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A simple and flexible algorithm for finding zeros of a complex function is presented. An arbitrary-shaped
search region can be considered and a very wide class of functions can be analyzed, including those con-
taining singular points or even branch cuts. The proposed technique is based on sampling the function at
nodes of a regular or a self-adaptive mesh and on the analysis of the function sign changes. As a result a
set of candidate points is created, where the signs of the real and imaginary parts of the function change
simultaneously. To verify and refine the results an iterative algorithm is applied. The validity of the pre-
sented technique is supported by the results obtained in numerical tests involving three different types of
functions.
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1. INTRODUCTION
Though there are many publications on complex root finding techniques, they gen-
erally only consider a narrow class of functions or a restricted region of analysis.
Standard schemes for local root finding like Newton’s [Abramowitz and Stegun 1972],
Muller’s [Press et al. 1992] or simplex [Dantzig 1963] methods require initial points
to start the routine. If the function has local extrema the starting point must be quite
accurate to ensure convergence of the process. On the other hand, algorithms tracking
the root in a function with an extra parameter are very efficient [Gritton et al. 2001;
Michalski and Kowalczyk 2011], but their flexibility is limited and again initial points
are required. Further, some problems can appear for multiple-valued functions (e.g.,
square or cube roots) in the neighborhood of branch cuts. Nevertheless, in general,
local roots can be successfully estimated using one of the known algorithms.

Global root finding, on the other hand, is significantly more difficult. For simple poly-
nomial functions, algorithms based on the Sturm sequence method enhanced by the
Routh theorem [Pinkert 1976] or on the splitting circle method introduced by Schon-
hage [Schonhage 1982], can be applied with a very high efficiency. In many technical
problems, however, the polynomial approximation is insufficient. A generalization of
these procedures is proposed in [Long and Jiang 1998; Wu et al. 2010], but the function
still needs to be free of singularities and branch cuts in the analyzed region, and the
same limitation applies to mesh methods [Wan 2011]. To the author knowledge, there
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is no flexible and effective global root-finding method. Therefore, in particular cases,
it becomes necessary to implement difficult and complex routines (e.g., based on the
genetic algorithm [Yu-Bo 2009]) .

In this article, a simple algorithm is presented that allows zeros of a complex func-
tion to be found in an arbitrary-shaped region. A very wide class of functions can be
analyzed, including those containing singular points or even branch cuts. The pro-
posed technique is based on sampling of the function using a regular or a self-adaptive
mesh and analysis of the sign changes between the nodes. As a result, a set of can-
didate points is created, where the signs of the real and imaginary parts of the func-
tion change simultaneously. Next, the points are verified using Cauchy’s Argument
Principle. Finally, the accuracy of the estimates of the verified roots is improved. For
this, many algorithms are suitable, but their efficiency strongly depends on the type
of function. In this article, a simple iterative method based on the rational function is
proposed.

The validity of the technique presented is supported by the results obtained in nu-
merical tests involving three different types of functions commonly used in electro-
magnetic and optical engineering.

2. ALGORITHM
The algorithm can be divided into three separate stages: preliminary estimation, ver-
ification and final refinement. The preliminary estimation procedure provides a set
of candidate points where the signs of the real and imaginary parts of the function
change simultaneously. In the second stage, the validity of the solution is checked us-
ing Cauchy’s Argument Principle and, finally, in the third stage, the accuracy of the
estimates of the roots is improved.

2.1. Simple Preliminary Estimation
Denoting the function considered by f(z) and the search region by Ω ⊂ C, the main
idea of the method can be simply described in terms of the following steps:

(1) In the first step, the smallest distance ∆r between all the roots, singularities and
branch cuts is assumed.

(2) Next, region Ω is covered with a triangular mesh and the nodes are collected in a
set of points denoted by V = {v1, v2, ..., vN}. A honeycomb arrangement (equilateral
triangles) of the points provides the highest efficiency of the algorithm, however any
other configuration is possible, until the longest side of all the triangle is smaller
than ∆r.

(3) The function is evaluated for each point vn and the values are stored in set F =
{f1, f2, ..., fN}.

(4) For each of the triangles, the real and imaginary parts of the function can be ap-
proximated separately by a plane determined by three points (vertices of the trian-
gle). The approximation is not holomorphic, but it is continuous in Ω. Given this,
two curves (consisting of line segments) representing zeros of the real and imagi-
nary parts of the function can be constructed: CR = {z ∈ Ω : Re(f(z)) = 0} and
CI = {z ∈ Ω : Im(f(z)) = 0}. For the example function, these curves are presented
in Figure 1.

