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Abstract: The design of concrete mixtures is crucial in concrete technology, aiming to produce
concrete that meets specific quality and performance criteria. Modern standards require not only
strength but also eco-friendliness and production efficiency. Based on the Three Equation Method,
conventional mix design methods involve analytical and laboratory procedures but are insufficient
for contemporary concrete technology, leading to overengineering and difficulty predicting concrete
properties. Machine learning-based methods offer a solution, as they have proven effective in pre-
dicting concrete compressive strength for concrete mix design. This paper scrutinises the association
between the computational complexity of machine learning models and their proficiency in predict-
ing the compressive strength of concrete. This study evaluates five deep neural network models of
varying computational complexity in three series. Each model is trained and tested in three series
with a vast database of concrete mix recipes and associated destructive tests. The findings suggest
a positive correlation between increased computational complexity and the model’s predictive ability.
This correlation is evidenced by an increment in the coefficient of determination (R?) and a decrease
in error metrics (mean squared error, Minkowski error, normalized squared error, root mean squared
error, and sum squared error) as the complexity of the model increases. The research findings provide
valuable insights for increasing the performance of concrete technical feature prediction models
while acknowledging this study’s limitations and suggesting potential future research directions.
This research paves the way for further refinement of Al-driven methods in concrete mix design,
enhancing the efficiency and precision of the concrete mix design process.

Keywords: applied machine learning; buildings; cement; concrete mix design; concrete strength
prediction; concrete; construction industry; data mining; green building; innovation; sustainability;
sustainable development; sustainable

1. Introduction

The field of concrete mix design has seen significant advancements in recent years with
the integration of machine learning techniques. The ability of these models to predict the
compressive strength of concrete has the potential to revolutionise the construction industry
by providing more efficient and accurate methods for mix design. However, the prediction
accuracy of these models depends on many factors, including the computational complexity
of the model itself. This study aims to investigate the influence of computational complexity
on the prediction accuracy of concrete compressive strength in machine learning models for
concrete mix design. The findings of this research will provide insights into the trade-off
between model accuracy and computational efficiency and will guide the development of
more effective machine learning models for concrete mix design in the future. The concrete
mix composition consists of cement, water, a combination of fine and coarse aggregates,
and supplementary materials referred to as additives and admixtures, where additives are
incorporated during the cement manufacturing stage, whereas admixtures are introduced
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during concrete mix preparation. These substances are formulated to enhance the chemical
properties and performance of concrete, specifically with regard to compressive strength,
durability, and workability. There are various types of additives and admixtures [1-4],
including accelerators, substances that improve fresh concrete properties [5], materials
that enhance durability, fibres that reinforce concrete [6], set-retarding admixtures, and
water-reducing agents.

Properly designing a concrete mixture is a crucial aspect of the construction process,
with multiple factors to consider. It should be designed with economy in mind, ensuring
that the desired properties can be achieved using the most cost-effective raw materials. The
mixture must also be optimised for the specific technology used in the construction process,
considering elements such as workability and setting speed. Environmental conditions,
such as temperature [7,8], precipitation, distance away from the construction area, as well
as the volume of traffic, must also be considered when designing the concrete mix. The
final composition of the mix is determined by construction specifications, such as the
desired compressive strength or resistance to environmental elements such as chloride
ingression and, increasingly, ecological considerations, such as low emissivity. To address
environmental concerns, various solutions exist to reduce concrete carbonation, including
admixtures of graphene nanoparticles. Designing a concrete mix involves selecting the
proper proportions of primary and secondary components to achieve the desired properties.
Once the mix is prepared, it is conveyed to the construction location and poured into the
formwork, where it undergoes the progression of hardening and increasing strength. The
hardening process is initiated by the cement’s hydration, which involves a heat-releasing
chemical reaction that occurs upon contact between cement and water [9]. The reaction
initiates the formation of various components, such as tobermorite gel [10], hydroxide, as
well as additional components, which improve the bonding between coarse and fine aggre-
gates. During this procedure, the hydration products steadily accumulate on the cement
grains and replace the water in the mixture. The ultimate hydration stage occurs when all
the water molecules are fully integrated, or no unreacted cement is left in the mixture. After
the hydration process begins, hardened concrete acquires some of its compressive strength
within a few days, and most of its compressive strength is attained after roughly 28 days
(although some types of concrete may take longer to reach their full strength). The quan-
tity of water required to hydrate the cement completely ranges from 20% to 25% of its
weight, excluding water trapped in pores. However, specific models suggest that 42% of
the cement’s weight is needed for proper hydration [11]. The design methods for concrete
mixtures currently employed in engineering practice have been derived from solutions
developed more than a decade ago and rely on estimating the bending strength of the con-
crete mortar. Implementing these techniques in practice might be a tedious and inefficient
process that does not consider the intricate chemical composition and variability of modern
concrete mixes. The current challenges in the field at hand necessitate novel technological
solutions. Machine learning-based methods could offer a promising avenue, as they have
demonstrated varying degrees of success in predicting concrete compressive strength.

Machine learning, a prominent subfield of artificial intelligence, has garnered signif-
icant attention in recent years due to its vast applications and transformative potential
across various domains. The fundamental concept behind machine learning involves em-
powering computers to acquire knowledge from data, recognize patterns, and arrive at
informed choices while minimizing the need for extensive human involvement. By utilis-
ing algorithms and statistical models, machine learning systems can adapt and improve
their performance over time, making them valuable tools for a multitude of tasks, rang-
ing from natural language processing [12] and image recognition [13] to real estate value
forecasting [14-17] and medical purposes [18]. The foundation of machine learning lies in
its ability to extract knowledge from data, which is achieved by employing various learning
paradigms. These paradigms include supervised, unsupervised, and reinforcement learn-
ing, each catering to different problem domains. Supervised learning, the most common
approach, involves training a model using labelled data with known outcomes, while
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unsupervised learning deals with discovering hidden structures in unlabelled data [19].
Reinforcement learning, on the other hand, focuses on learning through trial and error,
with a model receiving feedback in the form of rewards or penalties [20,21]. A plethora of
algorithms have been developed for each learning paradigm, and the choice of the algo-
rithm largely depends on the specific problem and the available data. Popular algorithms
include linear regression, decision trees, support vector machines, neural networks, and
clustering algorithms. These algorithms often involve tuning various parameters, known
as hyperparameters, to optimise the model’s performance. Machine learning has proven
particularly effective in addressing complex problems with high-dimensional data. This has
been facilitated by the advent of deep learning, a subset of machine learning that relies on
artificial neural networks with multiple layers. These networks, drawing inspiration from
the organization and operation of the human brain, excel in acquiring complex patterns
and representations from extensive datasets, making them suitable for a diverse array of
uses, including natural language processing and computer vision. The success of machine
learning in diverse fields has prompted researchers to investigate its potential for predicting
and optimising properties of materials, such as concrete.

