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Abstract
Natural convection is a complex environmental phenomenon that typically occurs in engineering settings in porous structures. 
Shear thinning or shear thickening fluids are characteristics of power-law fluids, which are non-Newtonian in nature and 
find wide-ranging uses in various industrial processes. Non-Newtonian fluid flow in porous media is a difficult problem 
with important consequences for energy systems and heat transfer. In this paper, convective heat transmission in permeable 
enclosures will be thoroughly examined. The main goal is to comprehend the intricate interaction between the buoyancy-
induced convection intensity, the porosity of the casing, and the fluid’s power-law rheology as indicated by the Rayleigh 
number. The objective is to comprehend the underlying mechanisms and identify the ideal conditions for improving heat 
transfer processes.The problem’s governing equations for a scientific investigation are predicated on the concepts of heat 
transport and fluid dynamics. The fluid flow and thermal behavior are represented using the energy equation, the Boussinesq 
approximation, and the Navier–Stokes equations. The continuity equation in a porous media represents the conservation 
of mass. Finite Element Analysis is the numerical method that is suggested for this challenging topic since it enables a 
comprehensive examination of the situation. The results of the investigation support several important conclusions. The 
power-law index directly impacts heat transmission patterns. A higher Rayleigh number indicates increased buoyancy-
induced convection, which increases the heat transfer rates inside the shell. The porosity of the medium significantly affects 
temperature gradients and flow distribution, and it is most noticeable when permeability is present. The findings show how, 
in the context of porous media, these parameters have complicated relationships with one another.
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List of symbols
u, v  Velocity components
ρ  Fluid density
p  Fluid pressure
g  Gravity
�  Thermal diffusivity
β  Thermal expansion coefficient
T  Fluid temperature
n  Power-law index
Da  Darcy parameter

Ra  Rayleigh number
Pr  Prandtl number
K.E.  Kinetic energy

Introduction

The phenomenon of natural convection heat transfer is an 
important part of engineering and industry, finding exten-
sive application in various fields like nuclear energy [1, 2] 
and electronics [3–6]. For Cooling, solar energy, geophysics, 
and other industrial systems spanning numerous industries. 
The low thermal conductivity of conventional fluids, such 
as a mixture of water, oil, and ethylene glycol, is a major 
obstacle to improving heat transmission in these engineering 
systems. Studies in [7, 8] investigated the effects of eccen-
tricity and Rayleigh number on heat transfer through natural 
convection in a fluid enclosed by two horizontal isothermal 
cylinders and nanofluids. It is crucial to fill enclosures with 
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materials that have extensive properties. Before the intro-
duction of the non-Newtonian fluid rheology idea, many of 
the cavities were filled with air and water. As material test-
ing equipment has advanced, non-Newtonian fluid. In that 
fluids that challenge the laws of motion of viscosity rules 
are now routinely recommended due to their significant 
practical value in industrial and mechanical processes. In 
an industrial setting, non-Newtonian fluid analysis is more 
significant due to the nonlinear dependency of stress and 
strain, but it still requires particular study. The analysis of 
non-Newtonian fluids in enclosures is essential to many 
industries, such as nuclear reactors, food processing, oil 
drilling, polymer manufacturing, geophysical systems, and 
electronic cooling systems. Ozoe and Churchill [9] might 
have been the first to demonstrate the hydrodynamic prop-
erties of a power-law fluid in a shallow horizontal cavity 
by examining the recirculation produced in the fluid flow 
zone. In their study, the authors of [10] use a finite differ-
ence method to simulate Rayleigh-Bénard convection of 
dependent power-law fluids in a square cavity. The cavity 
was heated from the bottom and cooled from the top with 
uniform heat fluxes. Their aim was to investigate the two-
dimensional stable state of the system. The transient flow of 
a power-law fluid in a vertical cavity and the concurrent heat 
transfer from natural convection were studied by Kim et al. 
in their study [11]. The author of [12] uses both numeri-
cal and experimental approaches to study the steady-state 
natural convective fluid flow and heat transfer in a vertical 
rectangular enclosure partially filled with a vertical layer of 
fluid-saturated porous media. The influence of surface wavi-
ness on natural convective heat transfer from an isothermal 
surface in a porous Darcian fluid-saturated enclosure was 
quantitatively investigated in [13] using the finite element 
method on a stepped non-uniform mesh system. The natural 
convective heat transfer in a cavity with a porous media and 
a wall of sinusoidal vertical waves is studied numerically. In 
[14], the vertical walls are isothermal; while, the horizon-
tal straight walls are still adiabatic. The significance of the 
heated/cooled walls’ thermal boundary conditions for heat 
transfer and entropy generation inside a porous enclosure 
that is heated from below is examined by the author in [15]. 
Using nonlinear thermal radiation, modified heat and mass 
fluxes, slip condition, and the Cattaneo–Christov heat flux 
model applied to a Riga plate, [16] performs a mathematical 
analysis of a three-dimensional Eyring–Powell nanofluid. It 
presents comparisons between bvp4c results and shooting 
technique with graphical and numerical illustrations of key 
parameters. Considering both symmetric and asymmetric 
conduit configurations in physiological models, [17] pre-
sents a novel mathematical analysis of Cilia propulsion for 
a non-Newtonian Couple Stress fluid with electroosmosis 
and heat transfer. It provides exact solutions, graphical illus-
trations, and a thorough comparison study that highlights 