(5) All the points where CR and CI curves cross (or are closer then ∆r) are collected in
set S = {s1, s2, ..., sM} and the preliminary estimation process is complete.

At this stage of the algorithm, set S contains roots as well as singularities of the
function or artificial roots at branch cuts (the sign changes can be a result of cuts
only).
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Fig. 1. The curves CR (black) and CI (yellow) are obtained in the preliminary estimation process for f(z) =
(z − i)1/2(z + 1)(z + i)2(z − 1)−1. The set S contains 10 candidate points (green circles).

It is clear that the accuracy of the candidate points is determined by the parameter
∆r. The results are, however, improved in the last stage of the algorithm. At this stage,
the value of ∆r only needs to be sufficient to separate different solutions. It should be
noted that multi roots and single roots which are located in a distance smaller than
∆r are indistinguishable for the algorithm.

An important advantage of the method is the simple parallelization of the calcula-
tions in step (3). In this step, the function can be evaluated at quite high number of
points. Hence, this part of the algorithm can be very time consuming and the possibil-
ity of parallelizing the process may be very useful.

2.2. Preliminary Estimation Based on Delaunay Triangulation
Suppose the evaluation of the function is time consuming, so that some extra time can
be spent on finding the best locations of nodes of the mesh. This technique is particu-
larly efficient for more complex forms of function (especially evaluated numerically).

In such a case, the mesh is modified iteratively, however, the main idea of the pre-
liminary estimation is the same. The improved version of the algorithm is similar, but
it consists of more steps:

(1) In the first step, region Ω is covered with a dense initial mesh and the nodes are
collected in a set of points denoted by V = {v1, v2, ..., vN}. Usually, as it is shown in
the numerical examples, the four vertices of a rectangle are sufficient to initiate the
procedure.

(2) By applying Delaunay triangulation to set V , its points become the vertices of trian-
gles. These triangles must completely cover the domain Ω. To improve the efficiency
of this process a modified version of the triangulation can be applied 1 [ Miller, Gary
L. and Phillips, Todd and Sheehy, Donald R. 2011]

(3) The function is evaluated for each point vn and the values are stored in set F =
{f1, f2, ..., fN}.

(4) The triangles with edges of a length greater than the assumed accuracy ∆r are
analyzed. If the signs of the real or imaginary parts of the function are different at

1The algorithm produces a Delaunay mesh with guaranteed optimal mesh size and quality.

ACM Transactions on Mathematical Software, Vol. 9, No. 4, Article 39, Publication date: March 2010.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


39:4 P. Kowalczyk

−2 0 2
−2

−1

0

1

2

Re(z)

Im
(z

)

iteration 1 (4 poins)

−2 0 2
−2

−1

0

1

2

Re(z)

Im
(z

)

iteration 8 (710 poins)

−2 0 2
−2

−1

0

1

2

Re(z)

Im
(z

)

iteration 15 (966 poins)

Fig. 2. An example of the preliminary estimation algorithm application for f(z) = (z − i)1/2(z + 1)(z +
i)2(z − 1)−1 and Ω = {z ∈ C : −2 < ℜ(z) < 2 ∧ −2 < ℑ(z) < 2} is presented. For ∆r = 0.1 the procedure
stops after 15 iterations and 966 evaluations of the function.

the ends of any of these edges, then an extra point is added to V , namely, a midpoint
of the corresponding edge2.

(5) If in the previous step any new points have been added to V , the procedure is re-
peated from step (2). An example iteration process is illustrated3 in Figure 2.

(6) For each of the triangles, the real and imaginary parts of the function can be ap-
proximated separately by a plane determined by three points (vertices of the trian-
gle). The approximation is not holomorphic, but it is continuous in Ω. Given this,
two curves (consisting of line segments) representing zeros of the real and imagi-
nary parts of the function can be constructed: CR = {z ∈ Ω : Re(f(z)) = 0} and
CI = {z ∈ Ω : Im(f(z)) = 0} (exactly like in previous section).

(7) All the points where CR and CI curves cross (or are closer then ∆r) are collected in
set S = {s1, s2, ..., sM} and the preliminary estimation process is complete(exactly
like in previous section).

