
+ Φe(ωL − ωl − ωl′)} . (13.3)

The function Φe(ωL) is defined as40,19

Φe (ωL) ≡

v



θg0|θev�2

ωeg + ωv0 − ωL − iΓ
. (14)

To simplify the notations, the dimensionless displacements
for the excited state (e) are defined as ∆l ≡ ∆e,l.

B. Resonance Raman

Following a similar approach, the three terms appearing
in Eq. (10) for the definition of the RR polarizability tensor
can be written as
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(FC)RR
e = µρµσ∆n {Φe (ωL) − Φe(ωL − ωn)} , (15.1)

(FC/HT)RR
e = µρ (µσ)′nΦe (ωL − ωn) + �µρ

�′
n
µσΦe (ωL) +


l

�
µρ (µσ)′l +

�
µρ

�′
l
µσ

	 ∆n∆l
2

{Φe (ωL)

− Φe (ωL − ωn) − Φe(ωL − ωl) + Φe(ωL − ωn − ωl)} , (15.2)

(HT)RR
e =


l

�
µρ

�′
l
(µσ)′n ∆l2

{Φe(ωL − ωn) − Φe(ωL − ωn − ωl)}

+

l

�
µρ

�′
l
(µσ)′l

∆n

2
{Φe(ωL − ωl) − Φe(ωL − ωn − ωl)}

+

l

�
µρ

�′
n
(µσ)′l

∆l

2
{Φe(ωL) − Φe(ωL − ωl)}

+

l,l′

�
µρ

�′
l
(µσ)′l′

∆n∆l∆l′

4
{Φe(ωL) − Φe (ωL − ωn) − Φe(ωL − ωl) − Φe(ωL − ωl′) + Φe(ωL − ωn − ωl)

+ Φe(ωL − ωn − ωl′) + Φe(ωL − ωl − ωl′) − Φe(ωL − ωn − ωl − ωl′)} . (15.3)

The derivation of Eqs. (12)–(15) presents no particular
difficulties but is too tedious to be fully described here.
The interested reader can find details on the derivation in the
supplementary material.36 Despite rather lengthy expressions,
Eqs. (13) and (15) can easily be implemented in programs
and evaluated by computers. Indeed, they involve only
finite summations over the vibrational modes (l), in which
the summands are products between the transition dipole
moments, their derivatives, the dimensionless displacements,
and a linear combination of the Φe function evaluated at
different frequencies. The interesting features are that the
summation over the FC integrals (described by the quantum
numbers v) is moved in the definition of theΦe function and as
stated before only involves FC integrals of the type



θg0|θev�.

As shown by Eqs. (13) and (15), these properties are verified
both when FC and HT effects are included. The formalism
employed in Sections III A and III B originates from the
transform theory.41,40,42,43 In particular, the FC contributions
(Eqs. (13.1) and (15.1)) as well as the two first terms of
the FC/HT contribution (Eq. (15.2)) were already reported in
the literature.43,44 However, to the author’s knowledge, the full
expressions for the FC/HT and HT contributions of absorption
and RR are presented for the first time using this formulation
and are applied in Section V to compute HT effects.

C. Simplified Φe function

The expressions reported in Secs. III A and III B allow the
computation of the absorption and RR intensities. In particular,
they require the calculation of the adiabatic transition
frequency ωeg as well as the FC factors



θg0|θev�2. However,

in some cases it can be computationally advantageous to avoid
calculating the FC factors and to replace the determination
of the adiabatic transition frequency by the calculation of
the vertical transition frequency, denoted Ωeg . This can be
performed by virtue of the FC principle, which states that
the most probable transition (given by the FC factor) occurs

vertically from the ground state geometry. Therefore, the
values of ωeg + ωv0 in Eq. (14) can be approximated by
the vertical transition frequency (Ωeg). Application of this
simplification along with the property that


v



θg0|θev�2

= 1
leads to

Φe (ωL) � 1
Ωeg − ωL − iΓ

. (16)

A particular case of the latter simplification is known as the
small shift approximation33 for RR intensities, in which the
geometrical displacements are assumed to be small. In this
situation, the largest FC factor is given by



θg0|θe0

�2, meaning
that the adiabatic and vertical transition frequencies almost
coincide (see the supplementary material36 for the connection
between the small shift approximation and the simplified Φe

function approach).
The Φe function was originally defined within the frame

of the transform theory. This theory uses the fact that, within
the FC approximation, the absorption spectrum is related
to the imaginary part of the Φe function (see Eq. (13.1)).
Hence, employing the experimental absorption spectrum and
its Kramers-Kronig transform, RR excitation profiles can be
simulated. In the present work, the Φe function is directly
evaluated from the SOS expression (Eqs. (14) and (16))
without making direct use of the experimental spectrum.
Nevertheless, the connection between the Φe function and the
absorption spectrum gives an indication that the simplified
Φe function approximation should be valid in situations when
the excitation frequency ωL is in resonance with absorption
bands displaying a large broadening and non-resolved vibronic
structure. It should be mentioned that the present formulation
neglects inhomogeneous broadening effects, which might be
predominant for experiments done, e.g., in solution. Such
effects can be easily included (see, e.g., Ref. 45). For example,
the simplified Φe function approximation was employed
recently in several applications on transition metal complexes
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and succeeded in reproducing the main characteristics of RR
spectra.45,29,46

D. Simplified SOS

In the case of RR spectroscopy, several authors extended
to use of the Placzek and double harmonic approximations
to obtain RR intensities directly from the derivatives of the
frequency dependent polarizability with respect to the normal
coordinates.47–49 In particular, Rappoport et al.27 derived a
simplified SOS expression including FC and HT contributions.
Using a similar nomenclature as in Eqs. (15), the simplified
SOS formula reads

(FC)RR
e = −µρµσ

(
∂Ωeg

∂qn

)
0

×



�
Ωeg − ωL

�2 − Γ2 + 2iΓ
�
Ωeg − ωL

�
�
Ωeg − ωL

�2
+ Γ2

2



, (17.1)

(FC/HT)RR
e =

�
µρ (µσ)′n +

�
µρ

�′
n
µσ

	 


Ωeg − ωL + iΓ
�
Ωeg − ωL

�2
+ Γ2



.