In this paper, the influence of computational complexity on the performance of ma-
chine learning models used for predicting the compressive strength of concrete is explored.
This research assessed three sets of five deep neural network models (MLM1, MLM2,
MLM3, MLM4, MLM5), each with differing levels of computational complexity. Through
an examination of various machine learning models, the goal is to identify the trade-offs
between accuracy and computational efficiency. This could provide valuable insights into
the development of robust and cost-effective models for concrete mix design.

2. Concrete Mix Design and Machine Learning
2.1. Prediction of Concrete Technical Properties in Concrete Mix Design

Designing an optimal concrete mix is a multifaceted challenge requiring a compre-
hensive understanding of concrete technology and significant practical experience. The
primary objective of the design process is to determine suitable material compositions
to achieve the desired properties in fresh concrete during transportation and placement
and in hardened concrete. Distinct mechanical properties are anticipated at each stage of
the concrete fabrication process. Various characteristics influence concrete performance,
including plasticity, durability, compressive strength, and modulus of elasticity. The signifi-
cance of these properties may vary at different stages, for instance, adequate compressive
strength is crucial for the designed ultimate limit state, whereas sufficient durability is
critical in aggressive environments. Designing a mix with inappropriate specifications can
result in severe consequences. Therefore, fearing noncompliance with the necessary criteria,
concrete mix manufacturers often intentionally exceed the designed parameters [22].

Global corporate engineering practices related to concrete technology exhibit con-
siderable variation and notable commonalities. Within the European Union, the primary
standard governing concrete technology issues is EN 206 Concrete: Specification, Per-
formance, Production, and Conformity [23], while EN 1992-1-1: Eurocode 2: Design of
Concrete Structures [24] provides guidelines for the design of concrete structures. Both stan-
dards have national equivalents and appendices, such as DIN EN 206 [25] in Germany and
PN-EN 206 + Al: 2016-12 in Poland. Member states of the European Union employ diverse
methods for designing concrete mixes. In Poland, the Bukowski, Eyman, Klaus, Kopycinski,
and Paszkowski methods are predominantly used alongside the double-coating method.
Conversely, the Bolomey, Fuller, and 0.45 power gradation chart methods are more preva-
lent in the United States. Most of these approaches are derived from the “three equations
method” representing a combined experimental-analytical strategy for concrete mix design.

The approach that combines experimental and analytical methods involves determin-
ing the required quantity of ingredients through analytical calculations and confirming its
accuracy through destructive lab testing. This technique enables the researchers to establish
the proportions of cement, water, and aggregate by weight for a given volume, employing


http://mostwiedzy.pl

A\ MOST

Materials 2023, 16, 5956

4 of 36

three formulas related to consistency (1), strength (2), and impermeability (3). The con-
sistency formula (1) is integrated into the water requirement equation, which assists in
identifying the optimal consistency. The demand for water in cement and aggregate relies
on factors such as particle size, form, texture, ratio within the mixture, and the desired
consistency of the concrete blend. To account for the water needs of concrete additives and
admixtures, they are added to the aggregate or cement based on the particle dimensions.
Factors such as grain size, shape, surface roughness, composition proportion, and the con-
crete mix’s required consistency influence the cement-water and aggregate-water demand
indices created by Bolomey and Stern [26].

W = Cw:, 4+ K-wy, €))
C
fcm:A|:(W+P>—a:|/ (2)
C
fem = A1p (W + a), 3)
S—O—E—i-WZH)OO, (4)
Pc Pk

In Equation (1), W denotes the volume of water (in litres) present in one cubic meter
of concrete. The weight of cement in one cubic meter of concrete is represented by C
(in kilograms). The cement-water demand index w,, indicates the volume of water (in
litres per kilogram) required to be combined with one kilogram of a specific cement class
in one decimetre cubed. K represents aggregate weight in one cubic meter of concrete,
measured in kilograms. Lastly, the aggregate-water demand index wy, signifies the volume
of water (in litres per kilogram) needed to be added to one kilogram of a certain dry
aggregate fraction to achieve the desired consistency. The subsequent formula, called
the concrete compressive strength formula, exists in two variations: Bolomey and Feret.
This formula illustrates the connection between concrete compressive strength and factors
such as water—cement ratio, cement grade, and aggregate grade. The Feret and Bolomey
versions of the formula are represented by Equations (2) and (3), respectively. In these
equations, fc;; denotes the average concrete compressive strength in MPa, while A, A;,
and A are coefficients contingent upon the aggregate’s type and strength class and the
cement’s strength class. A is utilised when the cement-to-water ratio (C/W) is less than
2.5, and Aj; is employed when the ratio exceeds 2.5. In the equations, C signifies the cement
weight in 1 cubic meter of concrete (measured in kg), W represents the water quantity in
1 cubic meter of concrete (measured in L), p is the air content in one cubic meter of concrete
(measured in dm?3), and a is a numeric value that depends on cement and aggregate quality,
typically considered constant equal to 0.5. The a value is positive for water-cement ratios
greater than or equal to 2.5, while it is negative for ratios below 2.5. The Feret equation
is applicable when the aggregate strength is inferior to the grout strength, specifically
in the case of porous concrete. The water-tightness equation, designated as Equation (4),
asserts that the total volume of individual components in a concrete mix is equivalent
to the mix’s overall volume. In this equation, W signifies the water content in litres per
cubic meter (m?) of concrete, while C stands for the cement weight in kilograms per cubic
meter (m?) of concrete. Additionally, p. represents the density of cement in kg/dm3, K
denotes the weight of cement in kg per cubic meter (m?) of concrete, and py refers to the
aggregate density in kg/dm?3. Using the equations mentioned above, one can determine
the quantitative composition of a concrete mix, which consists of the quantities of cement,
water, and aggregate in a cubic meter (m?) of the mixture. The three equations method
does have specific boundary constraints, for instance, the porosity of the concrete mix must
not surpass 0.002 of the mix volume without air-entraining additives or 0.008 of the mix
volume when incorporating air-entraining additives.
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The process of creating a concrete mix design incorporates several steps such as formu-
lating initial suppositions, defining the necessary characteristics of both the fresh and cured
concrete, selecting and assessing the components of the mix, crafting the blend, testing
its properties in a lab setting, and finally devising a workable formula. In formulating
initial suppositions, key considerations include the concrete’s intended application and the
specific traits of the new structure. These factors include location, degree of reinforcement,
and the structural cross-section’s geometric properties. The primary attributes of interest
for fresh concrete are its bulk density, consistency, and air content. As for the hardened
concrete, we look at its frost and fire resistance and the grade of its compressive strength. It
is essential to scrutinise the technological process and evaluate the conditions under which
the concrete matures and the method used for compacting the fresh mix. The concrete expo-
sure class is a significant parameter, defining the level and nature of environmental stress
the material can withstand. Further specifications such as the concrete’s impermeability
need to be established. Parameters such as maximum aggregate size and mix workability
also need determination. The components of the concrete mix, including the appropriate
type of cement, water, and aggregate quality, should be selected and appraised as per
relevant standards. Following the mix design and lab tests, the final stage involves creating
a functional formula for one cubic meter of the concrete mix. One should also anticipate po-
tential recipe modifications due to the aggregate’s moisture content and adjust it according
to specific circumstances, such as the transportation vehicle’s capacity [27,28].