To improve the efficiency of the preliminary process, it is convenient to remove any
new points which are very close to the old ones (already present in V ), before the next
application of Delaunay triangulation (after step (4)). If branch cuts of the function
are present in the considered region there can be quite a large number of points in S,
and it is efficient to reduce this number by grouping the points using the technique
described in the Appendix.

Also in this variant of the preliminary estimation the simple parallelization of the
calculations in step (3) is possible. In this step, the function is only evaluated at new
points of V ; nevertheless, the number of calculations required may be quite high. Due
to the assumption of complexity of the function this part of the algorithm is most time
consuming.

2.3. Verification
Once set S is obtained, the points must be classified to avoid false solutions. This is a
very important part of the entire process. The iterative method improving the solution
accuracy, applied directly at candidate points, can get stuck in a local minimum or not

2Splitting the edge at the midpoint is more effective than at the approximated root, especially in the first few
retriangulations. In one triangle (along one edge) the signs of the real and imaginary parts of the functions
can change more than once and this intuitive approach turns out to significantly increase a possibility of
missing some roots.
3The functions used to illustrate the process is f(z) = (z − i)1/2(z + 1)(z + i)2(z − 1)−1.
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Fig. 3. Contour C is divided into P segments.

converge at all. Moreover, without the verification stage it is not possible to determine
whether all the roots have been found.

In order to verify the validity of the root, Cauchy’s Argument Principle is applied for
each point sm. According to this principle, the integral

q =
1

2πi

∮
C

f ′(z)

f(z)
dz, (1)

represents a change in the argument of the function f(z) over a closed contour C. In
general q is a sum of all zeros counted with their multiplicities, minus the sum of all
poles counted with their multiplicities. For a multiple-valued function (e.g., a square
or cube root), the integration must involve all Riemann surfaces to close the curve.

Assuming that the contour C is a circle of radius ∆r centered at sm and the candidate
point represents only one root or singularity, the value of q can have only fixed values.
If the function is single-valued, the parameter q can be:

• a positive integer - root of order q,
• a negative integer - singularity of order −q,
• zero - regular point.

If the function is multiple-valued, the parameter q can be fractional, as C can be open
at the branch cut: the integration is performed over one Riemann surface only and
the discontinuity at the cut is neglected (e.g., for the integral over sm = 0, q = 1/2 for
the square root function and q = 1/3 for the cube root). In this cases, the calculations
must be performed for each Riemann surface and the values of q (obtained for different
surfaces) summed. Only this approach can unambiguously determine the nature of the
candidate point.

In numerical calculations, it is convenient to divide the contour C into P seg-
ments C =

⋃P
p=1 Cp (see Fig. 3). Writing the function in the exponential form f(z) =

M(z) exp(iΨ(z)), the parameter q can be expressed as follows

q =
1

2πi

P∑
p=1

∫
Cp

[
M ′(z)

M(z)
+ iΨ′(z)

]
dz (2)

=
1

2πi

{
P−1∑
p=1

[
ln

M(zp+1)

M(zp)
+ iΨ(zp+1)− iΨ(zp)

]
+ ln

M(z1)

M(zP )
+ iΨ(z1)− iΨ(zP )

}
,

where zp ∈ C.
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Table I. The verification of the example set S presented in Fig. 1

m sm q P verification
1 1.02 + 0.02i −1 9 singularity
2 −1.00− 0.00i 1 9 root
3 0.00 + 1.00i 0.5 54 root
4 0.00− 1.00i 2 19 root
5 −1.74 + 1.00i 3.53 · 10−17 102 regular point
6 −1.95− 0.98i −1.33 · 10−17 102 regular point
7 −1.45 + 0.99i −4.42 · 10−18 102 regular point
8 −0.46 + 0.99i −1.33 · 10−17 102 regular point
9 −1.11 + 0.97i −5.74 · 10−17 102 regular point
10 −0.77 + 0.99i −1.77 · 10−17 102 regular point

As a result, the integral becomes the algebraic sum of the partial increases or de-
creases in the argument of the function along contour C

q =
1

2π

P∑
p=1

∆Ψp, (3)

where ∆Ψp = Ψ(zp+1)−Ψ(zp) for p = 1, · · · , P − 1 and ∆ΨP = Ψ(z1)−Ψ(zP ).
The procedure is simple if no branch cuts cross the contour. In such case, the points

zp can be distributed evenly along C; otherwise, the cuts must be detected and elimi-
nated. Let the argument changes at the branch cut be less than ∆θ (e.g., if the function
contains R

√
(·) then ∆θ = 2π/R). Then the segments Cp whose |∆Ψp| is greater than

∆θ are divided in half, until the length of Cp is greater than ε. Finally, these very short
segments (of length less than ε) are neglected in the sum (3). This operation eliminates
the improper ∆Ψp (which in fact represents an artificial change in the argument at a
cut).