(17.2)

A derivation of the expression and the connection with the
simplified Φe function approximation is provided in the
supplementary material.36 The advantage of this formula is
that it is easily computed and that it requires only quantities
calculated at the ground state geometry, namely, the vertical
transition frequencies (Ωeg) and their derivatives

�
∂Ωeg/∂ql

�
0

and the transition dipole moments (µρ) and their derivatives�
µρ

�′
l
.

Within the IMDHO model, the gradients
�
∂Ωeg/∂ql

�
0 can

be related to the dimensionless displacements according to

∆l = −
1
ωl

(
∂Ωeg

∂ql

)
0
. (18)

Using this relation, it can be shown that the simplified SOS
formula (Eq. (17)) is an approximation of the simplified
Φe function approach. As presented in the supplementary
material,36 it approximates the dependence on the excitation
frequency (ωL) for the FC and FC/HT contributions, and it
neglects part of the FC/HT contribution and totally the HT
contribution. In particular, concerning the FC/HT contribution,
the simplified SOS approximation leads to a symmetric
polarizability tensor with respect to exchange of the ρ
and σ components. Therefore, it cannot describe anomalous
polarization effects.33

E. Summary of SOS methods for RR intensities

The different SOS approaches presented in this work
are summarized in Fig. 1. The methods are ordered starting
from the simplest and computationally cheapest (given at the
bottom of the ladder) to the more involved and computationally
demanding (top of the ladder). For each method, the required
quantities are also reported. Note that in all cases, calculation
of the ground state vibrational frequencies and normal
coordinates is necessary.

FIG. 1. Ladder of SOS methods to calculate RR intensities.

At the bottom of the ladder is the most widely employed
and simplest method to calculate relative RR intensities. This
approach is known as the short-time (ST) approximation9 or
simply as the gradient method. It includes only FC effects and
the approach can be used when a single electronic excited state
is in resonance with the excitation frequency (ωL). Thus, the
relative RR intensities for fundamental transitions are given
by

Ig0→ g1n ∝
(
∂Ωeg

∂ql

)2

0
. (19)

The next rung of the ladder describes the simplified SOS
method. This approach neglects the vibronic structure in the
RR excitation profile and requires only vertical quantities,
namely, the excitation frequencies, the transition dipole
moments, and their derivatives. The simplified SOS method
is an approximation of the simplified Φe approach. In the
latter approach, the displacements can be calculated from the
excited state gradients (Eq. (18)), which makes the simplified
Φe method equivalent to the simplified SOS method in terms
of the input data and of the computational cost, but not in
terms of the results (see Section V). An alternative way is to
calculate the displacements from the difference between the
excited states and ground state geometries. This is often called
the adiabatic shift method (see, e.g., Refs. 24, 26, 18, and 50),
in which an optimization of the excited state geometries is
necessary. The next rung corresponds to the IMDHO model.
In the formulation of Eqs. (15) and (14)), this model only
requires—in addition to the simplified Φe input data—the
calculation of FC integrals of the type



θg0|θev� as well as an

estimation of the adiabatic transition frequency (ωeg). This
makes the model computationally advantageous over the more
involved full SOS approach, which requires the calculation of

 26 February 2024 10:24:00
P

o
b

ra
no

 z
 m

o
st

w
ie

d
zy

.p
l

http://mostwiedzy.pl


064106-7 Julien Guthmuller J. Chem. Phys. 144, 064106 (2016)

additional types of FC integrals. The full SOS method also
includes Duschinsky rotation effects and hence necessitates
the calculation of the excited state Hessian.

As mentioned in recent works,26,18 the main computa-
tional burden is associated to the calculation of the required
quantities by quantum chemistry methods. In particular, the
computation of the displacements in the adiabatic shift method
or of the excited state Hessian in the full SOS method is
more time consuming. Calculation of the derivatives of the
transition dipole moments has also an important computational
cost when done by numerical differentiation. Usually, the
calculation of the FC integrals and of the RR cross sections
represents only a small fraction of the total computational
cost. Nevertheless, the use of simplified approaches like
the IMDHO model or the simplified Φe method makes the
evaluation of the RR cross section easier and it can avoid
possible inaccuracies arising from the incomplete convergence
of the summation of FC integrals.

IV. COMPUTATIONAL METHODS

Quantum chemical calculations were performed with the
GAUSSIAN 09 program,51 which provides the structural and
electronic data necessary for the simulation of the absorption
and RR spectra of the R6G molecule. All the calculations were
performed in a vacuum by means of DFT and time depen-
dent DFT (TDDFT) using the B3LYP exchange-correlation
functional with the 6-311G(d) basis set. These methods were
proven to be accurate for the simulation of the RR spectrum
of R6G31,32 in resonance with the first singlet excited state S1.
The geometry, harmonic vibrational frequencies, and normal
coordinates of the ground state S0 were obtained by DFT,
whereas the vertical excitation energies and transition dipole
moments of the S1 excited state were obtained by TDDFT.
The geometry and harmonic vibrations of the S1 state were
also computed with TDDFT in order to investigate Duschinsky
rotation effects. To correct for the lack of anharmonicity and
the approximate treatment of electron correlation, the har-
monic frequencies were scaled by the factor 0.98.

