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Collaborative communication tasks such as random access codes (RACs) employing quantum resources have
manifested great potential in enhancing information processing capabilities beyond the classical limitations. The
two quantum variants of RACs, namely, quantum random access code (QRAC) and the entanglement-assisted
random access code (EARAC), have demonstrated equal prowess for a number of tasks. However, there do exist
specific cases where one outperforms the other. In this article, we study a family of 3 → 1 distributed RACs [J.
Bowles, N. Brunner, and M. Pawłowski, Phys. Rev. A 92, 022351 (2015)] and present its general construction
of both the QRAC and the EARAC. We demonstrate that, depending on the function of inputs that is sought, if
QRAC achieves the maximal success probability then EARAC fails to do so and vice versa. Moreover, a tripartite
Bell-type inequality associated with the EARAC variants reveals the genuine multipartite nonlocality exhibited
by our protocol. We conclude with an experimental realization of the 3 → 1 distributed QRAC that achieves
higher success probabilities than the maximum possible with EARACs for a number of tasks.
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I. INTRODUCTION

Quantum theory has revolutionized the field of information
processing in the last few decades. The advantages offered by
quantum resources can be exploited in two distinct ways. The
first one involves spatially correlated shared entangled states
followed by classical communication of the quantum measure-
ment outcome performed on these states, whereas in the second
scenario, a prepared quantum system is communicated that can
be later measured to extract information. Teleportation [1],
remote state preparation [2], nonlocal games [3,4], and
quantum key distribution [5] are a few applications that use the
resources of the first type. In the prepare and measure scenario,
several information processing protocols can also be realized,
for example, quantum key distribution [6,7], randomness
certification [8], characterization of quantum correlations [9],
dimension witness [10], and parity oblivious multiplexing [11]
have been proposed. Many of these protocols have also
been experimentally implemented [12–14] and random access
codes (RACs)[15] have been a powerhouse fueling most of
them. In RAC, the preparation device encodes a bit-string
into a single bit before communicating it to the measurement
device whose task is to retrieve one of the arbitrarily chosen
bits from the string. Quantum resources are used by either
sending a quantum system through a quantum channel, the
protocol is then called simply a quantum random access
code (QRAC), or by sharing quantum entanglement among
the devices with a classical communication channel, named the
entanglement-assisted random access code (EARAC) is then
used. Here we consider a generalized version of the RAC in
which the measurement device is asked to retrieve a particular
function of the preparation device’s inputs. The set of functions
that can be given to the measurement device is called a task.

Although these two manifestations of quantum resources
are equally efficient in many cases, this is not always the case.
Their nonequivalence has been shown [16–18] by considering
distinct scenarios. In the case of a unit channel capacity,

EARACs perform better than QRACs with classical shared
randomness. Contrarily, for higher dimensional systems,
QRACs outperform EARACs in a few particular applications.
Here we demonstrate that, remarkably, for the same applica-
tion, either a EARAC or QRAC is better, depending on the task.
In other words, with respect to the optimal implementation of
quantum resources, EARACs and QRACs are complementary
to each other.

We begin by considering the 3 → 1 distributed RAC
scenario, introduced in [19]. This is the simplest form of a
communication network that consists of three components—
preparation, transformation, and measurement devices. We
then extensively study this variant of RAC using the two
different types of quantum resources mentioned earlier. First,
we present the EARAC protocol with Greenberger-Horne-
Zeilinger (GHZ) states that lead to the maximal success prob-
ability for some task. In addition, we also propose a tripartite
Bell-type inequality associated with the EARAC approach,
which reveals that the protocol manifests genuine multipartite
nonlocality. In the next section, we will demonstrate the
general construction of the QRAC protocol that leads to the
maximal success probability for a different task. Further, it
is shown that, depending on the task, when QRAC has the
maximal success probability, the EARAC fails and vice versa.
Our results not only signify the quantum advantage over a
classical approach, but more interestingly, also point out the
versatility of these quantum resources. Finally, we illustrate
the experimental realization of the 3 → 1 distributed QRAC
for a number of tasks.

II. DISTRIBUTED RANDOM ACCESS CODE

The standard 3 → 1 RAC is a communication complexity
problem defined in a prepare and measure scenario. The
preparation device receives a string of three bits x = (x0,x1,x2)
randomly chosen from a uniform distribution and communi-
cates a two-dimensional system to the measurement device.
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FIG. 1. The encoding quantum states given by Eq. (1) in the Bloch
sphere for input x0x1x2 for the standard 3 → 1 RAC.

The measurement device also receives an input y ∈ {0,1,2}
with an aim to guess xy . The average success probability
[see Eq. (2)] of guessing xy is 3

4 for a classical system,
while QRAC and EARAC offer the same success probability,
say P Q = 1+√

3
2
√

3
≈ 0.788 7 [15,16]. In an optimal quantum

strategy, the encoding quantum states are given by

|ψ(θ,φ)〉 = cos(θ )|0〉 + eiφ sin(θ )|1〉,

θ = cos−1

⎛
⎝

√√
3 + (−1)x2

2
√

3

⎞
⎠,

φ = π

4
[1 + 4x0 + 2(x0 ⊕ x1)].