Table I summarizes the results of the verification process, performed for the example
set S. Initially, the contour is divided into P = 3 segments, and ε = 2.220446049250313 ·
10−16 (machine precision). Here, the value of parameter q for the point s3 is q = 0.5+0.5
(0.5 for each of two Riemman surfaces w = ±

√
z).

2.4. Limitations
The regular mesh has a very clear guarantee of correctness - if the step ∆r is smaller
than the smallest distance between the roots and poles of the function then none of
the roots can be missed. If the distance is too long and the function changes sign two
(or more, but even) times then the approximation of the function is improper. As a
result some of the roots can be omitted. Unfortunately, just like for other established
methods (e.g. bisection for real function of one variable), there is no clear recipe for the
estimation of such ∆r a priori. In practice, ∆r must be chosen by a user experimentally
(in sequential iterations).

The verification process described in the previous section checks the validity of the
solutions, however it does not guarantee that all the roots are found. To reduce the
risk of root missing the integration (1) over the whole considered area can be applied.
Assuming that C is a boundary of Ω the integral (1) must be equal to the sum of all
parameters q, obtained for each sm. Unfortunately, if the contour integration over the
considered region is zero then the region can be free of roots and poles, but there is still
a risk that the region contains an equal number of roots and poles. The integration
can be extended to higher moments [P. Lamparillo and R. Sorrentino 1975], which can
further reduce that risk (the second moment eliminates the problem for single pair of
root-pole [Zieniutycz 1983]). However, it must be emphasized, that none of the above
procedures can guarantee that all the roots will be found. For the Delaunay-based
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technique the risk of root missing can be higher due to irregular discretization of the
domain (a self-adaptive mesh in preliminary estimation).

2.5. Final Refinement
Once the roots have been obtained with reasonably good accuracy, the estimates can
be improved by many different techniques; these include Newton’s, Muller’s or simplex
methods. When the considered region contains singularities, however, a rational func-
tion approximation is more suitable. In this paper an iteration technique based on a
rational function is proposed. The rate of convergence of this method is about 1.84 (the
same as Muller technique [Stewart 1994]). However, the asymptotic error constant de-
pends on the analyzed function and can be smaller (than e.g. Muller technique) for
functions containing singularities.

The simplest rational function can be written in the following form:

P (z) =
z − a

bz − c
, (4)

where parameters a, b and c are complex numbers.
The procedure is performed for each root from set S and includes the following steps:

(1) For a fixed sm the three nearest points are chosen from V and denoted by vα, vβ , and
vγ . The corresponding values of the function can be obtained from F and denoted by
fα, fβ , and fγ , respectively.

(2) Substituting the points and their values into the rational function, (4) the following
matrix equation can be formulated[

vαfα −fα 1
vβfβ −fβ 1
vγfγ −fγ 1

][
b
c
a

]
=

[
vα
vβ
vγ

]
. (5)

(3) Since the function in (4) is equal to zero for z = a, a new approximation of the root
can be obtained from the solution of equation (5), as vη = a.

(4) The function value for the new point is evaluated as fη = f(vη).
(5) The magnitudes of the function at vα, vβ , and vγ are compared and the point with

the highest value is replaced by vη.
(6) If the distances between points vα, vβ , and vγ are greater than a given accuracy ε

the process is repeated from (2).

As was mentioned at the beginning of this section, the refinement can be performed
using different algorithms and its efficiency varies depending on the function type.
The simple nature of the proposed algorithm means that the refinement process can
be helped by other techniques (in steps (2) and (3)) without affecting the structure of
the whole root-finding process.