A program developed locally is employed to calculate the
RR cross sections and absorption spectra. In particular, this
demands the computation of the geometrical displacements
∆l, derivatives of the transition dipole moment

�
µρ

�′
l
, and FC

overlap integrals


θgu |θev�. Within the IMDHO model, the

displacements were calculated from the gradients (Eq. (18))
as well as by projecting the difference between the S1 and
S0 geometries on the ground state normal coordinates (adia-
batic shift method). The latter displacements were also em-
ployed to compute absorption and RR spectra in association
with Duschinsky effects (adiabatic Hessian method24). The
FC overlap integrals were computed from the displacements,
vibrational frequencies, and normal coordinates using recur-
sive relations.37 Within the IMDHO model, a nearly complete
convergence of the FC factor summation was obtained, with
a value of


v



θg0|θev�2

> 0.99. When Duschinsky effects are
included, the summations of the FC overlap integrals were not
completely converged, e.g., the summation of the FC factors

v



θg0|θev�2 reaches a value of only 0.92. This incomplete

convergence leads to an underestimation of the absolute RR
cross sections but has only a weak impact on the relative RR
intensities and on the shapes of the excitation profiles (see
Section V). The derivatives

�
∂Ωeg/∂ql

�
0 and

�
µρ

�′
l

were ob-
tained by a two-point numerical differentiation procedure from
the vertical excitation energies and transition dipole moments,
which were computed with TDDFT for distorted structures re-
sulting from the addition or subtraction of a finite displacement
along the normal coordinates to the ground state geometry. In
the simulation of the absorption and RR spectra, a value of Γ
equal to 400 cm−1 was assumed to reproduce the experimental
broadening52 and the transition frequency had been shifted
so that the experimental (530 nm) and theoretical absorption
maxima λmax coincided, namely, a ωeg of 18 800 cm−1 was
employed with the full SOS and IMDHO model methods,
whereas a Ωeg of 18 867 cm−1 was employed when using the
simplified Φe and simplified SOS approximations. The RR
spectra were simulated for an excitation wavelength of 532
nm (i.e., ωL of 18 797 cm−1) and a Lorentzian function with
a FWHM of 5 cm−1 was employed to broaden the Raman
intensities.

V. APPLICATION TO RHODAMINE 6G

The methods described in Secs. I–IV to simulate
absorption and RR spectroscopies are applied to the
prototypical compound of Rhodamine 6G. The RR properties
of this dye were investigated in the past both from the
theoretical and experimental points of view.31,32,16,52 In
particular, important vibronic effects were identified in the
RR spectrum for excitation frequencies close to the absorption
maximum. Therefore, it constitutes a good example on which
the different SOS approximations can be tested and on which
their effects can be discussed.

A. Absorption spectra

The vibronic structure of the absorption spectrum for
the first singlet excited state (S1) was simulated according to
Eq. (1). The results obtained in the FC approximation are
presented at the top of Fig. 2 and made use of three different
methods. Within the IMDHO model, the displacements were
calculated from the gradients as well as from the difference
between the S1 and S0 geometries. Additionally, the spectrum
including Duschinsky effects was simulated. As discussed in
previous works,31,32 the spectrum is dominated by a single
band with a vibronic shoulder at higher energy. Fig. 2 shows
that the spectra obtained from the gradients and from the
geometry difference are superimposed. This indicates that
in this case, the gradient approximation is appropriate to
calculate the geometrical displacements. The inclusion of
Duschinsky rotation effects leads to a transfer of intensity
from the maximum of absorption to the vibronic shoulder.
Nevertheless, the change of vibrational frequencies between
the ground and excited states as well as the effect of
Duschinsky mixing remains rather limited in the present
system. Therefore, all methods are in overall agreement with
the experimental spectrum.52
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FIG. 2. Top: Comparison between the absorption spectra calculated in the
FC approximation. ∆’s obtained from the gradients within the IMDHO model
(grey line), ∆’s obtained from the difference between the S1 and S0 geometries
within the IMDHO model (dashed line) and including Duschinsky rotation
effects (black line). Bottom: Absorption spectra calculated within the IMDHO
model with ∆’s obtained from the gradients. In the FC approximation (grey
line), including FC, FC/HT, and HT terms (dashed line) and including only
the FC contribution with the simplified Φe method (black line). The vertical
dotted line indicates the excitation frequency employed in Section V B.

The bottom of Fig. 2 presents the absorption spectra
calculated within the IMDHO model using gradients for
the displacements. First, it is seen that the inclusion of the
FC/HT and HT contributions is negligible for the absorption
spectrum. This is the case within the IMDHO model (Fig. 2)
and within the simplified Φe method (results not shown).
It can be related to the rather large oscillator strength of
S1, which has a calculated value of 0.744, indicating that
the FC contribution dominates the spectrum. The use of the
simplifiedΦe approach leads to a single band in the absorption
spectrum with no vibronic shoulder. This is related to the fact
that in the FC approximation, the simplified Φe method
describes the absorption band by a single Lorentzian function
(see Eqs. (13.1) and (16)). Therefore, in comparison to the
IMDHO model, additional intensity is located close to the
maximum of absorption. Because the simplified Φe method
neglects the vibronic structure in the absorption spectrum, it
is only adequate to describe bands with small or negligible
vibronic progressions. Additionally, this approximation is

also practical in situations when the structure of an absorption
band is dominated by the contributions of several overlapping
electronic excited states (see, e.g., Refs. 45 and 29). The
effects of this simplification on the RR intensities and on the
RR excitation profiles will be discussed in Secs. V B and V C.
Inclusion of the FC/HT and HT contributions together with
Duschinsky effects was not performed, but on the basis of the
results obtained with the IMDHO model, it is expected that
FC/HT and HT contributions will be also negligible in this
case.