higher flow values, pressure rise, and pressure gradient in 
asymmetric conduits. To improve heat transfer, decrease 
entropy generation, and reconcile the theoretical model with 
experimental results, [18] examines engine oil-based hybrid 
nanofluid flow past a nonlinearly stretching surface. It does 
this by presenting a comparative study on slip conditions, 
using a variable magnetic field, and validating results using 
a modified homotopy analysis approach. It also shows that 
entropy in engine oil flow can be optimized with specific 
nanoparticle concentrations. Using ternary nanomaterials 
under the shape parameters of nanoparticles, [19] suggests a 
novel way to increase the efficiency of annular fins in natural 
convection, to improve their performance for systems such 
as injector pumps, thermal engineering, and electronics.

Significance of the project

Because of the novel connections made in this work, no 
prior research on the issue of natural convective heat transfer 
involving a power-law fluid in a permeable enclosure has 
been done. The process involves defining the problem, 
mathematical modeling, mesh generation, boundary 
conditions, material property specification for the power-
law fluid, post-processing for data analysis, validating 
results, and potentially executing sensitivity analyses and 
optimization in order to solve the governing equations 
using the FEA technique. With the use of sophisticated 
FEA software, the objective is to comprehend and optimize 
heat transfer inside the enclosure simulations. The research 
has been split into five categories as a result, each of which 
offers a range of potential fixes. The details of the current 
problem are presented in Part 2. Meanwhile, the numerical 
method is summarized in Section “Results and Discussion”. 
Sect.  “Comparison of heat transfer between different 
geometries” discusses the findings. This study is concluded 
in Sect. “Conclusions”.

Assumptions of the current problem

The assumptions and requirements for the mathematical 
model are as follows:

• Heat transfer rate
• Isothermal boundaries
• Homogeneous and Isotropic Material properties
• Prandtl number approximation
• Darcy number and Permeability
• Boussinesq approximation
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Mathematical model

This model deals with the exciting relationship between heat 
transfer and fluid dynamics when power-law fluids are pre-
sent in a porous enclosure. Assume that a time-independent, 
laminar power-law flow is saturated within a pyramid, like 
a triangular enclosure. The applicability of our problem is 
further illustrated by the placement of a cold obstacle in the 
triangle’s center, which has a radius of 0.05. All the bounda-
ries are non-slip, even though the top wall and the other 
walls are not heated uniformly. For this problem, the Finite 
Element Method is the most efficient numerical method. The 
main reason for choosing the Finite Element Method (FEM) 
for this extensive analysis is that it can effectively simu-
late intricate structures with non-uniform geometries and 
diverse material compositions. FEM is an excellent tool for 
precisely solving a wide range of engineering issues, includ-
ing fluid dynamics, thermal, and structural assessments. It 
is a chosen numerical technique because of its ability to 
handle dynamic scenarios, adjust to real-world settings, and 
achieve precision through mesh refinement. As a flexible and 
potent tool for a broad range of engineering simulations, 
FEM effectively handles complex geometries and mate-
rial heterogeneity, in contrast to certain other approaches. 
By representing the density included in the buoyancy term 
and accounting for  the role of natural convection in the 
flow regime, the Boussinesq approximation keeps all physi-
cal quantities at rest. A physical diagram of the issue is 
presented in Fig. 1.