2.2. Machine Learning in Prediction of Concrete Technical Properties

Machine learning has permeated numerous scientific domains, showcasing its versatil-
ity and potency. It has a particularly large number of applications in the field of structural
and material engineering. Machine learning has found use within this branch of science
in areas such as structural health monitoring, crack detection, life-cycle cost assessment,
or prediction of diffusivity [29]. Particular interest has been shown in predicting technical
properties [30], most of which were devoted to concrete compressive strength prediction.

The complexities of predicting concrete strength through machine learning were first
articulated by Yeh et al. [31] in 1998. They experimented with seven input variables using
artificial neural networks (ANN) and linear regression to forecast the strength of high-
strength concrete. While their model was trained on a vast array of concrete samples, these
were not scrutinised for content. Their study considered concrete samples in the maturing
phase, including those as young as three days old, which may have led to skewed results.

In 2003, this subject was further refined by Seung-Chang Lee [32], who employed
a unique, modular network architecture consisting of five ANNs. Each ANN represented
concrete at various stages of maturation up to its maximum strength. Lee used the parame-
ter condensation technique to ascertain the number of neurons in the input layer. Despite
claiming his condensation and weighing techniques as beneficial for optimal network
performance, the practicality of his ANN model, which illustrates the maturation process
from pouring to full strength, is questionable. From an engineering perspective, attention
should be devoted to concrete that has achieved full or near-full strength.

In 2005, Hola, J. and Schabowicz, K. [33,34] introduced a novel nondestructive ap-
proach for assessing concrete strength. Rather than relying on the concrete mix composition,
they trained their ANN model on data obtained from nondestructive concrete testing tools.
Their database incorporated ultrasonic wave velocity, reflection number, hardness, pull-out
strength, concrete age, and bulk density. To evaluate their lab results, they experimented on
concrete compressive strength samples with a 28-day strength ranging from 24 to 105 MPa.
Using the Levenberg-Marquardt training method, they developed the ANN with eight hid-
den neurons within one layer. The authors posited that the average compressive strength
comparison between the ANN and nondestructive tests was comparable.

In 2006, a neural-expert system for predicting the compressive strength of high-
performance concrete was proposed by Gupta et al. [35]. They focused on training the
algorithm through example inferences, employing a multilayer ANN trained with gen-
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eralised backpropagation for interval training patterns. They also used input variables
from unrelated metrics, such as curing time, that were unrelated to the recipe. However,
these strategies may lead to algorithm training based on insignificant patterns and unclear
results. The use of a neural-expert system for concrete compressive strength prediction was
also explored by Dac-Khuong Bui et al. [36] with a focus on the practical application of
this method.

The advent of deep learning in this field was introduced by Fangming Deng et al. [37]
in 2018. They prepared a database of recycled concrete samples for algorithm training.
They chose not to train the algorithm on the concrete mix composition with direct amounts
of individual components, but they called deep features on several ratios. This approach
was emulated in the current study with the inclusion of feature scaling. Deng and his team
used Softmax regression to identify a suitable prediction model. They claimed that deep
learning compared to ANN, provided better generalisation capabilities, superior efficiency,
and greater precision. However, these claims were not definitive and warranted further
research. Given that convolution neural networks are computationally costly, the authors
used a limited database of 74 samples compared to 741 in the current study. This limited
sample size might lead to underfitting, implying a model that does not fully capture the
modelled phenomenon. A comparable level of accuracy between artificial neural networks
and deep neural networks was reported by Hosein Naderpour et al. [38] in 2018.

Ziolkowski, P. et al. [39] introduced an algorithm in 2019 that assists in designing
a concrete mix by predicting the strength based on the mix composition. While this al-
gorithm accurately predicted the strength of the concrete mix, it underperformed in the
high-strength spectrum of 40 MPa and beyond and was insufficient in predicting the prop-
erties of mixtures with additives and admixtures. Furthermore, it neglected other essential
parameters that contribute to concrete’s performance, such as durability, which is essential
for maintaining structural service quality over time [40].

In a publication from 2020, Nunez, I. and his team [41] shared insights on using
machine learning to accurately forecast the compressive strength of recycled aggregate
concrete, consequently refining the concrete mix design process. The researchers recognised
the critical importance of an effective optimisation method for concrete mix design in light of
the inherent variability and the absence of reliable compressive strength prediction formulae
for recycled aggregate concrete. Three innovative machine learning models were developed
in their study, specifically the Gaussian process model, the recurrent neural network
model, and the gradient-boosted regression tree model. Based on their findings, they
reported superior predictive outcomes, particularly with the gradient-boosted regression
trees model.

Another noteworthy contribution from the same year is a study by Marani, A. and
his colleagues [42], who explored the use of machine learning to forecast the compressive
strength of ultra-high-performance concrete. Their algorithm was trained on a comprehen-
sive dataset of 810 samples from freely accessible resources, encompassing 15 variables as
input data. Rather uniquely, they capitalised on their dataset to generate 6513 records, a sub-
stantial number of synthetic data samples, using tabular generative adversarial networks.
The wealth of data facilitated a more robust training of their machine learning model.
Upon evaluation, the model trained with synthetic data yielded exceptional predictive
performance when assessed with the primary dataset.