B. RR spectra

In this section, the RR spectra obtained for an excitation
frequency in close resonance with the maximum of absorption
are described. The top of Fig. 3 considers the results calculated
with the short-time approximation as well as with the IMDHO
model including the FC contribution. Both methods provide

FIG. 3. Comparison between RR spectra obtained for an excitation in close
resonance with the maximum of absorption. Top: ∆’s obtained from the
gradients in the FC approximation and within the IMDHO model (grey line)
using the short-time approximation (dashed line). Bottom: ∆’s obtained from
the difference between the S1 and S0 geometries within the IMDHO model
(grey line) and including Duschinsky rotation effects (dashed line) in the FC
approximation. The four selected modes are indicated.
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comparable relative intensities above 1400 cm−1, whereas
the lower frequency modes have larger intensities using the
IMDHO model. In particular, the large enhancement of the
two vibrations at about 610 cm−1 and 770 cm−1 was ascribed
to a vibronic effect,32 which is not captured by the short-time
approximation. The strong intensities of these two modes are
in agreement with the experimental results52 (see Fig. 4).
Therefore, the short-time approximation is not fully adequate
for simulating the RR spectrum of R6G in resonance with the
first excited state.

The bottom of Fig. 3 presents the spectra calculated
in the FC approximation using displacements computed
from the geometry difference within the IMDHO model and
including Duschinsky rotation effects (full SOS method). First,
comparing with the top of Fig. 3, the IMDHO model gives
some differences in the RR spectra when using displacements
calculated from the gradients (Fig. 3, top) or from the
geometry difference (Fig. 3, bottom). These changes were
not visible in the absorption spectrum and mainly concern
modifications of some relative intensities. For example, the
modes at about 610 cm−1 (ν1), 770 cm−1, 1350 cm−1 (ν2),
and 1510 cm−1 (ν3) have slightly larger RR intensities when
using displacements calculated from the gradients (Fig. 3,
top), whereas the vibration at about 1650 cm−1 (ν4) has
a stronger intensity in the case of displacements calculated

from the geometry difference (Fig. 3, bottom). Comparison
with the experimental spectrum (see Fig. 4) shows that the
former spectrum (Fig. 3, top) is in slightly better agreement
with the experimental results. Although the differences are
relatively moderate, this seems to indicate that in this case, the
displacements obtained from the vertical gradients are more
accurate. A discussion of the respective merits of vertical and
adiabatic models for the description of the potential energy
surfaces as well as applications to different systems can be
found, e.g., in Refs. 14, 26, 18, and 50.

The inclusion of Duschinsky effects mainly leads to an
overall decrease of the absolute cross section, which can be
related to the lower absorption cross section close to the
maximum when including Duschinsky effects (Fig. 2, top) as
well as to the incomplete convergence of the SOS expression.
Some changes of relative RR intensities are also observed
when considering Duschinsky effects, e.g., for the vibrations
ν1 and ν4, but generally they remain small. Therefore, in
the case of the S1 state of R6G, it can be concluded that the
IMDHO model provides an accurate description of the RR
properties. Thus, in the following the impact of the FC/HT and
HT, contributions will only be investigated using the IMDHO
model.

The top-left of Fig. 4 describes the effects of FC/HT and
HT contributions on the RR spectrum within the IMDHO

FIG. 4. Comparison between RR spectra obtained for an excitation in close resonance with the maximum of absorption. On the top-left (IMDHO model),
top-right (simplified Φe), and bottom-right (simplified SOS), the spectra are calculated in the FC approximation (grey line) and including HT effects (dashed
line) with ∆’s obtained from the gradients. Bottom-left: Experimental spectrum52,32 (black line), IMDHO model in the FC approximation with ∆’s obtained
from the difference between the S1 and S0 geometries (red line) and with ∆’s obtained from the gradients (blue line), including HT effects (green line). In the
calculated spectra, a Lorentzian function with a FWHM of 20 cm−1 was employed to broaden the RR intensities.
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model. Contrary to the absorption spectrum, the inclusion
of HT effects leads to noticeable changes in several relative
RR intensities. Similar effects were noticed in other systems
(see, e.g., Refs. 25 and 50). This is mainly the case for
the vibration ν3, which has a larger intensity when HT
effects are included, and for the vibration ν4, for which HT
effects leads to a decrease of the RR intensity. Interestingly,
these modifications appear to improve the agreement with
the experimental spectrum (see Fig. 4, bottom-left), which
indicates that consideration of such contributions can be
important even when in resonance with strongly allowed
transitions.

The top-right of Fig. 4 presents the RR spectra obtained
using the simplified Φe approximation. Comparison with
the spectra on the top-left of Fig. 4 clearly shows that
the simplified Φe method provides very similar results as
the IMDHO model. This concerns both the FC and FC
+ FC/HT + HT approximations. In particular, the simplified
Φe method perfectly reproduces the strong intensities of the
low frequency modes at about 610 cm−1 (ν1) and 770 cm−1,
which are underestimated with the short-time approximation.
Therefore, it is seen that neglecting the FC factors in the Φe

function (Eq. (16)) has only a minor effect on the relative
RR intensities and that this approximation is adequate to
reproduce the RR spectrum including both FC and HT effects.
Investigation of the relative importance of the FC/HT and
HT contributions (see Fig. S136) demonstrates that the HT
effects entirely originate from the FC/HT contribution, while
the higher-order HT contribution is negligible in the present
case.