The governing equations listed below offer a solid 
foundation for examining the intricate physics at play. A 
full understanding of the system behavior is provided by 
the dimensional and non-dimensional parameters, such as 

the Rayleigh number (Ra ), Prandtl number ( Pr ), and Darcy 
number ( Da).

The dimensional form of governing equations of the 
problem are as follows:

The transformations used for non-dimensionalization of the 
governing equations are:

X =
x

L
 , Y =

y

L
 , U =

uL

�

,V =
vL

�

 , P =
pL2

��
2
,� =

T−Tc

ΔT
,Δ =

qL

k
,

The non-dimensionalized form of governing equations of 
the problem are as follows:

The dimensional form of boundary conditions are as 
f o l l o w s :  u(x, 0) = 0 = v(X, 0), T(X, 0) = Tk − Tc 

o r  fu(x, y) = 0 = v(x, y), T = Tc  a t  x = y  a n d 
0 ≤ x ≤ 0.5, 0 ≤ y ≤ L  ,  u(x, y) = 0 = v(x, y), T = Tc  a t 
L − x = y and 0.5 ≤ x ≤ L, 0 ≤ y ≤ L , u = v = T = 0 , for 
cold cylinder.

The non-dimensionalized form of boundary conditions are 
as follows:

U(X, 0) = 0 = V(X, 0), �(X, 0) = sin(�x), and 0 ≤ X ≤ 1,

(1)
�u

�x
+

�v

�y
= 0,

(2)
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)
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+ �
�x

(
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+ �
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(0,0) (0.5,1) (1,0)

Fig. 1  Geometry of the problem

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


 M. Rehman et al.

U(X, Y) = 0 = V(X, Y), � = 0 at X = Y and 0 ≤ X, Y ≤ 0.5

,
U(X, Y) = 0 = V(X, Y), � = 0  a t  1 − X = Y  a n d 

0 ≤ Y ≤ 0.5, 0.5 ≤ X ≤ 1,
U = V = � = 0, for the cold cylinder.
Dimensional Apparent Viscosity:

where �a , which is previously defined as the apparent 
dimensionless viscosity, is used.

Dimensionless Apparent Viscosity:

Dimensionless Parameters:
Ra =

g�ΔTL2n+1

k�n
 , Pr = kL2n−2

��
2−n

 , Da = km

L2

Results and discussion

This model’s practical importance stems from its immediate 
uses and promising future developments. Solving this 
problem has immediate benefits and practical ramifications 
for many different domains. The study’s conclusions may 
open the door to novel technologies, better procedures, or 
deeper comprehension, presenting encouraging opportunities 
for developments in linked fields and influencing the course 
of upcoming studies and applications.

(9)�a = k

[

2

(

(
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)2

+

(

�v

�y

)2
)

+

(

�v
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)2
]
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2

.

(10)�
∗
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[

2

(

(
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)2
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(

�V

�Y

)2
)

+

(

�V

�X
+

�U

�Y

)2
]

n−1

2

.

Meshing

Figure 2a–b display different levels of refinement that illus-
trates the discretization of the fluid flow domain. As can be 
seen, triangular and quadratic elements make up the discre-
tization, and P2 − P1 elements are indulged.

Table  1 shows the degree of freedom and element 
distribution in the three-sided domain at various 
enhancement levels. Discretization of the domain is a 
primary technique for obtaining results with the FEM 
scheme. The refinement levels are displayed in this 
tabulation from extremely coarse to extremely fine, showing 
that boundary and domain elements increase as refinement 
levels rise.

Velocity and temperature profiles

The outcomes of the calculation for the thermal and velocity 
profiles in a power-law fluid are shown below.