In 2021 Ziolkowski, P. et al. [43] introduced a new adaptive machine learning method
that more precisely estimates the compressive strength of concrete based on the composition
of its primary ingredients. Unlike previous models that had mixed success in forecasting
concrete strength and struggled to encapsulate the variability inherent in current concrete
mixes, this method incorporated two observations for each concrete batch in the model. The
authors built this machine learning model using a deep neural network architecture and
trained it on a comprehensive database of concrete recipes before translating it into a math-
ematical formula. The algorithm was tested on four concrete mix recipes calculated using
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contemporary design methods such as Bolomey and Fuller, with the findings revealing that
this new algorithm outperformed nonadaptive models trained on the same dataset.

Adil, M. et al. [44] investigated the effect of the number of neurons and layers in
ANN for generalised concrete mix design. They developed an ANN with 17 inputs and
five outputs related to the concrete mix’s composition and properties. The authors proposed
optimising the network with one or two hidden layers. It represented a significant departure
from previous work, where concrete’s technical parameters were predicted based on the
composition ratio.

Feng, W., in their paper [45] explores the mechanical characteristics of rubber-modified
recycled aggregate concrete (RRAC). The authors utilised machine learning (ML) models to
predict these thermomechanical properties of RRAC, employing a unique algorithm called
the beetle antennae search (BAS) to tune the hyperparameters of these models. Four ML
models were tested: random forest, logistic regression, multiple linear regression, and back-
propagation neural network (BPNN). Among them, BPNN yielded the most accurate and
reliable UCS and peak strain predictions, suggesting that ML models, particularly BPNN,
can serve as robust tools for predicting the properties of sustainable construction materials
such as RRAC. This study highlights the potential of RRAC in sustainable construction and
the effective use of ML models in predicting its performance.

Tavares, C. et al., in their two-part study [46,47], proposed an innovative method that
utilises machine learning (ML) for the optimised mixture design of ultra-high-performance
concrete (UHPC). This methodology presents an attractive alternative to resource-consuming
experimental runs by employing orthogonal arrays for data collection, which could enable
ML design optimisation. The researchers used an ensemble of ML techniques, specifi-
cally random forest and k-nearest neighbours, to create performance density diagrams
(PDDs). These diagrams serve as an intuitive tool to demonstrate the trade-offs between
mix proportions and mechanical performance of UHPC, providing practical assistance to
designers in the construction industry. Their research has shown promising results, where
the PDDs effectively predicted the behaviour of most mixtures in the test set. This method
facilitated the design of a UHPC mixture averaging 155 MPa at age 56 days, maintaining
the fine-aggregate-to-cementitious-material ratio above the unit. It represents a substantial
advancement in developing mix design tools for UHPC, leading to cost and eco-efficiency
improvements. Notably, this methodology was further extended in the second part of
their study to allow simultaneous evaluation of performance, cost, and carbon footprint.
This approach lays a foundation for the broader adoption of ML techniques in sustainable
construction and the development of mix designs for UHPC.

Endzhievskaya, I.G. et al. [48] presented a study on road concrete’s physical and
mechanical characteristics. The authors employed machine learning techniques, specifically
a random forest and decision trees. These methods were advantageous due to their ease
of use, minimum hyperparameters for tuning, and the ability to predict with low errors.
Their findings indicate that components such as air-entraining additives and specific sizes
of crushed stone contribute significantly to improving compressive and bending strengths.
Machine learning’s predictive accuracy demonstrated its potential in optimising road
concrete mixtures, enhancing road surfaces” quality and service life.

The study presented by Taffese, W.Z. and Espinosa-Leal, L. [49] stands out in concrete
properties prediction. Their research leverages machine learning, specifically decision tree-
based ensemble methods, to develop multitarget models predicting compressive strength
and nonsteady-state chloride migration coefficients (Dpssm) of concrete. This work’s novelty
lies in developing a single model that simultaneously predicts two crucial concrete prop-
erties, compressive strength and Dpssm. The gradient boosting model demonstrated the
most impressive prediction accuracy, yielding the mean absolute error (MAE) of 6.683 and
1.363, mean squared error (MSE) of 83.369 and 3.712, and root mean squared error (RMSE)
of 9.131 and 1.927 for compressive strength and Dpgssm, respectively. The authors stress the
necessity to expand the model with comprehensive datasets encompassing a wider range
of concrete properties to improve its versatility.
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3. Materials and Methods
3.1. Essentials

Machine learning models can be used to predict concrete’s technical properties based
on the mix composition. This study tries to determine the impact of increasing the computa-
tional complexity of the artificial neural network on the model’s performance. The quantity
of layers is one of the deep neural network (DNN)’s [50,51] features that represents a criti-
cal determinant of model complexity and its inherent capability to discern and replicate
complex patterns embedded in the data. This aspect forms the basis of the term “deep”
within deep learning, where an increased number of layers, representing greater depth,
facilitates the modelling of progressively intricate and abstract features. Each layer within
a DNN can be conceptualised as performing successive transformations of the raw input
into higher-level, abstract features. For instance, in applying convolutional neural networks
(CNN ) [52-54], commonly used for image recognition tasks, initial layers may decipher
basic, low-level features such as edges and colours. As the depth of the network increases,
subsequent layers amalgamate these rudimentary features to detect more abstract patterns,
encompassing shapes and, ultimately, entire objects or scenes.

However, while an increased depth can enable a model to learn more complex rep-
resentations, it poses new challenges. The augmentation in the number of layers directly
expands the model’s parameters, thereby escalating the risk of overfitting. Overfitting
manifests when a model excessively adapts to the training data, compromising its ability to
generalise to unseen data effectively [55-57]. This becomes particularly problematic when
the volume of available training data is limited compared to the complexity of the model.
Furthermore, training highly deep networks introduces additional technical difficulties.
One notable issue is vanishing or exploding gradients, which can decelerate training or
result in suboptimal solutions [58,59]. Techniques such as parameter initialisation, batch
normalisation, and incorporating residual connections have been suggested to alleviate
these concerns. Consequently, the selection of an optimal layer quantity necessitates a deli-
cate balancing act, taking into account the trade-off between a network’s capacity to model
intricate patterns (which tends to increase with depth) and the potential challenges associ-
ated with overfitting and training difficulties. Strategies such as early stopping, dropout,
and using validation sets can help to manage the risks inherent to increased depth [60-62].
Despite these challenges, the capacity to train deep networks remains a pivotal factor
propelling recent advancements in artificial intelligence and machine learning.