The RR spectra calculated with the simplified SOS
expression are reported on the bottom-right of Fig. 4. Two
main observations can be made. First, the simplified SOS
method fails in reproducing the large RR intensities of the two
low frequency modes and provides a too large RR intensity
for the vibration ν4. In fact, the spectrum obtained with
the simplified SOS approach resembles closely the spectrum
calculated with the short-time approximation (Fig. 3, top).
Second, the effects of the FC/HT contribution are almost
negligible using this approximation. Therefore, the results
obtained with the simplified SOS method contrast strongly
with the results calculated using the simplified Φe function.
However, this latter approach is in better agreement with the
higher level methods (i.e., IMDHO model and full SOS) as
well as with the experimental spectrum. Hence, the results
show that the simplified SOS method is not fully adequate to
simulate the RR intensities of R6G and does not provide a
proper inclusion of the HT effects. Because both simplified
SOS and simplified Φe (using displacements calculated from
the gradients) methods employ the same input data and
require nearly identical computational cost, the simplified
Φe approximation should be preferred over the simplified
SOS approach to calculate RR intensities.

C. RR excitation profiles

In Sec. V B, the RR spectra were calculated assuming
a fixed excitation frequency in close resonance with the
absorption maximum. However, the RR cross sections and

relative RR intensities are dependent on the excitation
frequency. These effects can be analyzed in detail by
investigating the RR excitation profiles (RREPs). As a matter
of illustration, the RREPs of the four most intense vibrations
are computed and presented in Fig. 5.

The top of Fig. 5 shows the RREPs calculated within
the IMDHO model including FC and HT effects. The RREPs
display typical shapes in agreement with a previous work.32

In particular, the RREP for the low frequency mode ν1 is
composed of a single band with a very weak shoulder at

FIG. 5. Comparison between the RR excitation profiles of the four selected
modes. On the top (IMDHO model), middle (simplified Φe), and bottom
(simplified SOS) the profiles are calculated in the FC approximation (full
lines) and including HT effects (dashed lines) with ∆’s obtained from the gra-
dients. The vertical dotted line indicates the excitation frequency employed
in Section V B.
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about 21 000 cm−1 originating from the vibronic structure
(i.e., FC factors) in the Φe function. However, the RREPs
of the higher frequency modes ν2, ν3, and ν4 present
a typical two bands shape, which highlights the strong
dependence of the RR cross section with respect to the
excitation frequency. The inclusion of the FC/HT and HT
contributions shows that HT effects are negligible for the
vibration ν1, whereas they are more important for the higher
frequency modes. The importance of the HT effects is related
to the magnitude of the derivative of the transition dipole
moment

�
µρ

�′
n
. More precisely, the HT effects can lead to

an enhancement or to a de-enhancement of the RR cross
section depending on the considered mode and depending on
the excitation frequency. For example, the intensities of the
modes ν2 and ν3 are increased for an excitation close to
the absorption maximum and decreased for an excitation at
larger frequencies, i.e., above ∼20 000 cm−1. However, it can
be seen that the situation is opposite in the case of mode ν4.
A detailed study of the different contributions shows that the
HT effects originate from the first two terms in Eq. (15.2),
namely, µρ (µσ)′nΦe (ωL − ωn) + �µρ

�′
n
µσΦe (ωL), whereas

the other terms lead to negligible contributions in the case of
R6G (see Figs. S1 and S236). The interference of this non-
negligible contribution with the FC contribution (Eq. (15.1))
produces positive or negative corrections to the RR cross
section around the two resonances in the RREP, which
are centered at frequencies of about ωeg (first resonance)
and ωeg + ωn (second resonance). In the present case, the
differences between the behaviors of the modes ν2 and ν3
in comparison to the mode ν4 stem from opposite signs for
the values of the displacements ∆n, while µρ and

�
µρ

�′
n

have
positive values.

The RREPs obtained with the simplified Φe method are
presented in the middle of Fig. 5. By comparing the results
obtained with the IMDHO model (Fig. 5, top), it is seen that the
simplifiedΦe approach provides RREPs of comparable shapes
and that the inclusion of HT effects is properly reproduced. In
particular, this method is able to describe the two resonances
present in the RREPs. Differences concern the absence of
the weak vibronic shoulder above 21 000 cm−1 as well as
some changes in the relative intensities at given excitation
frequencies arising from the simplified shape of the Φe

function, i.e., neglect of the FC factors. Nevertheless, this
shows that when the vibronic structure can be neglected,
the simplified Φe method provides an adequate formalism
to calculate RR intensities at a low computational cost and
including HT effects.

The full SOS approach including Duschinsky rotation
effects was also applied including the FC contribution
(see Fig. S336). In agreement with the data presented in
Sections V A and V B, these results show that the RREPs
have comparable shapes as those obtained with the IMDHO
model (Fig. 5, top).

The RREPs calculated with the simplified SOS approach
are reported at the bottom of Fig. 5. The RREPs present a
similar shape for all the modes and are composed of a single
band centered at Ωeg . Indeed, the simplified SOS approach
does not reproduce the second resonance located at higher
frequencies (see Eq. (17) and supplementary material36) as

well as the vibronic structure described by the FC factors.
Moreover, the HT effects are almost negligible in this
case, which can be related to the overestimation of the FC
contribution. The combination of these approximations leads
to relative RR intensities showing no dependence with respect
to the excitation frequency. In particular, the cross sections
of the higher frequency modes are overestimated and the low
frequency modes are not enhanced for an excitation close to the
maximum of absorption. These results are in strong contrast
to the results obtained with the simplified Φe and higher-level
methods (IMDHO model, full SOS) and indicate that the
frequency dependence of the RREPs is not properly described
using the simplified SOS method. Therefore, following the
conclusion of Section V B, the simplified Φe approximation
should be preferred over the simplified SOS approach to
calculate RR intensities.