3. NUMERICAL EXAMPLES
In order to demonstrate the validity of the method the algorithm is applied to three
different problems from the fields of microwave and optical engineering. The algorithm
is implemented in the Matlab Environment (the Delaunay triangulation function is
built-in), so the code is very simple. Since none of the known (global) algorithms can
be used for a multiple-valued function containing branch points and singularities no
comparison of efficiency is provided. Unlike simple functions used to illustrate the
algorithm (see Figure 2 and Figure 1), all functions selected are more complex and time
consuming to evaluate, so the time required for iterative refinement of the triangular
mesh is small compared to the total CPU time for the entire process. To assess the
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39:8 P. Kowalczyk

Table II. The results of the preliminary estimation
and verification for the surface wave propagation
problem

m sm q P verification
1 −0.52 + 0.51i 1 9 root
2 0.52− 0.51i 1 9 root
3 −1.52− 0.17i 1 9 root
4 1.52 + 0.17i 1 9 root
5 −1.56 + 0.01i −2 17 singularity
6 1.56− 0.01i −2 17 singularity
7 −1.63 + 0.18i 1 9 root
8 1.63− 0.18i 1 9 root
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Fig. 4. The final triangulation (left hand side) and the real-zero and imaginary-zero curves (right hand
side) for the surface wave propagation problem

algorithm efficiency, the number of function evaluations is given and compared, for
each analyzed function type, with the case involving a dense regular initial mesh.

3.1. Surface Waves in a Microstrip Antenna
One of the most frequently cited examples of complex transcendental equations in
microwave electronics originates from the analysis of surface waves in microstrip lines
or antennas [Yunliang and Hongyan 1997; Wu et al. 2010]. The function obtained from
the eigenvalue problem describing propagation in such structures can be written in
the following form:

f(z) = ε2rz
2 + z2 tan2 z − ε2r(k0h)

2(εrµr − 1), (6)

where k0 = 2πf/c and c = 3 · 108[m/s]. The typical set of material parameters is εr =
5−2i and µr = 1−2i, while for the numerical analysis, h and f are are assigned values
of 0.01[m] and 1[GHz] respectively.

The function (6) is analyzed in the region Ω = {z ∈ C : −2 < ℜ(z) < 2 ∧ −2 < ℑ(z) <
2} with ∆r = 0.1. In the preliminary estimation process, the function is evaluated 693
times (14 iterations). The results from this first stage and the verification are presented
in Figure 4 and Table II.

The accuracy of the solutions is improved in the final refinement assuming ε =
2.220446049250313 · 10−16 (machine precision) and the final results are listed in Ta-
ble III (the 2 points representing singularities having been rejected).
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Table III. The final results for the surface wave propagation problem

m sm |f(sm)| |f(sm + δm)| K
1 −0.515113098774213 + 0.507111597183436i 5.62 · 10−15 3.06 · 10−9 6
2 0.515113098774213− 0.507111597183436i 5.62 · 10−15 3.06 · 10−9 6
3 −1.520192977783856− 0.173670452372664i 2.07 · 10−14 1.24 · 10−7 9
4 1.520192977783856 + 0.173670452372664i 2.07 · 10−14 1.24 · 10−7 9
7 −1.624715288303687− 0.182095877325762i 8.95 · 10−14 1.25 · 10−7 9
8 1.624715288303687 + 0.182095877325762i 8.95 · 10−14 1.25 · 10−7 9

Note: K is a number of iterations in the final refinement and δm = sm · 10−10.
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Fig. 5. The final triangulation (left hand side) and the real-zero and imaginary-zero curves (right hand
side) for the complex waves propagation problem.

In electromagnetic waveguide problems, the sign of the solution represents the di-
rection of propagation, hence both signs are meaningful.

3.2. Leaky Waves in an Optical Fiber
The second example concerns propagation processes (specifically radiation) in a stan-
dard optical fiber of radius R = 0.5[µm]. Constant values are assigned to the refractive
index of the core, n2 = 2.9, and the cladding, n1 = 1.55. In addition, in this example,
to ensure continuity of the fields at the boundary the following determinant function
must be equal to zero [Ghatak and Thyagarajan 1998]:

f(z) =

∣∣∣∣∣∣∣∣∣∣
H

(2)
m (κ1R) 0 −Jm(κ2R) 0

0 n1H
(2)
m (κ1R)0 0 −n2Jm(κ2R)

zmH(2)
m (κ1R)

Rκ2
1

k0n1H
′(2)
m (κ1R)
κ1

− zmJm(κ2R)
Rκ2

2
−k0n2Jm(κ2R)

κ2

k0n
2
1H

′(2)
m (κ1R)
κ1

− zmH(2)
m (κ1R)

κ2
1

−k0n
2
2J

′
m(κ2R)
κ2

zmJm(κ2R)
κ2
2

∣∣∣∣∣∣∣∣∣∣
, (7)

where z represents a propagation constant, Jm(·) is a Bessel function of the first kind
and H

(2)
m (·) is a Hankel function of the second kind. The coefficients κ1 and κ2 are

defined as follows κ1 =
√
z2 + k20n

2
1, κ2 =

√
z2 + k20n

2
2, where k0 = 2πf/c.

