
Abstract—This paper presents a projection basis compression
technique for generating compact reduced-order models (ROM)
in the FE analysis of microwave devices. In this approach
redundancy is removed from the projection basis by means of
the proper orthogonal decomposition technique applied to the
projected system of linear equations. Compression allows for
keeping the size of a reduced-order model as small as possible
without compromising ROM’s accuracy. Effectiveness of the basis
compression technique, including memory and time consumption
as well as the size of the resultant ROM, are discussed for both
global and local model-order reduction schemes.

Index Terms—finite-element method, model-order reduction

I. INTRODUCTION

Model-order reduction (MOR) is one of the most commonly
used techniques to reduce the simulation time of the electro-
magnetic problems, analyzed by means of discrete methods,
such as Finite Difference (FD) or Finite Element (FE). The
main idea of MOR is to approximate the original complex
model with a much simpler (reduced) one which preserves
the original input-output behavior of the analyzed structure.
The reduction approaches can be applied both to the global
system of equations (so called: global reduction) [1]–[5] and
to the selected subregions of the computational domain (local
reduction, macromodeling) [6], [7].

In order to obtain reliable reduced-order models (ROMs) in
the wide-band frequency simulations, multi-point MOR meth-
ods have to be applied [1]–[3]. They assume that the projection
basis is generated at many expansion (frequency) points in
which the moments of the reduced and the original transfer
functions are matched up to the specified order. Although
such an approach guarantees very high accuracy in the whole
frequency band, the projection basis and consequently ROM
in this case may eventually become very large, especially
when the multiport structures are considered. In effect, the
efficiency of the overall reduction process can be significantly
deteriorated. Very compact ROMs are obtained with the Re-
duced Basis Method (RBM) [8]. Here the projection basis is
found from snapshots of the solutions. Even though ROM
produced by RBM is small, its construction requires more
matrix factorizations than what is needed in moment-matching
techniques.

A problem of a large projection basis occurs when the goal
of the simulation is to obtain a parametrized ROM which is
valid in the specified geometry and/or material parameter space
P . In this case the projection basis Q is composed of several
projection subbases Qi, where i = {1, 2, . . . ,m}. Each of
them is evaluated in one of the properly selected m points from
the space P . However, if the high accuracy of the parametrized
ROM is required, the number of vectors in the basis can be
unnecessarily large.

To ensure that the size of the projection basis (and con-
sequently the ROM) is kept small without compromising
the accuracy of the ROM we propose a basis compression
technique. The basis compression is an additional projection
step that finds the best linear combination of the original
projection vectors for a given problem. In this paper we explain
the compression technique and provide a deeper insight into
the details of this operation in both global and local model-
order reduction approaches. We consider memory and time
consumption, as well as the accuracy of the reduction and
compression process.

II. THEORY

The N -dimensional Finite Element discretization of a time-
harmonic Maxwell’s equations for a dielectric-loaded, lossy
structure Ω excited through P ports with Mi modes at the i-th
port leads to the following second-order input–output system
of equations (the details of the formulation are provided in
[9]):

(Γ + sG + s2C)E(s) = sBI,

U = BTE(s), (1)

where Γ, G,C ∈ Cn×n are the FEM system matrices, B ∈
Cn×m denotes a normalized port selection matrix, E(s) ∈
Cn×m is a matrix of unknown FEM coefficients, I , and U
are the vectors of amplitude of the normalized currents and
voltages, respectively, s = jω/c is the complex variable, c
is a speed of light, and m is the total number of excitation
modes.
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Due to the model-order reduction process applied to the
original FEM system of equations, one obtains the so-called
reduced-order model (ROM) with much smaller number of
variables, comparing to the original model (r � n):

(ΓR + sGR + s2CR)ER(s) = sBRI,

U = BT
RER(s), (2)

where the reduced matrices: ΓR, GR, CR ∈ Cr×r and BR ∈
Cr×m are computed by the projection of the original FEM
matrices on a subspace spanned by the vectors of the reduced
basis Q:

ΓR = QT ΓQ,

GR = QTGQ,

CR = QTCQ,

BR = QTB (3)

and the original solution matrix is approximated by the one
obtained by means of the ROM, as follows:

E(s) ≈ QER(s). (4)

Note that the basis Q can be obtained by means of one of the
(possibly multipoint) moment-matching reduction approaches,
applied both to the global FEM system of equations [1]–[5]
or to the selected subregions of the computational domain [6],
[7]. What is more, Q can be used to obtain parametrized ROM,
valid in the specified geometry and/or material parameter space
P . To this end, Q has to be composed of several projection
subbases Qi (where i = {1, 2, . . . ,m}), evaluated in selected
points of the parameter space P .