(1)

These states are the eight vertices of the cube fit inside
the qubit representation of the Bloch sphere as shown in
Fig. 1. The decoding strategy is to measure the quantum
state in the bases {|�〉 , |�〉},{|+〉 , |−〉} and {|0〉 , |1〉} for
output z ∈ {0,1}, in which the basis choice corresponds to
the input y = 0,1,2, respectively. These are the mutually un-
biased bases σY ,σX,σZ , where |�〉 = 1√

2
(|0〉 + i |1〉), |�〉 =

1√
2
(|0〉 − i |1〉), |+〉 = 1√

2
(|0〉 + |1〉), |−〉 = 1√

2
(|0〉 − |1〉).

In the distributed version of such a communication task
(see Fig. 2), the preparation device is split into two devices
such that the first device receives two bits x0,x1 and the
second device receives only x2. Besides, the communication
channel capacity between these two devices is restricted to
be 1. However, all the devices are allowed to share classical
randomness. Here, we consider a general task where the
output z is a function of x,y, and the figure of merit is defined
by the average success probability,

P = 1

24

∑
x,y

p(z = f (x,y)|x,y). (2)

By considering all classical deterministic strategies, it can
be checked that when f (x,0),f (x,1),f (x,2) are independent
of each other (i.e., one of them has zero information about

z

x0, x1 x2 y

CR CR CR

(a) Distributed RAC with a classical channel

a b c

x0 ⊕ x1 m1 ⊕ x2
y

m1 = x0 ⊕ a m2 = m1 ⊕ b

z = m2 ⊕ c

x0, x1 x2

|Φ A |Φ B |Φ C

(b) Distributed RAC with shared entanglement and a 
classical channel

z

x0, x1 x2 y

U

(c) Distributed RAC with a quantum channel

FIG. 2. 3 → 1 distributed RACs with three different resources
are shown. The first two devices receive inputs x0, x1, and x2 (where
xi ∈ {0,1}), respectively. The third device receives input y ∈ {0,1,2}
and provides an answer z. All classical (double line) or quantum
(thick line) communication channels between devices are restricted
to two-dimensional systems. In (a), CR denotes that the devices
can share classical randomness. In (b), |�〉i represents the ith
qubit of the entangled GHZ state shared among the devices. In the
distributed EARAC, the first two devices measure the respective
shared qubits in two different measurement settings depending on
x0 ⊕ x1 and m1 ⊕ x2, and obtain binary measurement outcome a and
b, respectively. For different guessing functions f (x,y), the explicit
forms of these measurements differ, while the third device always
chooses the mutually unbiased bases σY ,σX,σZ for y = 0,1,2. In (c),
the first device prepares a qubit according to x0,x1 and sends it to the
second device. For x2 = 1, the second device applies a unitary U on
that qubit, and the third one always measures the qubit in one of the
mutually unbiased bases σY ,σX,σZ . The encoding quantum states and
the unitary operation U are different for different guessing functions
f (x,y).

another), then the upper bound of P using a classical channel
is 2

3 . This value can be achieved by communicating the
majority bit of two input bits among three to the measurement
device. Although the value of P decreases from 3

4 to 2
3 in the

classical distributed RAC, there exist quantum strategies that
lead to the maximal success probability for several forms of
f (x,y). Since distribution of inputs in two devices imposes
additional constraints over the standard one, P Q is the upper
bound for the quantum success probability of all the tasks we
consider in the distributed RAC.

052345-2

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


COMPLEMENTARITY BETWEEN ENTANGLEMENT-ASSISTED . . . PHYSICAL REVIEW A 95, 052345 (2017)

III. ENTANGLEMENT-ASSISTED DISTRIBUTED
RANDOM ACCESS CODE

The EARAC protocol (see Fig. 2) for f (x,y) = xy is
described as follows. The three devices, possessed by, say
Alice, Bob, and Charlie, share multiple copies of the GHZ
state 1√

2
(|000〉 + |111〉)ABC. Alice measures her qubit in

the basis, { 1√
2
(|0〉 + e−iφ |1〉), 1√

2
(|0〉 − e−iφ|1〉)} taking φ =

π
4 [1 + 2(x0 ⊕ x1)] and obtains a measurement result a. She

sends a 1-bit message m1 = a ⊕ x0 to Bob who proceeds to
measure in the basis {cos θ |0〉 + sin θ |1〉, sin θ |0〉 − cos θ |1〉}
by choosing θ = cos−1 (

√√
3+(−1)m1⊕x2

2
√

3
). Denoting the mea-

surement outcome as b, Bob communicates m2 = m1 ⊕ b

to Charlie who measures in the following three bases
{|�〉 , |�〉},{|+〉 , |−〉},{|0〉 , |1〉} for inputs y = 0,1,2, respec-
tively. Charlie’s measurement outcome is denoted as c, and his
guess for xy will be m2 ⊕ c. One can obtain

|�〉ABC = 1√
2

(|000〉 + |111〉)ABC = 1

2

∑
a=0,1

[|0〉 + (−1)ae−iφ |1〉)A(|00〉 + (−1)aeiφ|11〉]BC,

[|00〉 + (−1)aeiφ|11〉]BC = [cos θ |0〉 + sin θ |1〉]B[cos(θ )|0〉 + (−1)aeiφ sin(θ )|1〉]C
+ [sin θ |0〉 − cos θ |1〉]B[sin(θ )|0〉 − (−1)aeiφ cos(θ )|1〉]C. (3)

Following such decomposition, we can check that the dis-
tributed EARAC protocol allows us to generate the same
quantum states, given in (1), as for the standard EARAC
scenario.