The analysis adopted a classical approach involving the construction of a model that
will estimate the concrete compressive strength determined by the quantitative concrete
mix composition. The prepared analysis used a database from previous studies [39,43],
which contains several hundred records of concrete recipes, along with corresponding
destructive compressive strength tests on normalised samples in the laboratory. The number
of records has been increased by using a dedicated Al model to generate reliable synthetic
data [63-65]. The database used contains recipes for the concrete mix composition, which
were designed as intended for incorporation into various concrete elements. At the same
time, differentiation of dimensions, functions, and purpose is assumed here. Some recipes
contained admixtures for various purposes, such as workability improvers, plasticisers or
setting retarders. It is taken for granted that the concrete production process employed
met the necessary quality standards. However, due to varying design requirements and
the use of different admixtures, some differences between formulations may be difficult
to quantify. Therefore, the procedure of removing univariate outliers as multiples of the
standard deviation was used, described in detail later in the paper. Individual components
of concrete mixes and the water—cement ratio were assigned input variables, while the
concrete compressive strength was treated as the output variable. The presented study,
along with many studies in the literature, focuses on predicting one of the main technical
properties of concrete, which is concrete compressive strength. However, it should be noted
that many other technical properties affect the final behaviour of concrete, especially at
various stages of the technological production process. The quality of this process is also
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essential, which is influenced by factors such as the curing process [66,67] or the concrete
pouring temperature [68]. Figure 1 shows a flowchart illustrating the research procedures

outlined in this investigation.

Data
Preparation

LEiE ) Al Models Al Models Deployment
Preprocessing Training and Assessment
and Analysis

Original database ]

- 741 records of concrete recipes +
corresponding concrete
compressive strength tests
(following EN-206-01 standard).

Synthetic data
generation

- TLSTM used for credible
synthetic data generation
- Al model generates 6187 records.

Data Quality
Verification

- Verify generated data quality
using PCA and JSD.
- Principal Components Analysis
(PCA)

* Identify directions of maximum
variability

* Determine principal
components.
- Jensen-Shannon Divergence (JSD)

* Measure resemblance between
original and synthetic data
distributions.

{ Data Preprocessing ]

- Remove univariate outliers.

- Assign input variables: cement,
w-c ratio, fine aggregate, coarse
aggregate.

- Qutput variable: compressive
strength.

Data Analysis

- Analyze each variable: max, min,
mean, median, dominant values
- Scatter plots

* Visualize proportional
relationship between target and
input variables.

* Scatter plots reveal
interdependence of variables

Model Architecture
and Complexity

- Models with varying hidden layers:

MLM1, MLM2, MLM3, MLM4, MLM5.

- Three series (I, 11, 11I) for validation.

- Split dataset into: training, validation,

testing.
- Determine relationships between
variables using Feature Correlation
Heatmap.
- Remove data points exceeding three
times median value.
- Design of neuron distribution and
layers in each model.
- Feature scaling

* Convert numerical attributes into
specific scale.

* Use Mean Standard Deviation (MSD)

as scaler.
- Activation Functions

* Hyperbalic Tangent for hidden
layers.

* Linear Tangent for output layer.
- Incorporating Bonding Layer

{ Error Assessment

Al models training J

Model Evaluation

- Loss Function and NSE

* Normalized Squared Error (NSE) used to quantify
model's error.
- Regularisation Strategies
* L2 regularisation method to prevent overfitting
sation Algorithm

Newton method for efficient parameter

imisation.

- Loss History

* Loss history diagram show model's learning
progression.

- Analysis of models MLM]1 to MLMS5 in series I, TI,
1

- Investigate influence of DNN computational
complexity on prediction accuracy.
- Goodness-of-Fit Test

* Use coefficient of determination (R2)

* Evaluate fit between observed and predicted
values.

- Error Metrics Analysis

* Calculate range of error metrics (SSE, MSE, RMSE,
NSE, Minkowski).

* Provide detailed error statistics and histograms.
- Analysis of Error Metrics and Distribution

* NSE and ME show consistent downward trend
with complexity.

* Average error decreases with complexity for

absolute, relative, and percentage error.

Figure 1. Flowchart showing the procedures described in this study.

3.2. Data Processing

The database used in this research contains 6187 records, generated using a dedicated
Al model from the original database that contained 741 records of concrete recipes [39,43],
along with corresponding compressive strength tests conducted under laboratory con-
ditions on standard samples according to PN-EN: 206 [23]. This set has six variables, as
follows: f—concrete compressive strength (MPa), C—cement (kg/ m?3), W—water—cement
ratio (-), FA—fine aggregate (kg/m?), CA—coarse aggregate (kg/m?). These synthetic data
do not create new knowledge but helps to achieve better robustness of the Al model. The
parameters utilized have been showcased in Table 1. A fundamental statistical analysis was
prepared for each variable in the analysed dataset. Table 2 shows each variable’s maximal,
minimal, mean, median, and dominant values.

Table 1. The parameters utilized within the dataset.

Concrete Water-Cement
Parameter Compressive Cement Ratio Fine Aggregate Coarse Aggregate
Strength
Type Target Input Input Input Input
The 28-day
compressive Content of fine Content of coarse

Description

strength of concrete

that is considered to
have most of its
strength (MPa).

Content of cement
added to the
mixture (kg/ m?3).

Water-to-cement
ratio (-).

aggregate added to
the mixture

(kg/m?3).

aggregate added to
the mixture

(kg/m?3).
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Table 2. Ranges of input variables for the database.
Input Variable Minimum Maximum Mean Median Dominant
Cement 87.00 kg /m? 540.00 kg/m3 322.15 kg/m3 312.45 kg/m3 380.00 kg/m3
Water—cement ratio 0.30 0.80 0.58 0.58 0.58
Fine aggregate 472.00 kg/m3 995.60 kg/m3 767.96 kg/m3 774.00 kg/m3 594.00 kg/m3
Coarse aggregate 687.80 kg/m3 1198.00 kg/m3 969.92 kg/m3 963.00 kg/m3 932.00 kg/m3

The tabular long short-term memory (TLSTM) model [69,70] was used to generate
credible synthetic data. The experiments were carried out to validate the excellence of
the produced data, specifically a principal components analysis (PCA) [71,72] and Jensen—
Shannon divergence (JSD) [73-76]. In order to verify the statistical integrity of deeper,
multifield distributions and correlations, a comparative analysis was performed using PCA
computed first on the original data, then on the synthetic data. The basis of PCA lies in
capturing the essential shape of all the features in a few key features, referred to as the
principal components. Consider a dataset with just two columns, as graphed below for
illustrative purposes. PCA can be visualised as an exercise in fitting an ellipsoid to the
data, where the axis of the ellipsoid, signifying the directions of maximum variability in the
data, represents the principal components. In a more complex multidimensional scenario,
the objective of PCA becomes analogous to rotating an object in hand to achieve a view of
maximal width, which is then determined to be the first principal component. Subsequent
rotations, while maintaining horizontal steadiness, aim to achieve the view of maximal
height, thus determining the second principal component. The approach is structured
around identifying the axis with maximum variability, always maintaining perpendicularity
to the previously chosen axis. Consequently, the newly created dimensions encapsulate the
essence of the fundamental shape of the data. The quality of synthetic data can be assessed
by evaluating the distributional distance between the principal components in the original
data and those in the synthetic data. The proximity of the principal components directly
influences the quality of synthetic data, with closer principal components yielding better
quality. Given the ubiquity of PCA in machine learning for dimensionality reduction and
visualisation, this score provides an immediate assessment of the utility of the obtained
synthetic data for machine learning applications. The approach hence aims to measure
the statistical integrity of the synthetic data by evaluating its conformance to the structure
encapsulated in the principal components of the original data. The results of PCA are
presented in Figure 2.