The validity of the simplified Φe method is further
investigated in the frame of the FC approximation. The first
column of Fig. 6 reproduces the absorption spectra and the
RREPs obtained for R6G. In this case, the good agreement
between the RREPs obtained with the simplified Φe method
and the IMDHO model can be related to the small values of
the displacements. This leads to an absorption spectrum with a
weak vibronic shoulder and to comparable values of the adia-
batic ωeg (18 800 cm−1) and verticalΩeg (18 867 cm−1) transi-
tion frequencies. In such a situation the simplified Φe method
is similar to the small shift approximation (see Section III C
and the supplementary material36). To test the effects of larger
shifts, all the displacements of R6G were multiplied by the
factor 2.0 and the same adiabatic frequency (ωeg) is employed.
In this case, the absorption spectrum (Fig. 6, middle-top) in
the IMDHO model displays a marked vibronic shoulder.
This shoulder cannot be reproduced by the simplified Φe

method, but in order to approximate the broadening and to
reproduce the position of the absorption maximum, values
of 800 cm−1 and of 19 225 cm−1 were used for the damping
factor Γ and for the vertical frequency (Ωeg), respectively
(Fig. 6, middle column). The RREPs within the IMDHO
model show complex shapes characterized by the presence of
a vibronic structure. In this case, the simplified Φe method
presents only a partial agreement with the IMDHO model.
In particular, the RREPs for excitations below ∼20 500 cm−1

are still adequately reproduced, but important deviations are
obtained for larger excitation frequencies, which is related to
the lack of vibronic structure in the simplified Φe approach.
Nevertheless, it is seen that the simplifiedΦe method provides
a better reproduction of the shape and position of the RREPs
than the simplified SOS approach. The right column of Fig. 6
presents a situation in which the twice larger displacements are
employed together with a larger broadening (Γ = 1500 cm−1).
In this case, the details of the vibronic structure are hidden
by the large broadening and it is seen that the IMDHO model
and the simplified Φe method provide globally comparable
RREPs. The differences concern a small deviation between
the RREP maxima and the fact that the IMDHO model gives
broader RREPs due to the inclusion of the vibronic structure.
Similarly in this case, the simplified Φe method provides
better results than the simplified SOS approach. Generally,
it can be concluded that the simplified Φe method gives a
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FIG. 6. Comparison between the absorption spectra and the RR excitation profiles in the FC approximation. The values of the ∆’s obtained from the gradients
are multiplied by 2 in the middle and right columns, and different values of the broadening are employed. The absorption spectra are given in the first row
using the IMDHO model and the simplified Φe approach, whereas the RR profiles are depicted in the second (IMDHO model), third (simplified Φe), and fourth
(simplified SOS) rows.

correct reproduction of the RREPs obtained with the IMDHO
model, provided the excitation frequency is in resonance
with absorption bands displaying a large broadening and
non-resolved vibronic structure, i.e., in situations in which the
absorption band can be approximated by a simple Lorentzian
function.

VI. CONCLUSIONS

In the present work, SOS expressions to simulate the
related spectroscopies of absorption and RR—including
both FC and HT effects—have been described. Several
approximations were summarized (Fig. 1), namely, the general

full SOS method, the IMDHO model, the simplified Φe

approach, the simplified SOS method, and the well-known
short-time approximation. The most involved method is
the full SOS, which allows, e.g., inclusion of Duschinsky
rotation effects. In the case of the IMDHO model, practical
expressions were derived, which only require the calculation
of a given type of FC overlap integrals, i.e.,



θg0|θev�, making

the method computationally advantageous. Within the latter
approach, a straightforward simplification can be introduced
in the Φe function leading to the so-called simplified Φe

method. This simplification is justified in situations when
the vibronic structure described by the FC factors can be
neglected. Additionally, an expression reported recently in
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the literature27 and called herein the simplified SOS method
has been presented. This method requires identical input data
as the simplified Φe approach and has therefore an identical
computational cost.

As a matter of illustration, the different methods were
applied to the prototypical compound of R6G. The impact
of the different simplifications and of the HT effects on
the absorption, RR spectra, and RREPs was described.
Comparison with experimental results was also performed.
It was found that (i) the excited state gradients provide an
accurate evaluation of the geometrical displacements, (ii) the
inclusion of HT effects is improving the RR intensities when
comparing with the experimental results, (iii) the IMDHO
model leads to comparable spectra as the more involved full
SOS approach, (iv) the simplified Φe method is adequate to
reproduce the RR intensities of R6G, for which there is only
a weak effect of the FC factors, and (v) the simplified SOS
approach is less accurate than the simplified Φe method and
provides similar spectra as the short-time approximation.
Because both simplified SOS and simplified Φe (using
displacements calculated from the gradients) methods employ
the same input data and require nearly identical computational
cost, the simplifiedΦe approximation should be preferred over
the simplified SOS method to calculate RR intensities.

In general, the IMDHO model and the simplified Φe

method appear to be good alternatives to the more involved
full SOS approach due to their lower computational cost
and their ability to properly include HT effects. These two
approaches can also easily be implemented in any quantum
chemistry program. Therefore, it is expected that they will
be employed in the future—in conjunction with the full SOS
method when necessary—to describe large molecular systems,
in which the multimode character and the presence of several
electronic excited states in resonance should be taken into
account.

ACKNOWLEDGMENTS

The author is grateful to the 7th Framework Pro-
gramme of the European Union (Grant Agreement No.
321971) and to the Narodowe Centrum Nauki (Project No.
2014/14/M/ST4/00083) for financial support. The calculations
have been performed at the Universitätsrechenzentrum of the
Friedrich-Schiller University of Jena.