In fact, the above Eq. (3) is valid for any φ. Thus, other
suitable tasks can be constructed by choosing φ to be (φ + φ′)
for φ′ = π,π

2 , 3π
4 , as listed in Table I, for which the EARAC

protocol gives the maximal success probability.
To obtain the maximal value P Q, eight different quantum

states corresponding to the vertices of the cube in Bloch
sphere should be realized in the third device. It can be
noticed from Fig. 1 that the four vertices for x2 = 1 are
just the reflection in the X − Y plane [RXY ] of the four
vertices for x2 = 0. The EARAC protocol essentially allows
us to implement RXY transformation with respect to x2. The
choice of φ′ corresponds to the additional rotation along the
Z direction [RZ(φ′)], followed by RXY . Similarly, one can
obtain the other EARACs based on RXZ and RYZ , in which
the measurement bases given in the above EARAC protocol

TABLE I. List of eight different tasks where EARAC gives the
maximal success probability (P Q ≈ 0.79) for the first four, whereas
QRAC is used for the rest. The bounds for EARAC are obtained
using semidefinite programming implementing almost quantum (AQ)
correlations [25] in a tripartite Bell scenario. The bounds of QRAC
are obtained by the seesaw method [24]. The success probability
using classical resources is 2

3 in all cases.

Transformation
f (x,0),f (x,1),f (x,2) in respect to x2 EARAC QRAC

x0,x1,x2 RXY P Q 0.75 [SW]
x0 ⊕ x2,x1 ⊕ x2,x2 RXY RZ(π ) P Q 0.7697 [SW]
x0 ⊕ x2(x0 ⊕ x1), RXY RZ( π

2 ) P Q 0.7546 [SW]
x1 ⊕ x2(x0 ⊕ x1),x2

x0 ⊕ x2(x0 ⊕ x1), RXY RZ( 3π

2 ) P Q 0.7546 [SW]
x1 ⊕ x2(x0 ⊕ x1),x2

x0 ⊕ x2,x1,x2 RX(π ) 0.7442 [AQ] P Q

x0,x1,x2 ⊕ x0 RX( 3π

2 ) 0.7697 [AQ] P Q

x0 ⊕ x2,x1,x0 RX( π

2 ) 0.7697 [AQ] P Q

x0 ⊕ x2,x1 ⊕ x2,x0 RZ(π ) 0.7697 [AQ] P Q

for x0 ⊕ x1,m1 ⊕ x2 will be rotated by RX(π ) and RY (π ),
respectively. Further, eight different EARACs corresponding
to the different forms of f (x,y) can be constructed for
transformations RXZ,RXZRY (φ′),RYZ,RYZRX(φ′).

IV. MULTIPARTITE NONLOCALITY FROM
DISTRIBUTED EARAC

In this section, we explore the relation between the
presented EARAC protocol and quantum nonlocality. Let
us consider a three-party Bell scenario in which Alice and
Bob receive binary inputs z1,z2 ∈ {0,1} and Charlie receives
inputs y ∈ {0,1,2} and produces a binary output a,b,c ∈ {0,1},
respectively. We denote the observed probability of such an
event by P (a,b,c|z1,z2,y). Following the EARAC protocol,
we obtain

x0 ⊕ a ⊕ b ⊕ c = xy,

where z1 = x0 ⊕ x1, z2 = x0 ⊕ a ⊕ x2.

⇒ a ⊕ b ⊕ c =
⎧⎨
⎩

0, if y = 0
z1, if y = 1
z2 ⊕ a, if y = 2

(4)

Thus the distributed EARAC task can be written in the form
of the following Bell expression:

B := 1

12

∑
a,b,c,z1,z2∈{0,1}

[P (a ⊕ b ⊕ c = 0|z1,z2,0)

+P (a ⊕ b ⊕ c = z1|z1,z2,1)

+P (b ⊕ c = z2|z1,z2,2)]. (5)

To probe the nontrivial connection between EARAC and
Bell-type inequality, let us assume that the sampling space
for Charlie’s input is biased. We study two different situations,
represented by t ∈ {0,1}, where the probability distribution
of getting y = (0,1,2) is [ 1

3 + q, 1
3 + (−2)t q, 1

3 + (−2)t⊕1q]
for some q ∈ [0, 1

6 ]. Subsequently, the Bell expression is
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modified as

B(t,q) := 1

4

∑
a,b,c,z1,z2∈{0,1}

(
1

3
+ q

)
P (a ⊕ b ⊕ c = 0|z1,z2,0)

+
(

1

3
+ (−2)t q

)
P (a ⊕ b ⊕ c = z1|z1,z2,1)

+
(

1

3
+ (−2)t⊕1q

)
P (b ⊕ c = z2|z1,z2,2). (6)

The maximum value of B(t,q) has been obtained for local
(L) and no-signaling bilocal (NSBL) correlations [20,21]. For
the local correlations, we have considered all the possible
deterministic strategies, whereas to get the upper bound for
NSBL, we generated all the extremal points (vertices) of
bipartite no-signaling (NS) polytope. When Alice and Bob
share NS correlations, i.e., the scenario with two inputs, each
with binary outputs, all the 24 extremal points are given
in [22]. In the case where Alice-Charlie or Bob-Charlie share
NS correlations, we can obtain all the extremal points (for
two and three inputs with binary outputs) by using linear
programming. The whole space containing the NS polytope is
24 dimensional. This polytope has 128 vertices, among which
32 are local deterministic and the rest are nonlocal. Using
these, the following relation has been observed:

B(0,q)
L/NSBLAB

� 2

3
+ q

2

NSBLBC

� 5

6
− q

2
,

B(1,q)
L/NSBLAB

� 2

3
+ q

2

NSBLAC

� 5

6
− q

2
,

(7)

where NSBLAB denotes the correlation when Alice and Bob
share NS resources and so on. For the quantum strategy
described earlier, B(t,q) = P Q independent of t,q. It is
obtained that sharing convex combinations of NSBLAC and
NSBLBC performs better than the EARAC protocol. However,
it can be readily checked from (7) that if they share NS
resources with any particular bipartition, then for q > 2−√

3
3

and the suitable value of t , the EARAC protocol overperforms.
This implies that the EARAC protocol witnesses not only
nonlocality but also genuine tripartite nonlocality.

V. QUANTUM-DISTRIBUTED RANDOM ACCESS CODE

In [19], it is shown that there exists a 3 → 1 dis-
tributed task where the QRAC leads to the maximal success
probability. Let us consider one such QRAC in which
f (x,0) = x0 ⊕ x2, f (x,1) = x1,f (x,2) = x2. The encoding
states |ψ(θ,φ)〉 in Eq. (1) for the maximum success proba-

bility can be prepared by taking θ = cos−1 (
√√

3+(−1)x2

2
√

3
), φ =

π
4 [1 + 4(x0 ⊕ x2) + 2(x0 ⊕ x2 ⊕ x1)]. The decoding strategy
is the same as considered before. The preparation device
prepares one of the four states while assuming x2 = 0 and
sends it to a transformation device. If x2 = 1, then the
transformation device applies a unitary that corresponds to
RX(π ) (π rotation about the x axis) in the Bloch sphere before
communicating it to the measurement device. This protocol
leads to the quantum states mentioned above, thereby ensuring
that the success probability is maximal.

Let us emphasize here the key requirement for the above
QRAC strategy. The preparation device sends one of the four
different states for the inputs x0x1 while assuming x2 = 0,
and if x2 = 1, the transformation device applies some rotation
of the Bloch sphere such that the eight states (consisting
of the initial four states and four states transformed by the
unitary) are the eight vertices of a cube in the Bloch sphere.
Hence, we need to know all the possible rotations for which
four vertices of a regular cube can be transformed exactly
to the other four vertices. The symmetric rotation group of
a cube contains 24 elements, among which one is identity,
and in nine cases the rotation axis intersects with the two
vertices. If the rotation axis intersects with vertices, then those
vertices will remain the same after the transformation, and thus
eight different states will not be realized. The other suitable
15 rotations are Ri(π/2),Ri(π ),Ri(3π/2) for i ∈ {X,Y,Z}
and RX±Y (π ),RY±Z(π ),RZ±X(π ). Depending on these 15
rotations, one can readily construct a task such that the QRAC
success probability is P Q. The explicit form of f (x,y) will
also depend on the initial four vertices of the cube. A few
examples of these tasks are given in Table I.

VI. COMPARISON BETWEEN EARAC AND QRAC

First we show that for f (x,y) = xy , the QRAC success
probability is strictly less than P Q.

Proof. If the operation of the transformation device on the
received qubit is unitary, then it is trivial that the corresponding
eight quantum states cannot be reproduced. This is because the
four states for x2 = 0 are just the reflection of the states for
x2 = 1, in the X − Y plane of the Bloch sphere. In general, the
transformation could be a completely positive trace-preserving
map up to a unitary. The image of a Bloch sphere of pure states
under such a map is an ellipsoid,(

X − t1

λ1

)2

+
(

Y − t2

λ2

)2

+
(

Z − t3

λ3

)2

= 1, (8)

contained within the Bloch sphere. Moreover, there is a
necessary condition to be completely positive [23],

(λ1 + λ2)2 � (1 + λ3)2 − t2
3 . (9)

Now if the transformation is not a rotation, then the only way
to have four vertices for x2 = 0 is when the image of the Bloch
sphere is given by the following ellipsoid:

(
X√
2/3

)2

+
(

Y√
2/3

)2

+
(

Z − 1√
3

λ3

)2

= 1. (10)

From the inequality (9), we obtain λ3 �
√

3 − 1 ≈ 0.732, but
since the ellipsoid is contained within the Bloch sphere, λ3 �
1 − 1√

3
≈ 0.423 contradicts that such a transformation exists.

If the preparation device prepares these four states, assuming
x2 = 0, then the transformation should reproduce the other
four states for which the same argument holds. �

Similarly, for the other EARACs based on RXZ,RYZ a
similar argument holds. In Appendix A, the best possible
QRAC strategies for some tasks, listed in Table I, obtained
from the seesaw (SW) method [24] are provided. On the
other hand, we have checked the upper bounds of EARAC
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implementing almost quantum (AQ) correlation [25] in the
tripartite Bell scenario. Since, the almost quantum set is larger
than the quantum set, the upper bounds in Table I ensure that
no EARAC protocol yields the optimal success probability in
the last four tasks.