The numerical tests are performed for m = 1 and f = 50[THz]. The region considered
is Ω = {z ∈ C : −2 < ℜ(z) < 2 ∧ −2 < ℑ(z) < 2} and ∆r is assigned a value of 0.1.

In this case, the preliminary estimation requires 15 iterations and 1107 evaluations
of the function (see Figure 5).
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Table IV. The results of the preliminary estima-
tion and verification for the leaky wave propagation
problem

m sm q P verification
1 1.32 + 0.76i 1 19 root
2 −0.02 + 1.59i −3 58 singularity
3 −0.95 + 1.66i 1 18 root
4 −1.32− 0.76i 1 19 root
5 0.02− 1.59i −3 58 singularity
6 0.95− 1.66i 1 18 root

Table V. The final results for the leaky wave propagation problem

m sm |f(sm)| |f(sm + δm)| K
1 1.317970518320856 + 0.758576155985806i 2.72 · 10−16 1.27 · 10−10 9
3 −0.946410082621815 + 1.654062749423636i 3.26 · 10−16 2.28 · 10−10 9
4 −1.317970518320856− 0.758576155985806i 2.72 · 10−16 1.27 · 10−10 9
6 0.946410082621815− 1.654062749423636i 3.26 · 10−16 2.28 · 10−10 9

Note: K is a number of iterations in the final refinement and δm = sm · 10−10.

The results obtained for the function (7) are listed in Tables IV and V. The same re-
sults can be obtained directly from discreet methods of computational electrodynamics
(then roots sm are represented by eigenvalues of the corresponding matrix operator)
[Kowalczyk and Mrozowski 2007].

3.3. Complex Waves in an Inhomogeneous Circular Waveguide
The last example concerns a complex wave propagation problem in a circular waveg-
uide of radius b, coaxially loaded (lossless dielectric with permittivity εr) with a cylin-
der of radius a [Mrozowski and Mazur 1992; Mrozowski 1997]. To ensure continuity of
the fields at the boundary, the following determinant function must be equal to zero:

f(z) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Jm(κ1a) 0 −Jm(κ2a) −Ym(κ2a) 0 0

0 Jm(κ1a)
η1

0 0 −Jm(κ2a)
η2

−Ym(κ2a)
η2

zmJm(κ1a)
aκ2

1
−ωµ1J

′
m(κ1a)

κ1η1
− zmJm(κ2a)

aκ2
2

− zmYm(κ2a)
aκ2

2

ωµ2J
′
m(κ2a)

κ2η2

ωµ2Y
′
m(κ2a)

κ2η2

−ωε1J
′
m(κ1a)
κ1

− zmJm(κ1a)
aκ2

1η1

ωε2J
′
m(κ2a)
κ2

ωε2Y
′
m(κ2a)
κ2

zmJm(κ2a)
aκ2

2η2

zmYm(κ2a)
aκ2

2η2

0 0 Jm(κ2b) Ym(κ2b) 0 0

0 0 zmJm(κ2b)
bκ2

b

zmYm(κ2b)
bκ2

b

−ωµ2J
′
m(κ2b)

κ2η2
−ωµ2Y

′
m(κ2b)

κ2η2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

(8)
where z represents a propagation constant, and Jm(·) and Ym(·) are the first and second
kind of Bessel functions, respectively. Further, the coefficients κ1 and κ2 are defined as
follows κ1 =

√
z2 + ω2εr/c2, κ2 =

√
z2 + ω2/c2, where ω = 2πf , η1 = 120π/

√
εr[Ω] and

η2 = 120π[Ω].
The numerical tests are performed for a = 6.35[mm], b = 10[mm], εr = 10, m = 1 and

f = 5[GHz]. The region considered Ω = {z ∈ C : −2 < ℜ(z) < 2 ∧ −2 < ℑ(z) < 2} and
∆r is assigned a value of 0.1.