1D. A. Long, The Raman Effect: A Unified Treatment of the Theory of Raman
Scattering by Molecules (John Wiley & Sons Ltd, New York, 2002).

2A. C. Albrecht, J. Chem. Phys. 34, 1476 (1961).
3M. Wächtler, J. Guthmuller, L. González, and B. Dietzek, Coord. Chem. Rev.
256, 1479 (2012).

4A. B. Myers, Chem. Rev. 96, 911 (1996).
5A. M. Kelley, J. Phys. Chem. A 112, 11975 (2008).
6R. Horvath and K. C. Gordon, Coord. Chem. Rev. 254, 2505 (2010).
7H. A. Kramers and W. Heisenberg, Z. Phys. 31, 681 (1925).
8P. A. M. Dirac, Proc. R. Soc. A 114, 710 (1927).
9E. J. Heller, R. L. Sundberg, and D. Tannor, J. Phys. Chem. 86, 1822 (1982).

10S.-Y. Lee and E. J. Heller, J. Chem. Phys. 71, 4777 (1979).
11A. B. Myers, R. A. Mathies, D. J. Tannor, and E. J. Heller, J. Chem. Phys.

77, 3857 (1982).
12D. J. Tannor and E. J. Heller, J. Chem. Phys. 77, 202 (1982).
13T. Petrenko and F. Neese, J. Chem. Phys. 127, 164319 (2007).

14T. Petrenko and F. Neese, J. Chem. Phys. 137, 234107 (2012).
15D. W. Silverstein and L. Jensen, J. Chem. Phys. 136, 064111 (2012).
16D. W. Silverstein, N. Govind, H. J. J. Van Dam, and L. Jensen, J. Chem.

Theory Comput. 9, 5490 (2013).
17H. Ma, J. Liu, and W. Liang, J. Chem. Theory Comput. 8, 4474 (2012).
18A. Baiardi, J. Bloino, and V. Barone, J. Chem. Phys. 141, 114108 (2014).
19J. Guthmuller and B. Champagne, J. Chem. Phys. 127, 164507 (2007).
20J. Neugebauer and B. A. Hess, J. Chem. Phys. 120, 11564 (2004).
21K. A. Kane and L. Jensen, J. Phys. Chem. C 114, 5540 (2010).
22J. Romanova, V. Liégeois, and B. Champagne, J. Phys. Chem. C 118, 12469

(2014).
23J. Romanova, V. Liégeois, and B. Champagne, Phys. Chem. Chem. Phys.

16, 21721 (2014).
24F. Santoro, C. Cappelli, and V. Barone, J. Chem. Theory Comput. 7, 1824

(2011).
25F. J. A. Ferrer, V. Barone, C. Cappelli, and F. Santoro, J. Chem. Theory

Comput. 9, 3597 (2013).
26F. Egidi, J. Bloino, C. Cappelli, and V. Barone, J. Chem. Theory Comput.

10, 346 (2014).
27D. Rappoport, S. Shim, and A. Aspuru-Guzik, J. Phys. Chem. Lett. 2, 1254

(2011).
28J. B. Cabalo, S. K. Saikin, E. D. Emmons, D. Rappoport, and A. Aspuru-

Guzik, J. Phys. Chem. A 118, 9675 (2014).
29S. Kupfer, M. Wächtler, J. Guthmuller, J. Popp, B. Dietzek, and L. González,

J. Phys. Chem. C 116, 19968 (2012).
30J. Guthmuller, B. Champagne, C. Moucheron, and A. Kirsch-De Mesmaeker,

J. Phys. Chem. B 114, 511 (2010).
31J. Guthmuller and B. Champagne, J. Phys. Chem. A 112, 3215 (2008).
32J. Guthmuller and B. Champagne, ChemPhysChem 9, 1667 (2008).
33A. Warshel and P. Dauber, J. Chem. Phys. 66, 5477 (1977).
34F. Neese, T. Petrenko, D. Ganyushin, and G. Olbrich, Coord. Chem. Rev.

251, 288 (2007).
35F. Santoro, A. Lami, R. Improta, J. Bloino, and V. Barone, J. Chem. Phys.

128, 224311 (2008).
36See supplementary material at http://dx.doi.org/10.1063/1.4941449 for

details of the theoretical derivation and additional information on the RR
intensities.

37P. T. Ruhoff, Chem. Phys. 186, 355 (1994).
38J. Guthmuller, F. Zutterman, and B. Champagne, J. Chem. Phys. 131, 154302

(2009).
39C. Manneback, Physica 17, 1001 (1951).
40D. L. Tonks and J. B. Page, Chem. Phys. Lett. 66, 449 (1979).
41V. Hizhnyakov and I. Tehver, Phys. Status Solidi B 21, 755 (1967).
42D. C. Blazej and W. L. Peticolas, J. Chem. Phys. 72, 3134 (1980).
43W. L. Peticolas and T. Rush, J. Comput. Chem. 16, 1261 (1995).
44B. R. Stallard, P. M. Champion, P. R. Callis, and A. C. Albrecht, J. Chem.

Phys. 78, 712 (1983).
45J. Guthmuller and L. González, Phys. Chem. Chem. Phys. 12, 14812 (2010).
46Y. Zhang, S. Kupfer, L. Zedler, J. Schindler, T. Bocklitz, J. Guthmuller, S.