VII. EXPERIMENTAL REALIZATION

A proof-of-principle experimental demonstration of four
different 3 → 1 distributed QRACs (five to eight in Table I)
will now be presented. For the state preparation in our exper-
iment, we have used a heralded single-photon source where
a 2-mm beta barium borate (BBO) crystal is pumped using a
390-nm pulsed laser. The pumped photon is down-converted
into two photons through a process commonly known as spon-
taneous parametric down-conversion (SPDC). This method is
extensively used for the generation of single photons where the
idler photon is utilized as a trigger whereas the signal photons
are used as single photons. The trigger photon is subsequently
detected by a single-photon detector DT . The signal photons,
on the other hand, are passed through a narrow-band (3 nm)
filter before being collected in a single-mode fiber (SMF).
This ensures that the single-photon source is spectrally and
spatially very well defined. We characterized the heralded
single-photon source and estimated the ratio of multiphoton to
single-photon pair emission to be below 0.15%. This indicates
that our source is a good approximation to a single-photon
source with negligible higher-order contribution. The source
provided on average 14.000 photons per second, and our
single-photon coupling efficiency into the SMF is ∼20%. The
initial polarization state of the photons is prepared in |H 〉 by
the use of a fiber polarization controller.

Experimentally, our two-level quantum system is realized
by using a single photon’s polarization states. The two
orthogonal polarization states, |H 〉 and |V 〉, are used for this
purpose, where (H ) and (V ) are the horizontal and vertical po-
larization modes of the photon. Information is encoded using
the following basis states: |0〉 ≡ |H 〉, |1〉 ≡ |V 〉. Therefore,
any qubit state can then be represented as a|0〉 + b|1〉. The
experimental setup is shown in Fig. 3, where Alice prepares
any four of her input states, |ψx0x1〉 with x0,x1 ∈ {0,1}, using a
combination of four wave plates and they are parametrized as

|ψx0x1〉 = cos(2α)|H 〉 + eiφx0x1 sin(2α)|V 〉. (11)

Suitable orientation of the half-wave plate [HWP](α)
defines the encoding state |ψ〉, and the combination
of the quarter-wave plate [QWP](θ1 = 45◦), HWP(β),
QWP(θ2 = 45◦) ensures the right phase in the encoding state.
This robust configuration allows Alice to prepare any of the
required states by suitable orientations of the two HWPs. The
corresponding wave-plate settings for preparing all four of
Alice’s states are shown in Table II for all the four QRAC tasks.

In the case where x2 = 0, no unitary rotation is performed
by Bob. This is equivalent to a scenario where the wave plates
of Bob are oriented at QWP(45◦), HWP(–45◦), QWP(45◦),
respectively. The encoding state is then communicated to
the measurement device as it is. However, for x2 = 1, Bob
performs a unitary rotation about some axis on the Bloch
sphere. The unitary rotations considered in the scope of this
experiment correspond to the following rotations: RX(π ),
RX( 3π

2 ), RX(π
2 ), and RZ(π ). For this purpose, a combina-

tion of QWP(θ3), HWP(γ ), and QWP(θ4) is used. Suitable
orientations of QWP(θ3), HWP(γ ), and QWP(θ4) allow Bob
to perform the specific rotation about the x axis or the
RZ(π ) rotation (Fig. 3). In this proof-of-principle experimental
demonstration, the values of x0,x1,x2 were preselected rather
than a randomized selection. However, a randomized selection
between the settings choice can be implemented by mounting
all the corresponding wave plates on motorized stages. The
appropriate wave-plate settings for implementing the above
unitary rotations of Bob are presented in Table II.

For either of the two cases, x2 ∈ {0,1}, Charlie’s task is to
measure the received state in σY ,σX,σZ bases and to recover
the desired outcome with a high success probability P . For
this purpose, the choice to measure in a specific basis is
implemented through a combination of one HWP, one QWP,
and one polarization beam splitter (PBS) followed by two
single-photon detectors Di(i = 1,2) in each spatial mode of
the PBS. For a measurement in σY , the HWP and QWP settings
correspond to 0◦, − 45◦. For σx , they correspond to 22.5◦,0◦
and 0◦,0◦ for the σZ basis. In this way, for any given rotation
(no rotation) performed by Bob, the four states are measured
in σY ,σX,σZ bases and the success probability of the QRAC is
then estimated from the number of detection events in the two
single-photon detectors.

Silicon avalanche photodiodes (APDs) with an effective
detection efficiency ηd = 0.55 were used at the two output
ports of the PBS. These detectors have a dark count rate

FIG. 3. Experimental setup for 3 → 1 distributed QRAC. Alice encodes her states in horizontal and vertical single-photon polarization
states that are prepared by suitable orientation of HWP(α) and the combination of QWP(θ1), HWP(β), QWP(θ2). Unitary rotations by Bob along
the x axis, z axis, and 1 transformation are implemented by a combination of QWP(θ3), HWP(γ ), and QWP(θ4), respectively. A combination
of HWP, QWP, and PBS followed by two single-photon detectors Di (i = 1,2) allow Charlie to perform the measurements in σY ,σX,σZ bases,
respectively.
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TABLE II. ψx0x1 are the quantum states in Eq. (11). The orientations of HWP(α) and the combination of QWP(θ1), HWP(β), QWP(θ2)
allow one to prepare quantum states ψx0x1 for the given QRAC task. x2 = 0 corresponds to an identity operation from Bob [QWP(θ3 = 45◦),
HWP(γ = −45◦), QWP(θ4 = 45◦)] on the received quantum state, whereas the listed orientations and the combination of QWP(θ3), HWP(γ ),
QWP(θ4) help to implement the unitary rotations [RX(π ),RX( 3π

2 ),RX( π

2 ), and RZ(π )] corresponding to the four tasks when x2 = 1.