-4 T T T T T -4 T T T T T
-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6

PC2 PC2

(A) (B)

Figure 2. Principal component analysis: training data (A), synthetic data (B). Training data are the
data used to generate synthetic data.

JSD represents the degree of resemblance between the field distributions of the original
and synthetic data. It is a method commonly applied for comparing two distributions. The
average Jensen-Shannon divergence value across all fields inversely correlates with the
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data quality, with lower value indicating higher quality. A visual comparison of the original
and synthetic field distributions is facilitated by presenting bar charts in Figure 3.
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Figure 3. Field distribution comparisons: concrete compressive strength (A), cement (B), water—cement
ratio (C), fine aggregate (D), coarse aggregate (E). Purple bars correspond to training data. Green bars
correspond to synthetic data. Vertical axes are percentages.

The compressive strength of concrete was assessed in a laboratory setting utilising
standardised samples under the EN-206-01 standard [77]. The samples in question, stan-
dardised as per the specifications, were cylinders with a diameter of 15 cm and a hight of
30 cm and cubes with a side length of 15 cm. The results were presented as the compressive
strength of cylindrical samples, while the results from the cubic samples were converted
according to the standard mentioned above [77] to represent the strengths obtainable from
cylindrical samples. The samples were fabricated using ordinary portland cement, and the
sand employed was free from clay contamination. As per the EN-206-01 standard [77], the
strength was examined after 28 days, generally when the concrete attained full strength. It
should be emphasised that the time required for concrete to achieve full strength mainly
depends on the type of cement used, and for some types of cement, this period may be
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longer or shorter. However, it was assumed that the cement used in the mixture did not
result in any reduction or extension of the time to achieve strength. To standardise the
investigation, samples without full strength were excluded from the dataset. The quantity
of records mentioned above is devoid of such samples. Due to the fact that all ANN has
been trained on specific datasets, it is advisable to operate within the maximum values of
the model’s input parameters and preferably avoid deviant areas. In some cases, input
parameters that fall outside the maximum values of the model can lead to unreliable or
inaccurate results.

Figure 4 displays scatter plots that elucidate the proportional relationship between
targeted and input variables. The utility of scatter plots as a comprehensive method for
scrutinising the interdependence of variables is well-established [78]. It is a visually striking
demonstration of the nexus between these two variable categories. Owing to the many
possible combinations, only a select number of examples involving target variables were
furnished for illustrative purposes. The said plots specifically cater to the objective variable
corresponding to the concrete compressive strength.
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Figure 4. The scatter plots depict the relationship between the input variables and the target variable.
The vertical axis represents the compressive strength of concrete in MPa, while the horizontal axis
represents input variables: (A) cement (kg/ m?), (B) water—cement ratio (-), (C) fine aggregate (kg/ m?3),
(D) coarse aggregate (kg/m?3).

3.3. Training, Testing, and Model Selection

The above database was used to train a series of deep artificial neural network models.
The goal of the analysis is to investigate the influence of the computational complexity of
DNN s on the accuracy of predicting technical parameters of concrete. Created models,
given the quantitative composition, can estimate the compressive strength of concrete.
In the analysis below, five neural network models of varying computational complexity,
differentiated by the number of hidden layers (MLM1, MLM2, MLM3, MLM4, MLM5),
were compared, repeating the entire process in three series (I, I, III) for validation pur-
poses. From the least complex model, MLM1 has two hidden layers, to MLM5, which has
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six hidden layers. The number of neurons in a typical hidden layer is four. Each model
has five parameters, four input variables, and one output variable. For effective training
of deep neural networks, the dataset is typically divided into three independent parts:
training, validation (or selection), and testing. This is a standard procedure applied in deep
learning [79,80]. The training set is used to optimise the parameters of the neural network.
The validation set allows its effectiveness to be assessed during the learning process and to
choose the best model, while the test set is used to evaluate the final performance of the
model. An outlier elimination procedure was implemented in the datasets under inves-
tigation where any data point exceeding three times the median value of each variable,
calculated from the dataset’s centre, was excluded. These exclusion criteria, formulated to
target univariate outliers, were employed to safeguard the precision and dependability of
the subsequent statistical analyses [81,82]. Due to the influential effect of univariate outliers,
the potential distortion of results could yield a misinterpretation of the dataset’s actual char-
acteristics. Thus, outlier removal enhances the sample’s representativeness, contributing to
more robust and reliable results. It is essential to acknowledge that this procedure, despite
potentially impacting the sample size, is essential in affirming this study’s validity. The
applied process ensures the statistical integrity of the analyses, reinforcing the reliability of
this study’s conclusions. The used dataset was allocated as follows: 59.6% of the records
(3689) were assigned to the training set, 19.9% (1229 records) to the selection set, 19.9%
(1231 records) to the test set, and 0.6% (38 records) were unused. The number of input,
target, and unused variables in the final models and the division of subsets are presented
in Figure 5.

Input variables

Target variables

Unused variables

== Value: 59.6%
= Value: 19.9%
= Value: 19.9%
Number === Value: 0.6%

(A) (B)

Figure 5. Number of input, target, and unused variables in final models and division of subsets. The
diagram includes a variable bar chart (A) and a sample pie chart (B).