Figure 3a–c use streamlines and velocity plots against 
various power-law index ( n ) magnitudes for showing how 
the velocity patterns change. Figure 3a shows the fluid flow 
behavior against with finer mesh the power-law index (n ) in 
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Fig. 2  Representation of extra coarse and normal refinement levels of the structure

Table 1  [16]. Variation in degrees of freedom and no. of elements at 
different refinement levels

Refinement level Number of elements Degrees of 
freedom

Extremely Coarse 220 2025
Extra Coarse 412 3553
Coarser 609 5096
Coarse 1183 9387
Normal 1547 12,103
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the shear thinning case ( n = 0.5 ), where the circular flow 
pattern is determined. The power-law fluid shear thinning 
behavior is represented by the fixed n = 0.5 in this figure, 
which causes the viscosity magnitude to be minute and the 
fluid particles to diffuse in the shape of a circle while mov-
ing faster. However, for n = 1 and n = 1.5, the deformation 
in the Momentum profile pattern is interpreted. Refer to figs. 
(3a–3c).

Figure 4a–c shows the momentum circulation against 
the Rayleigh number (Ra) . The flow rate shows a noticeable 
variation as (Ra) increases with finer meshing. This phenom-
enon is caused by a temperature gradient that is created in 
the flow field as the Rayleigh number ( Ra) increases, produc-
ing buoyancy forces. These resilient forces cause the parti-
cles to disperse more, which in consequently causes a flow.

Figure 5a–c, shows velocity plots and streamlines that 
display how the velocity distribution varies in relation to 
the Darcy number (Da) under a constant Rayleigh num-
ber (Ra) with finer mwshing. Above figures represent the 
fluid velocities under various Darcy number conditions. 
Whereas the velocity plots present the extent and direction 

of the fluid velocity at various points, the streamlines dis-
play the paths followed by the fluid particles. A better 
understanding of the characteristics of heat transfer and 
fluid dynamics at values of Ra can be obtained by analyz-
ing the properties of Darcy number on the current patterns 
and velocities of the system.

From the displayed sketches in Fig. 6a–c, sharpness in 
the temperature profile can be obtained by increasing (Ra). 
As the non-uniform heating is now changing as a function 
of � = Sin(�x), parabolic shape isothermal curves are first 
obtained at Ra = 103 , and parabolic heat formation is then 
achieved by growing the magnitude of (Ra ). The fact that 
( Ra) increases the inertial forces between fluid particles, 
which are dependent on changes in temperature, further 
demonstrates the increase in heat transport with ( Ra).

 Figure 7a–d provides an interpretation of the temperature 
distribution variation with respect to Prandtl number ( Pr ) 
with finer meshing. Temperature increases are noted in rela-
tion to exceeding magnitudes of ( Pr ). Since the momentum 
to viscous diffusion rates ratio is known as the Prandtl num-
ber ( Pr ). Therefore, as (Pr ) increases, fluid particle kinetic 
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energy rises and diffusivity increases. The temperature of 
fluid particles rises as a result of this increase in kinetic 
energy ( K.E ), and heat energy diffuses swiftly.

Table graphs

Table 2. and Fig. 8. depict the disparity of kinetic energy 
against various extents of (n) ranging from 0.5 ≤ n ≤ 1.5 . In 
this case, n < 1 specifies a shear thinning case, n = 1 indi-
cates a Newtonian case, and n > 1 indicates a shear thicken-
ing case. The data illustrates that shear thinning fluid has a 
larger magnitude of (K.E) than Newtonian and shear thick-
ening fluids. A decrease in kinetic energy is observed as (n) 
increases due to an increase in fluid viscosity and a change 
in the fluid mode from shear thinning to thickening behavior. 

There is consequently a reduction in (K.E) and less molecu-
lar movement.