Unitary by Bob

QRAC task State Alice’s settings x2 = 1

f (x,0),f (x,1),f (x,2) ψx0x1 HWP (α) QWP (θ1) HWP (β) QWP (θ2) x2 = 0 QWP (θ3) HWP (γ ) QWP (θ4)

ψ00 13.6839◦ 45◦ −56.25◦ 45◦ 1 90◦ 45◦ 90◦

ψ01 13.6839◦ 45◦ −78.75◦ 45◦ 1 90◦ 45◦ 90◦

x0 ⊕ x2,x1,x2 ψ11 13.6839◦ 45◦ −101.25◦ 45◦ 1 90◦ 45◦ 90◦ RX(π )
ψ10 13.6839◦ 45◦ −123.75◦ 45◦ 1 90◦ 45◦ 90◦

ψ00 13.6839◦ 45◦ −56.25◦ 45◦ 1 90◦ 67.5◦ 90◦

ψ01 13.6839◦ 45◦ −78.75◦ 45◦ 1 90◦ 67.5◦ 90◦

x0,x1,x2 ⊕ x0 ψ11 31.3161◦ 45◦ −101.25◦ 45◦ 1 90◦ 67.5◦ 90◦ RX

(
3π

2

)
ψ10 31.3161◦ 45◦ −123.75◦ 45◦ 1 90◦ 67.5◦ 90◦

ψ00 13.6839◦ 45◦ −56.25◦ 45◦ 1 90◦ 22.5◦ 90◦

ψ01 13.6839◦ 45◦ −78.75◦ 45◦ 1 90◦ 22.5◦ 90◦

x0 ⊕ x2,x1,x0 ψ11 31.3161◦ 45◦ −101.25◦ 45◦ 1 90◦ 22.5◦ 90◦ RX

(
π

2

)
ψ10 31.3161◦ 45◦ −123.75◦ 45◦ 1 90◦ 22.5◦ 90◦

ψ00 13.6839◦ 45◦ −56.25◦ 45◦ 1 45◦ −90◦ 45◦

ψ01 13.6839◦ 45◦ −78.75◦ 45◦ 1 45◦ −90◦ 45◦

x0 ⊕ x2,x1 ⊕ x2,x0 ψ11 31.3161◦ 45◦ −101.25◦ 45◦ 1 45◦ −90◦ 45◦ RZ(π )
ψ10 31.3161◦ 45◦ −123.75◦ 45◦ 1 45◦ −90◦ 45◦

of Rd  400 Hz and a dead time of 50 ns. A home-built
coincidence unit was used to record the number of coincidence
events between the signal and idler photons. This multichannel
coincidence logic has a detection time window of 1.7 ns. The
total measurement time for each experimental setting was 10 s.
For the experimental setup in Fig. 3, considering the coupling
losses, detection efficiencies, and the registered counts, the
overall heralding efficiency is estimated to be ∼4%.

The average success probabilities (P Q
expt) for the four

constructed QRAC tasks are presented in Table III. Appendix B
contains the estimated quantum success probabilities (for all
states, operations and measurements) corresponding to each
task, provided in Tables IV, V, VI, and VII, respectively. The
average quantum success probabilities in Table III are in good
agreement with the predictions of quantum mechanics, namely,
for an ideal experiment where P Q = 0.788 7. The quality of
the optical setup depends upon the intrinsic imperfections in
the PBS and wave plates. The used PBS has an extinction ratio
of 300:1, and the wave plates have a stated retardation precise
up to λ/300. The estimated errors take into account both the

TABLE III. Average quantum success probabilities P
Q
expt for the

four distributed QRAC tasks. The average values are estimated
from the measurements provided in Tables IV, V, VI, and VII in
Appendix B. The estimated errors take into account both the statistical
and the systematic errors.

QRAC Task P
Q
expt

x0 ⊕ x2,x1,x2 0.790 ± 0.018
x0,x1,x2 ⊕ x0 0.787 ± 0.018
x0 ⊕ x2,x1,x0 0.788 ± 0.0018
x0 ⊕ x2,x1 ⊕ x2,x0 0.788 ± 0.017

Poissonian counting statistics and the systematic errors. For
systematic errors, the main contribution is due to the imperfect
wave-plate settings and the intrinsic imperfections in the PBS
and wave plates.

VIII. CONCLUSIONS

This work provides a remarkably simple scenario where
the two different manifestations of quantum resources are
complementary to each other. Although the maximal success
probability can be reached for all the tasks that we’ve
considered, it is only true for one of the resources. Interestingly,
the optimal construction of EARAC and QRAC protocols
correspond to the three reflection symmetries and 15 rotational
symmetries of a cube in Bloch sphere. In the future, we
plan to generalize the distributed QRAC to systems of higher
dimension to see if this property persists. It would also be
interesting to investigate more general networks that might
be related to some unexplored aspects of nonlocality. For
future experiments, ultrabright state-of-the-art electrically or
optically driven single-photon sources based on color centers
in diamond or semiconductor structures as quantum dots can
be utilized instead of a heralded single-photon source. This
together with highly efficient fiber-coupling solutions and by
the use of superconducting nanowire single-photon detectors
(SSPDs) with high detection efficiency at the target wavelength
can lead to practical realization of this and related quantum
communication protocols.
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APPENDIX A: QRAC BOUNDS FOR THE FIRST FOUR
TASKS IN TABLE I