The reduction approaches produce projection basis which
span the solutions in all frequencies in the band of interest.
However, in all above cases the number of vectors in the
projection basis may become very large and may contain
redundant vectors that are not needed to span the solution,
especially when the wide frequency band is considered. The
redundancy in the projection basis can significantly influence
the efficiency of the reduction approach. In order to keep the
size of the projection basis as well as the size of the ROM as
small as possible, we propose to utilize the operation called
basis compression.

A. Basis compression

The goal of the basis compression operation is to find an
optimal subspace of span{Q}, which is sufficient to represent
the solution vectors for all frequencies in the band of interest,
in such a way that the redundant vectors are removed from
span{Q}. To this end, we perform the proper orthogonal
decomposition (POD [10]) on eq. (2), which means that the
reduced system of equations is solved for all considered D
frequency points s1, s2, ..., sD. All snapshots are stored in the
matrix WR:

WR = [ER(s1), ER(s2), . . . , ER(sD)] . (5)

Since the number of unknowns in (2) is much smaller compar-
ing to the original system of equations, matrix WR is generated
extremely fast. Next, we remove the redundancy from WR by
means of the singular value decomposition (SVD) [11] and in
effect we obtain matrix W̃R ∈ Cr×w, with w ≤ r:

W̃R = SVD(WR), (6)

which spans the solution space. Finally, the original projection
basis Q is projected onto a subspace spanned by the vectors
of W̃R:

Q̃ = QW̃R. (7)

with Q̃ ∈ Cn×w. It is seen that Q̃ is a linear combination of
the projection vectors generated by a MOR scheme. This new
basis is used to project the original FEM matrices. This yields:

Γ̃R = Q̃T ΓQ̃,

G̃R = Q̃TGQ̃,

C̃R = Q̃TCQ̃,

B̃R = Q̃TB, (8)

where matrices Γ̃R, G̃R, C̃R ∈ Cw×w and B̃R ∈ Cw×m with
w ≤ r.

Similarly, the same procedure can be used to perform basis
compression on the local projection basis in macromodeling
technique. To this end, operations Eq. (5)-(7) are applied to a
local system of equations. For the detailed description see [6].

In effect, the number of vectors in the projection basis can
be considerably lowered, without devoting the accuracy of the
ROM.

III. NUMERICAL RESULTS

In this section, the efficiency of the proposed basis com-
pression technique is discussed. Two examples are considered:
a microstrip branch coupler analyzed by means of Reliable
Greedy Multipoint Model-Order Reduction technique (RGM-
MOR) [2] and a dual-mode waveguide filter analyzed using
local parametrized macromodeling technique [6]. As a FEM
simulation we use InventSim [12].

A. Microstrip coupler

The geometry of the analysed coupler is depicted in Fig. 1
(all geometry dimensions all detailed in [13]). Scattering
parameters computed at 476 frequency points in the frequency
band 0.5-10 GHz are shown in Fig. 2. The FEM formulation
resulted in the system of equation with ca. 1.15 million
unknowns. The target accuracy of the reduced-order model has
been set to 10−6. A Reliable Greedy Multipoint Model-Order
Reduction (RGM-MOR) technique was applied to compute
the projection basis for fast frequency sweep. In RGM-MOR
[2] moments of the transfer function are matched at many
expansion (frequency) points selected in an automated way
based on an error estimator. Subsequent block moments at
each expansion point are added to the projection basis until
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Fig. 1. Three-section branch-line microstrip coupler geometry.
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Fig. 2. Scattering parameters of the microstrip coupler.

the error in a chosen sub-band drops below assumed tolerance.
Next, the projection basis is compressed and new expansion
point is chosen.