Table 3. And Fig. 9. Illustrate how the Rayleigh number 
( Ra ) affects the K.E. of particles in the flow region. Three 
distinct cavity locations are taken into consideration in the 
figure: x = 0.3 , close to the cavity’s left corner; x = 0.5 , 
which is in the center of the base; and x = 0.8 , which is 
at the base’s right corner. The sketch suggests that as ( Ra ) 
increases, (K.E) rises as well. This fact is explained by the 
fact that as (Ra ) increases, momentum is created in the fluid 
flow and inertial forces overpower viscous forces. Kinetic 
energy rises sequentially (Table 4).

Table 5 shows how changes in the Rayleigh number 
(Ra), Prandtl number ( Pr ), and Darcy number (Da) affect 
the Nusselt number (Nu). the data shows different value 
for Ra,Pr,Da , and the related Nusselt number. The Nusselt 
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number shows a wide range of values for different combina-
tions of suggestion parameters.

 Figure 10 shows a line graph that displays the variation in 
kinetic energy (K.E.) at different Darcy numbers ( Da) with 
an exponent (n) of 0.5. The graph shows the relationship 

between fluid dynamics and porous media by displaying the 
variation in kinetic energy across a range of Da values.

Comparison of heat transfer 
between different geometries

Figure  11  focuses to compare heat transfer of  vari-
ous geometry. The momentum profiles, which show how 
momentum varies within the system under these spe-
cific conditions, provide significant insight into the fluid 
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Fig. 7  Variation in thermal profile against (Pr) at Da = 0.00001

Table 2  Kinetic energy for (n) at Da = 0.0001, Ra = 1000, and Pr = 15

Power-law index 
(n)

Kinetic Energy (K.E)

x = 0.3 x = 0.5 x = 0.8

0.5 0.0044182 0.0016307 0.0061103
1 0.0012249 0.00042084 0.0017637
1.5 0.00084214 0.00029093 0.0012133
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Table 3  Kinetic energy for (Ra) at Da = 0.0001, n = 0.5, and Pr = 15

Rayleigh number 
(Ra)

Kinetic Energy (K.E)

x = 0.3 x = 0.5 x = 0.8

1000 0.19469 0.076273 0.27374
10000 35.484 35.489 40.833
100000 683.83 1083.8 603.00
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Fig. 9  Line graph of K.E. at various (Ra) at Da = 0.00001

Table 4  Kinetic energy for (Da) at n = 0.5, Ra = 1000, and Pr = 15

Darcy (Da) Kinetic Energy (K.E)

x = 0.3 x = 0.5 x = 0.8

0.00001 0.0012254 0.00042100 0.0017643
0.0001 0.0018283 0.00071833 0.0025678
0.001 0.0042165 0.0037468 0.0051928

Table 5  Variation in Nusselt number against (Da), (Ra) and (Pr)

Rayleigh number 
(Ra)

Prandtl number 
(Pr)

Darcy (Da) ,.,Nusselt 
number 
(Nu)

1000 3.1688
10000 5 8.4102
100000 20.049

15 7.0083
100 25 7.9518

35 8.6671
0.00001 2.9281

100 5 0.0001 3.0950
0.001 5.0730
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dynamics and heat transmission properties across a range 
of geometric shapes in the above figures.

 Figure 12 presents of the comparison is heat transfer 
between two different geometries. The temperature profile 
provides more than just an overview of the system tem-
perature distribution; it also clarifies the features of heat 
transfer and highlights the differences between the differ-
ent geometries.

Conclusions

This paper investigates power-law fluid flow behavior 
in a triangular cavity using mathematical modeling of 
fluid rheology using partial differential equations. The 
employment of the finite element method, which uses 
both rectangular and triangular elements for domain 
discretization, is justified by the intrinsic complexity of the 
physical domain. Thermal contours, pressure, temperature 
distribution, and flow patterns are all thoroughly examined 
in the analysis. Non-uniform temperature differences 
and variable parameters like the Darcy effect (Da), 
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Rayleigh (Ra), and Prandtl (Pr) numbers are routinely 
taken into account. Among the important conclusions 
are the following: greater Rayleigh numbers provide 
more complex flow patterns and better velocity profiles, 
and they also raise heat transfer coefficients. Power-law 
fluid dynamics in triangular cavities is well understood 
thanks to the study’s use of both quadrilateral and triangle 
elements for domain discretization.
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