Here we will provide bounds for some tasks involving
QRAC using the seesaw [24] method with a semidefinite

programming [29] optimization technique. There are three
steps to model the whole protocol. Let |ψx0,x1〉 be the initial
state preparation, J (�) be the general quantum operation
in Choi representation, and My is the measurement. The
seesaw optimization is implemented in three intertwined
stages, treating one of M , |ψ〉 or J (�) as a variable,
and keeping the remaining two constant. For the first
task in Table I, the maximum value of P is obtained
to be 0.75. Alice prepares state as |ψ00〉 = |0〉, |ψ01〉 =
|+〉, |ψ10〉 = |−〉, and |ψ11〉 = |1〉. The channel in Choi
representation [30] is

⎡
⎢⎢⎢⎢⎣

3
4

1
4

1
4 + (−1)x2 × i

4 − 1
2

1
4

1
4 0 − 1

4 + (−1)x2 × i
4

1
4 − (−1)x2 × i

4 0 1
4 − 1

4

− 1
2 − 1

4 − (−1)x2 × i
4 − 1

4
3
4

⎤
⎥⎥⎥⎥⎦.

The measurement bases are M0 = {|0〉 , |1〉}, M1 = {|+〉 , |−〉}, and M2 = |�〉 , |�〉.
For the second task in Table I, the obtained maximum value of P is 1

12 (7 + √
5) ≈ 0.769 7. Alice’s encoding states are |ψx1x2〉:

|ψ00〉 = |0〉, |ψ01〉 = |ψ10〉 =
√

1
10 (5 + √

5) |0〉 +
√

2
5+√

5
|1〉, and |ψ11〉 = 1√

5
|0〉 + 2√

5
|1〉. The channel for x2 = 0 is

⎡
⎢⎢⎢⎢⎣

α1 −√
α1(1 − α1)

√
α1(1 − α1)i α1i

−√
α1(1 − α1) 1 − α1 −(1 − α1)i −√

α1(1 − α1)i

−√
α1(1 − α1)i (1 − α1)i 1 − α1

√
α1(1 − α1)

−α1i
√

α1(1 − α1)i
√

α1(1 − α1) α1

⎤
⎥⎥⎥⎥⎦, (A1)

and for x2 = 1 it is

⎡
⎢⎢⎢⎢⎣

α2
√

α2(1 − α2) −√
α2(1 − α2)i α2i√

α2(1 − α2) 1 − α2 −(1 − α2)i
√

α2(1 − α2)i
√

α2(1 − α2)i (1 − α2)i 1 − α2 −√
α2(1 − α2)

−α2i −√
α2(1 − α2)i −√

α2(1 − α2) α2

⎤
⎥⎥⎥⎥⎦, (A2)

where α1 = 0.5 + 1/
√

5 and α2 = 0.5 − 1/
√

5. The measurement bases are M0 = M1 = {|0〉 , |1〉} and M3 = |�〉 , |�〉.
For the third task in Table I, the obtained maximum value of P is 1

18 (9 + √
21) ≈ 0.754 6. The fourth task is the same as

this up to a rearrangement of the input y. Alice’s encoding states are |ψ00〉 = |0〉, |ψ01〉 =
√

25
63

4
√

34
63 |0〉 + 1

3

√
1
7 (38 − 4

√
34) |1〉,

|ψ10〉 = −
√

2
3 |0〉 + 1√

3
|1〉, and |ψ11〉 = 2√

21
|0〉 +

√
17
21 |1〉. The channel for x2 = 0 is

⎡
⎢⎢⎢⎢⎣

α1
√

α1(1 − α1)
√

α1(1 − α1) −α1√
α1(1 − α1) 1 − α1 1 − α1 −√

α1(1 − α1)
√

α1(1 − α1) 1 − α1 1 − α1 −√
α1(1 − α1)

−α1 −√
α1(1 − α1) −√

α1(1 − α1) α1

⎤
⎥⎥⎥⎥⎦, (A3)

and for x2 = 1 it is

⎡
⎢⎢⎢⎢⎣

α2 −√
α2(1 − α2) −√

α2(1 − α2) −α2

−√
α2(1 − α2) 1 − α2 1 − α2

√
α2(1 − α2)

−√
α2(1 − α2) 1 − α2 1 − α2

√
α2(1 − α2)

−α2
√

α2(1 − α2)
√

α2(1 − α2) α2

⎤
⎥⎥⎥⎥⎦, (A4)
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where α1 = 1
2 + 1

6

√
1

357 (937 + 160
√

34) and α2 = (357 + 51
√

21 − 4
√

714)/714. The measurement bases are M0 = {|0〉 , |1〉},
M1 = {2

√
2

17 |0〉 + 3√
17

|1〉 ,2
√

2
17 |1〉 − 3√

17
|0〉}, and M2 = {

√
1
2 +

√
2

17 |0〉 + 3√
34+4

√
34

|1〉 ,

√
1
2 +

√
2

17 |1〉 − 3√
34+4

√
34

|0〉}.

APPENDIX B: EXPERIMENTALLY ESTIMATED PROBABILITIES FOR THE FOUR QRAC TASKS

TABLE IV. QRAC task x0 ⊕ x2,x1,x2: ψx0x1 are the quantum states in Eq. (11). P σi
expt, i ∈ {Y,X,Z}, represents the experimentally estimated

success probabilities for measurements performed in the σY ,σX,σZ bases. Measurement results for both input values of x2 are shown, which
are associated with different unitary operations performed by Bob. The estimated errors take into account both the statistical and systematic
errors.