The architecture of the first model, MLM1, consists of 20 neurons, including four
input neurons, nine neurons spread over two hidden layers, with four neurons in one
scaling layer, one neuron in the descaling layer, one neuron in the bonding layer, and
one neuron in the output layer. The architecture of the second model, MLM2, consists of
28 neurons, including four input neurons, 17 neurons spread over three hidden layers,
with four neurons in one scaling layer, one neuron in the descaling layer, one neuron in
the bonding layer, and one neuron in the output layer. The architecture of the third model,
MLMS3, consists of 36 neurons, including four input neurons, 25 neurons spread over four
hidden layers, with four neurons in one scaling layer, one neuron in the descaling layer,
one neuron in the bonding layer, and one neuron in the output layer. The architecture of
the fourth model, MLM4, consists of 44 neurons, including four input neurons, 33 neurons
spread over five hidden layers, with four neurons in one scaling layer, one neuron in the
descaling layer, one neuron in the bonding layer, and one neuron in the output layer. The
architecture of the fifth model, MLMS5, consists of 52 neurons, including four input neurons,
41 neurons spread over six hidden layers, with four neurons in one scaling layer, one
neuron in the descaling layer, one neuron in the bonding layer, and one neuron in the
output layer. Figure 6 shows the architectures of the models analysed in this research.
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Figure 6. The topology of the deep neural network (DNN) for each model is presented as follows:
MILM1 (A), MLM2 (B), MLM3 (C), MLM4 (D), and MLMS5 (E). The figure shows the DNN architecture,
which includes input neurons (green), scaling neurons (orange), hidden neurons (yellow), descaling
neurons (red), bonding neurons (purple), and output neurons (blue).

The data features, represented as input variables, are assigned to the input neurons of
the neural network structure, while the output neuron is connected to the target variables.
To enhance the model’s effectiveness, a method known as feature scaling was implemented
across all models. This process entails converting the numerical attributes of the data into
a specific scale [83]. This scaling and the subsequent descaling were carried out using the
mean standard deviation (MSD) as a scaler [84]. The models maintain consistent activation
functions, with the hyperbolic tangent [85-87] being used for the hidden layers and the
linear tangent [87] for the output layer. A bonding layer was also incorporated into the
models. The constructed models were meticulously calibrated to minimise the associated
loss function. The quantification of the model’s error in computing the index loss was
executed utilising the normalized squared error (NSE). It is to be noted that lower NSE
values are indicative of a model’s superior predictive capabilities. Conversely, values
tending towards one highlight the model’s weaker predictive potential, while values close
to zero signify a commendable predictive performance. To further enhance the performance
of our model and inhibit the potential for overfitting or underfitting, the adoption of
regularisation strategies was necessitated. Specifically, the L2 method [88-90] was instituted
as our chosen regularisation function. This regularisation phase is instrumental in tuning
the model by minimising the adjusted loss function. It contributes towards mitigating
biases and, consequently, facilitates more precise predictions. It is pertinent to underscore
the importance of the regularisation step in the model-building process, as it aids in
ensuring that the model is absorbing the intrinsic patterns and relationships within the
data instead of merely reproducing the training data. In successfully preventing overfitting
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and underfitting, a model is deemed accurate and generalisable, rendering it suitable for
application to novel, unseen data. In this context, the efficacy of the L2 regularisation
method [88-90] is particularly pronounced. It appends a penalty term to the loss function
proportional to the square of the magnitude of the network parameters’” weights. As a
result, the weights are driven towards zero, facilitating the generation of smaller, simpler
models less susceptible to overfitting.

The quasi-Newton method [91,92] was employed as the optimisation algorithm in the
present study. The quasi-Newton method is a popular choice for optimisation algorithms
due to its efficiency and effectiveness in tackling large-scale optimisation problems [92]. It
does so by using first-order derivative information to build up an approximation of the
Hessian matrix [93], which represents the second-order partial derivatives of the objective
function [91]. This method has shown substantial success in solving nonlinear optimisa-
tion problems that arise in diverse applications, thanks to its robustness and ability to
converge to the solution more quickly than traditional gradient descent algorithms. The
quasi-Newton method’s effectiveness is enhanced by its ability to handle functions that
are not necessarily smooth, making it a versatile tool in optimisation [94]. Employing
this algorithm in the current study was an integral part of the process, allowing for the
efficient optimisation of the model’s parameters. The resulting loss history for the model
and series are presented in Figure 7A—C (for series I, II, and III, respectively), illustrating
the model’s learning progression throughout the training process. The loss history repre-
sents how the loss function of a machine learning model changes over the course of its
training and selection process. The loss function quantifies the discrepancy between the
predicted outputs of the model and the actual target values, and the goal of training is to
minimize this loss. The adopted training strategy proved to be highly effective in optimis-
ing the model’s performance, providing the desired level of accuracy while minimising
computational resources.
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Figure 7. (A) Loss history diagram for specific models in series I: MLM1 (epoch from 1 to 171) (a),
MLM2 (epoch from 1 to 285) (b), MLM3 (epoch from 1 to 332) (c), MLM4 (epoch from 1 to 295) (d),
MLMS5 (epoch from 1 to 321) (e). (B) Loss history diagram for specific models in series II: MLM1
(epoch from 1 to 147) (a), MLM2 (epoch from 1 to 248) (b), MLM3 (epoch from 1 to 294) (c), MLM4
(epoch from 1 to 320) (d), MLMS5 (epoch from 1 to 298) (e). (C) Loss history diagram for specific
models in series III: MLM1 (epoch from 1 to 128) (a), MLM2 (epoch from 1 to 278) (b), MLM3 (epoch
from 1 to 257) (c), MLM4 (epoch from 1 to 296) (d), MLMS5 (epoch from 1 to 280) (e).

It should be noted that the models were trained on a specific set of data. Therefore,
when using the models, one should operate within the values indicated in Table 2 as
minimal and maximal. The following research does not consider the impact of using
additives and admixtures on concrete. The usable range for the water—-cement ratio extends
from approximately 0.3 to beyond 0.8. A proportion of 0.3 results in highly rigid consistency
(unless superplasticisers are employed), while a ratio of 0.8 yields concrete that is damp
and lacking in strength [95,96]. All records outside the range water-cement 0.3-0.8 have
been removed from the dataset.
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3.4. Results and Discussion

In the following study, five models of deep artificial neural networks with varying
degrees of computational complexity were analysed, named consecutively MLM1, MLM2,
MLM3, MLM4, and MLMS5, starting from the least complex network to the most complex,
in three series I, II, III. First, a feature correlation analysis was prepared to determine precise
relationships between individual variables. The result of the analysis is a feature correlation
heatmap visible in Figure 8.

Figure 8. Feature correlation heatmap.

The feature correlation heatmap reveals the relationships of individual variables,
where a value closer to 1.0 indicates a stronger correlation [97]. One can notice that the
input variables related to the water—cement ratio and the cement content have the strongest
association with the output variable. The relationships of other input variables with the
output variable are much weaker, with the amount of fine aggregate having a more signifi-
cant impact than water content and water content having a greater impact than the amount
of coarse aggregate. It can be observed that the impact of the water—cement ratio and the
quantity of cement on the strength of concrete is evident. Several research papers in the
literature have affirmed the crucial role of these factors in determining the compressive
strength of concrete [98].