Figure 6 shows the final mesh of the preliminary estimation process. It requires 1376
evaluations of the function over 11 iterations. The results of the preliminary estimation
and the verification are reported in Table VI and the improved values of the roots in
Table VII.

3.4. Efficiency of Delaunay triangulation
Since the effectiveness of the presented algorithm has been shown, a few comments
about its efficiency should be added. As it was mentioned above, the efficiency depends
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Fig. 6. The final triangulation (left hand side) and the real-zero and imaginary-zero curves (right hand
side) for the complex wave propagation problem

Table VI. The results of the preliminary estimation
and verification for the complex wave propagation
problem

m sm q P Verification
1 0.97 + 0.63i 1 9 root
2 0.00 + 1.02i −2 18 singularity
3 −0.97 + 0.63i 1 9 root
4 −0.97− 0.63i 1 9 root
5 0.00− 1.00i −2 18 singularity
6 0.97− 0.63i 1 9 root

Table VII. The final results for the complex wave propagation problem

m sm |f(sm)| |f(sm + δm)| K
1 0.966423024599417 + 0.629233974556967i 2.35 · 10−22 4.16 · 10−17 9
3 −0.966423024599417 + 0.629233974556967i 2.35 · 10−22 4.16 · 10−17 9
4 −0.966423024599417− 0.629233974556967i 2.35 · 10−22 4.16 · 10−17 9
6 0.966423024599417− 0.629233974556967i 2.35 · 10−22 4.16 · 10−17 9

Note: K is a number of iterations in the final refinement and δm = sm · 10−10.

on the considered function. If the evaluation time of the function at a single point
is short then iterative retriangulation can be inefficient (since the time involved in
retriangulation may be longer that the time of evaluation the function at extra points
on a dense mesh). However, for more complex functions (especially these obtained from
numerical analysis) the retriangulation time can be negligibly short in comparison to
the function evaluation. In Table VIII the CPU time of the whole process and the
preliminary estimation for each tests considered above is compared with a case of a
hexagonal mesh (a pitch ∆r = 0.1). In the latter case no retriangulation is necessary. It
can be seen that for all presented examples, the number of points at which the function
is evaluated is siginficuntly smaller. Since the preliminary estimation is a major part
of the whole process, it can be expected that when the function evaluation is very time
consuming, the total duration of the calculation can be also significantly reduced.
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39:12 P. Kowalczyk

Table VIII. Computation time of total process and preliminary estimation for two variants:
based on Delaunay triangulation and on regular dense mesh (Intel(R) Core(TM) i3 3.07GHz)

example
iterative Delaunay triangulation regular mesh

preliminary total preliminary total
estimation process estimation process

Surface Waves 0.32s (693 points) 0.91s 1.10s (2040 points) 1.69s
Leaky Waves 1.17s (1107 points) 2.01s 2.27s (2040 points) 3.11s

Complex Waves 2.46s (1376 points) 3.48s 3.87s (2040 points) 4.89s

4. CONCLUSIONS
In this paper, a simple (global) complex root finding algorithm is presented. The algo-
rithm can be applied to a very wide class of functions and for arbitrary-shaped regions.
The results are verified and its accuracy can be controlled. The examples presented
show that the algorithm can be successfully applied to functions containing singulari-
ties and branch cuts, which is the case in many real-world technical problems. In order
to illustrate the efficiency of the scheme presented a number of function evaluations is
given for each example.

The possibility of parallelizing the algorithm enables its efficiency to be significantly
improved for difficult and complex functions, especially those estimated numerically.

APPENDIX
According to the assumption that ∆r is the minimum distance between the roots, the
points in set S cannot be located any closer. However, for higher orders of the root or
singularities (or at a branch cut) the preliminary estimation process can generate sev-
eral candidate points a very short distance apart. This is a result of multiple crossing
of the curves CR and CI . In such cases, it is convenient to eliminate some redundant
points from S. To cope with this problem, the following routine can be applied.

(1) For each point sm, a weight wm = 1 is assigned.
(2) For each pair of points si and sj , a distance di,j = |si − sj | is calculated.
(3) If the smallest distance di,j is greater than ∆r the algorithm stops. Otherwise, both

points are replaced by sk =
siwi+sjwj

wi+wj
(wk = wi + wj) and the algorithm returns to

step (2).
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