State Unitary by Bob [RX(π )] State Unitary by Bob (1)

ψx0x1 P
σY
expt P

σX
expt P

σZ
expt ψx0x1 P

σY
expt P

σX
expt P

σZ
expt

ψ00 0.797 ± 0.017 0.786 ± 0.019 0.788 ± 0.023 ψ00 0.789 ± 0.014 0.788 ± 0.016 0.789 ± 0.020
ψ01 0.789 ± 0.017 0.790 ± 0.020 0.787 ± 0.021 ψ01 0.788 ± 0.014 0.786 ± 0.017 0.786 ± 0.018
ψ11 0.789 ± 0.017 0.791 ± 0.017 0.794 ± 0.023 ψ11 0.788 ± 0.014 0.791 ± 0.018 0.790 ± 0.020
ψ10 0.793 ± 0.017 0.795 ± 0.016 0.786 ± 0.020 ψ10 0.800 ± 0.013 0.785 ± 0.019 0.787 ± 0.018

TABLE V. QRAC task x0,x1,x2 ⊕ x0: ψx0x1 are the quantum states in Eq. (11). P
σi
expt, i ∈ {Y,X,Z}, represents the experimentally estimated

success probabilities for measurements performed in the σY ,σX,σZ bases. Measurement results for both input values of x2 are shown, which
are associated with different unitary operations performed by Bob. The estimated errors take into account both the statistical and the systematic
errors.

State Unitary by Bob (RX(3π/2)) State Unitary by Bob (1)

ψx0x1 P
σY
expt P

σX
expt P

σZ
expt ψx0x1 P

σY
expt P

σX
expt P

σZ
expt

ψ00 0.796 ± 0.019 0.787 ± 0.015 0.790 ± 0.022 ψ00 0.789 ± 0.014 0.788 ± 0.016 0.789 ± 0.021
ψ01 0.791 ± 0.018 0.786 ± 0.016 0.782 ± 0.019 ψ01 0.788 ± 0.014 0.786 ± 0.016 0.786 ± 0.017
ψ11 0.786 ± 0.019 0.786 ± 0.016 0.782 ± 0.022 ψ11 0.783 ± 0.013 0.792 ± 0.017 0.784 ± 0.020
ψ10 0.781 ± 0.018 0.788 ± 0.016 0.786 ± 0.020 ψ10 0.789 ± 0.014 0.788 ± 0.016 0.787 ± 0.017

TABLE VI. QRAC task x0 ⊕ x2,x1,x0: ψx0x1 are the quantum states in Eq. (11). P σi
expt, i ∈ {Y,X,Z} represents the experimentally estimated

success probabilities for measurements performed in the σY ,σX,σZ bases. Measurement results for both input values of x2 are shown, which
are associated with different unitary operations performed by Bob. The estimated errors take into account both the statistical and the systematic
errors.

State Unitary by Bob (RX(π/2)) State Unitary by Bob (1)

ψx0x1 P
σY
expt P

σX
expt P

σZ
expt ψx0x1 P

σY
expt P

σX
expt P

σZ
expt

ψ00 0.779 ± 0.017 0.798 ± 0.017 0.786 ± 0.019 ψ00 0.789 ± 0.014 0.788 ± 0.016 0.789 ± 0.021
ψ01 0.785 ± 0.018 0.788 ± 0.017 0.792 ± 0.021 ψ01 0.788 ± 0.014 0.786 ± 0.017 0.786 ± 0.018
ψ11 0.784 ± 0.019 0.789 ± 0.016 0.784 ± 0.019 ψ11 0.783 ± 0.014 0.792 ± 0.016 0.784 ± 0.021
ψ10 0.795 ± 0.019 0.788 ± 0.016 0.796 ± 0.022 ψ10 0.789 ± 0.014 0.788 ± 0.016 0.787 ± 0.018

TABLE VII. QRAC task x0 ⊕ x2,x1 ⊕ x2,x0: ψx0x1 are the quantum states in Eq. (11). P
σi
expt, i ∈ {Y,X,Z} represents the experimentally

estimated success probabilities for measurements performed in the σY ,σX,σZ bases. Measurement results for both input values of x2 are shown,
which are associated with different unitary operations performed by Bob. The estimated errors take into account both the statistical and the
systematic errors.

State Unitary by Bob [RZ(π )] State Unitary by Bob (1)

ψx0x1 P
σY
expt P

σX
expt P

σZ
expt ψx0x1 P

σY
expt P

σX
expt P

σZ
expt

ψ00 0.785 ± 0.016 0.791 ± 0.015 0.789 ± 0.022 ψ00 0.789 ± 0.014 0.788 ± 0.016 0.789 ± 0.021
ψ01 0.795 ± 0.016 0.785 ± 0.016 0.788 ± 0.021 ψ01 0.788 ± 0.014 0.786 ± 0.017 0.786 ± 0.017
ψ11 0.787 ± 0.016 0.789 ± 0.015 0.789 ± 0.021 ψ11 0.783 ± 0.014 0.792 ± 0.016 0.784 ± 0.021
ψ10 0.789 ± 0.016 0.787 ± 0.015 0.782 ± 0.022 ψ10 0.789 ± 0.014 0.788 ± 0.016 0.787 ± 0.019
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