In the example considered above RGM-MOR technique
with basis compression resulted in the reduced order model
with 95 unknowns. In the course of the greedy algorithm,
13 expansion frequency points were chosen. The results of
the RGM-MOR with compression were compared with the
standard RGM-MOR approach (with no compression) and
the Reduced Basis Method [8] (RBM). Fig. 3a shows the
maximum value of the actual and estimated error as a function
of the number of expansion points for three reduction schemes.
It can be seen that the actual and estimated errors are well
correlated in all three cases. The size of the reduced-order
model as a function of number of expansion points is shown in
Fig. 3b. It can be seen that the RGM-MOR with compression
is a compromise between RBM and standard RGM-MOR
in terms of the number of FE system matrix factorizations
(equal to the number of expansion points) and the size of
the projection basis. The reduced basis method (RBM) yields
the smallest size of the basis (88 vectors), but requires as
many as 22 sparse matrix factorizations (expansion points).
RGM-MOR needs only 6 factorizations but the final size of
the reduced order model is 168. Applying compression every
time new expansion point is added results in the ROM size
of 95 which is almost as small as RBM, while the number of
factorizations is about half of that needed by RBM.

B. Dual mode filter

In this example, the basis compression technique was com-
bined with parametrized local model-order reduction scheme
[6] to speed up the analysis of dual mode waveguide filter. The
structure was partitioned into 5 subdomains – the geometry

0 5 10 15 20

no. of expansion point

10
-10

10
-5

10
0

e
rr

o
r

RGM-MOR

RBM

RGM-MOR with compression

(a)

0 5 10 15 20

no. of expansion point

0

50

100

150

200

s
iz

e
 o

f 
th

e
 R

O
M

RGM-MOR

RBM

RGM-MOR with compression

(b)

Fig. 3. Comparison of RBM, RGM-MOR and RGM-MOR with compression.
a) Estimated error (solid line) and actual error (dotted line) as a function of
number of expansion points. b) Size of the reduced-order model as a function
of number of expansion points.

of the filter and its segmentation is shown in Fig. 4. Local
parametric MOR was applied in three subregions containing
tuning screws and a cross-shaped iris. The idea behind local
parametrized MOR is that the projection basis Qi for reduction
in subdomain Ωi is formed by concatenating several bases
created for different geometries of the region Ωi. In this case,
three bases were used to create parametrized local ROMs
in each of three subregions. The size of the original ROM
obtained by a local MOR technique was 3876. Compression
reduced this number to 1685. Since reduced FE matrices
are composed of several macromodels, and each macromodel
is a dense matrix, operations such as error estimation and
solving become time and memory consuming. In terms of CPU
time, achieving compression factor of two, results in 8-fold
reduction of the matrix factorization time. Compression is also
beneficial for CPU memory saving. In the example considered
above, basis compression resulted in the reduction of number
of nonzero elements in FE matrices from 4.3 million to 730
thousand and savings in the CPU memory needed to store
them from 72 MB to 11.5 MB. What is important, basis
compression preserves the accuracy of the ROM - in Fig.
5 the filter response obtained with basis compression and
characteristics computed without compression are presented
- very good agreement is observed.

IV. CONCLUSION

This paper has presented a basis compression technique and
its application in different model order reduction schemes,
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Fig. 4. Dual mode filter geometry and its segmentation. The dimensions can
be found in [8].

11.6 11.65 11.7 11.75 11.8 11.85 11.9 11.95 12

frequency (GHz)

-60

-50

-40

-30

-20

-10

0

|s
1
1
|,
 |
s

2
1
| 
(d

B
)

|s
11

|

|s
21

|

Fig. 5. Scattering parameters of dual-mode waveguide filter – local reduction
without basis compression (solid line) and with compression (circles).

including global approach (RGM-MOR) for wideband fast-
frequency sweep and local (macromodeling) for a parametric
ROMs constructed with several concatenated bases. Such
aspects as memory usage and time of analysis involving basis
compression have been discussed. The presented results shows
that basis compression allows for reducing the memory and
time consumption without compromising the accuracy of the
ROM.
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