Rau, and B. Dietzek, Phys. Chem. Chem. Phys. 17, 29637 (2015).
47L. Jensen, L. L. Zhao, J. Autschbach, and G. C. Schatz, J. Chem. Phys. 123,

174110 (2005).
48A. Mohammed, H. Ågren, and P. Norman, Chem. Phys. Lett. 468, 119

(2009).
49A. Mohammed, H. Ågren, and P. Norman, Phys. Chem. Chem. Phys. 11,

4539 (2009).
50N. Lin, V. Barone, C. Cappelli, X. Zhao, K. Ruud, and F. Santoro, Mol. Phys.

111, 1511 (2013).
51M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb,

J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson,
H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino,
G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J.
Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven,
J. J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E.
Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K.
Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi,
N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C.
Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin,
R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G.
Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D.
Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox,
 09, Revision A.02 (Gaussian, Inc., Wallingford, CT, 2009).

52S. Shim, C. M. Stuart, and R. A. Mathies, ChemPhysChem 9, 697 (2008).

 26 February 2024 10:24:00
P

o
b

ra
no

 z
 m

o
st

w
ie

d
zy

.p
l

http://dx.doi.org/10.1063/1.1701032
http://dx.doi.org/10.1016/j.ccr.2012.02.004
http://dx.doi.org/10.1021/cr950249c
http://dx.doi.org/10.1021/jp805530y
http://dx.doi.org/10.1016/j.ccr.2009.11.015
http://dx.doi.org/10.1007/BF02980624
http://dx.doi.org/10.1098/rspa.1927.0071
http://dx.doi.org/10.1021/j100207a018
http://dx.doi.org/10.1063/1.438316
http://dx.doi.org/10.1063/1.444339
http://dx.doi.org/10.1063/1.443643
http://dx.doi.org/10.1063/1.2770706
http://dx.doi.org/10.1063/1.4771959
http://dx.doi.org/10.1063/1.3684236
http://dx.doi.org/10.1021/ct4007772
http://dx.doi.org/10.1021/ct4007772
http://dx.doi.org/10.1021/ct300640c
http://dx.doi.org/10.1063/1.4895534
http://dx.doi.org/10.1063/1.2790907
http://dx.doi.org/10.1063/1.1697371
http://dx.doi.org/10.1021/jp906152q
http://dx.doi.org/10.1021/jp502318s
http://dx.doi.org/10.1039/C4CP02977A
http://dx.doi.org/10.1021/ct200054w
http://dx.doi.org/10.1021/ct400197y
http://dx.doi.org/10.1021/ct400197y
http://dx.doi.org/10.1021/ct400932e
http://dx.doi.org/10.1021/jz200413g
http://dx.doi.org/10.1021/jp506948h
http://dx.doi.org/10.1021/jp3067958
http://dx.doi.org/10.1021/jp908154q
http://dx.doi.org/10.1021/jp7112279
http://dx.doi.org/10.1002/cphc.200800253
http://dx.doi.org/10.1063/1.433867
http://dx.doi.org/10.1016/j.ccr.2006.05.019
http://dx.doi.org/10.1063/1.2929846
http://dx.doi.org/10.1063/1.4941449
http://dx.doi.org/10.1063/1.4941449
http://dx.doi.org/10.1063/1.4941449
http://dx.doi.org/10.1063/1.4941449
http://dx.doi.org/10.1063/1.4941449
http://dx.doi.org/10.1063/1.4941449
http://dx.doi.org/10.1063/1.4941449
http://dx.doi.org/10.1063/1.4941449
http://dx.doi.org/10.1063/1.4941449
http://dx.doi.org/10.1063/1.4941449
http://dx.doi.org/10.1063/1.4941449
http://dx.doi.org/10.1063/1.4941449
http://dx.doi.org/10.1063/1.4941449
http://dx.doi.org/10.1063/1.4941449
http://dx.doi.org/10.1063/1.4941449
http://dx.doi.org/10.1063/1.4941449
http://dx.doi.org/10.1063/1.4941449
http://dx.doi.org/10.1063/1.4941449
http://dx.doi.org/10.1063/1.4941449
http://dx.doi.org/10.1063/1.4941449
http://dx.doi.org/10.1063/1.4941449
http://dx.doi.org/10.1063/1.4941449
http://dx.doi.org/10.1063/1.4941449
http://dx.doi.org/10.1063/1.4941449
http://dx.doi.org/10.1063/1.4941449
http://dx.doi.org/10.1063/1.4941449
http://dx.doi.org/10.1063/1.4941449
http://dx.doi.org/10.1063/1.4941449
http://dx.doi.org/10.1063/1.4941449
http://dx.doi.org/10.1063/1.4941449
http://dx.doi.org/10.1063/1.4941449
http://dx.doi.org/10.1063/1.4941449
http://dx.doi.org/10.1063/1.4941449
http://dx.doi.org/10.1063/1.4941449
http://dx.doi.org/10.1063/1.4941449
http://dx.doi.org/10.1016/0301-0104(94)00173-1
http://dx.doi.org/10.1063/1.3245403
http://dx.doi.org/10.1016/0031-8914(51)90008-0
http://dx.doi.org/10.1016/0009-2614(79)80314-0
http://dx.doi.org/10.1002/pssb.19670210237
http://dx.doi.org/10.1063/1.439547
http://dx.doi.org/10.1002/jcc.540161008
http://dx.doi.org/10.1063/1.444825
http://dx.doi.org/10.1063/1.444825
http://dx.doi.org/10.1039/c0cp00942c
http://dx.doi.org/10.1039/C5CP04484G
http://dx.doi.org/10.1063/1.2046670
http://dx.doi.org/10.1016/j.cplett.2008.11.063
http://dx.doi.org/10.1039/b903250a
http://dx.doi.org/10.1080/00268976.2013.809490
http://dx.doi.org/10.1002/cphc.200700856
http://mostwiedzy.pl