Each of the models was subjected to a goodness-of-fit test [99-103]. This assessment
provides a means to quantify the discrepancy between observed values and those predicted
by the model. A standard metric used to gauge the goodness-of-fit in scientific investiga-
tions is the coefficient of determination, denoted as R? [104,105]. This parameter is utilized
to measure the extent of disparity between observed values and projected predictions.
More specifically, R? determines the fraction of this discrepancy that can be accounted for
by the model. In a scenario where the model fit is ideal, resulting in output values perfectly
matching the target values, the R? coefficient would equate to one. Figure 9A-C provide
a detailed visual representation of a goodness-of-fit analysis for series I, II, and I, utilising
the statistical measure known as the coefficient of determination (R?).

In the considered issue, a series of R? values were calculated for the target variable fq
in the individual models and series. In series I, it was 0.5691 for MLM1, 0.6268 for MLM2,
0.6053 for MLM3, 0.6438 for MLM4, and 0.6453 for MLMB5. In series II, it was 0.5467 for
MLML1, 0.6017 for MLM2, 0.6227 for MLM3, 0.6285 for MLM4, and 0.6514 for MLM5. In
series III, it was 0.5272 for MLM1, 0.5959 for MLM2, 0.6136 for MLM3, 0.6337 for MLM4,
and 0.6571 for MLM5. The values of the coefficient of determination (R2) for each model
are shown in Figure 10.
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Figure 9. (A) Goodness-of-fit chart for MLM1 (a), MLM2 (b), MLM3 (c), MLM4 (d), MLMS5 (e) in
series I. The chart shows predicted value of target variable versus real one. (B) Goodness-of-fit chart
for MLM1 (a), MLM2 (b), MLM3 (c), MLM4 (d), MLMS5 (e) in series II. The chart shows predicted
value of target variable versus real one. (C) Goodness-of-fit chart for MLM1 (a), MLM2 (b), MLMS3 (c),
MLM4 (d), MLMS5 (e) in series III. The chart shows predicted value of target variable versus real one.
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Figure 10. The coefficient of determination (R?) values for MLM1, MLM2, MLM3, MLM4, and MLM5
in series I, II, and III.

It can be observed that a reasonably good performance of the created models was
achieved. Simultaneously, with the increased computational complexity, a higher R? value
can be noticed in more complex models, suggesting that these models exhibit better predic-
tive capabilities than less complex models. This observation is evident in three series, except
for series I, where the MLM2 model has a higher R? coefficient value than the MLM3 model.
This deviation was not observed in the remaining series and may result from various
reasons. An exhaustive analysis of the model’s errors was performed by computing a range
of error metrics across each series. This analysis included metrics such as mean squared
error, Minkowski error, normalized squared error, root mean squared error, sum squared
error [106-109]. Furthermore, a detailed report outlining the minimum and maximum
values and the mean and standard deviation for absolute, relative, and percentage errors
of the model concerning the test data was provided. Histograms were constructed for
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the test subset to obtain a more tangible understanding of the distribution of errors in the
model. The outcomes of this analysis provide a rigorous evaluation of the model’s accuracy
and precision, illuminating potential avenues for further refinement. Table 3 and Figure 11
present individual error metrics for each model, divided into respective subsets, for series I,
II, and II1.

Table 3. Error metrics for various data subsets.

Series |
MLM1
Training Selection Testing
Sum squared error 550.201 342.198 317.183
Mean squared error 0.149 0.278 0.258
Root mean squared error 0.386 0.528 0.508
Normalised squared error 0.416 0.479 0.432
Minkowski error 1893.670 975.049 911.882
MLM2
Training Selection Testing
Sum squared error 489.493 310.386 295.271
Mean squared error 0.133 0.253 0.240
Root mean squared error 0.364 0.503 0.490
Normalised squared error 0.330 0.394 0.374
Minkowski error 1680.550 876.432 842.034
MLM3
Training Selection Testing
Sum squared error 458.547 313.610 305.511
Mean squared error 0.124 0.255 0.248
Root mean squared error 0.353 0.505 0.498
Normalised squared error 0.289 0.402 0.400
Minkowski error 1561.140 865.786 860.635
MLM4
Training Selection Testing
Sum squared error 447218 307.594 290.030
Mean squared error 0.121 0.250 0.236
Root mean squared error 0.348 0.500 0.485
Normalised squared error 0.275 0.387 0.361
Minkowski error 1510.870 842.743 807.330
MLM5
Training Selection Testing
Sum squared error 416.643 296.432 291.111
Mean squared error 0.113 0.241 0.236
Root mean squared error 0.336 0.491 0.486
Normalised squared error 0.239 0.359 0.364
Minkowski error 1403.290 810.031 798.990
Series 11
MLM1
Training Selection Testing
Sum squared error 559.448 340.780 325.536
Mean squared error 0.152 0.277 0.264
Root mean squared error 0.389 0.527 0.514
Normalised squared error 0.431 0.475 0.455
Minkowski error 1944.850 974.611 947.078
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Table 3. Cont.

MLM2
Training Selection Testing
Sum squared error 493.298 322.494 305.668
Mean squared error 0.134 0.262 0.248
Root mean squared error 0.366 0.512 0.498
Normalised squared error 0.335 0.425 0.401
Minkowski error 1687.480 905.087 867.447
MLM3
Training Selection Testing
Sum squared error 454.568 310.576 297.960
Mean squared error 0.123 0.253 0.242
Root mean squared error 0.351 0.503 0.492
Normalised squared error 0.284 0.394 0.381
Minkowski error 1539.040 852.571 837.393
MLM4
Training Selection Testing
Sum squared error 423.191 298.929 297.827
Mean squared error 0.115 0.243 0.242
Root mean squared error 0.339 0.493 0.492
Normalised squared error 0.246 0.365 0.381
Minkowski error 1431.560 823.304 820.941
MLMb5
Training Selection Testing
Sum squared error 435.508 304.092 286.750
Mean squared error 0.118 0.247 0.233
Root mean squared error 0.344 0.497 0.483
Normalised squared error 0.261 0.378 0.353
Minkowski error 1458.890 834.351 799.642
Series III
MLM1
Training Selection Testing
Sum squared error 575.272 347.520 332.199
Mean squared error 0.156 0.283 0.270
Root mean squared error 0.395 0.532 0.519
Normalised squared error 0.455 0.494 0.473
Minkowski error 2007.800 1004.980 969.083
MLM2
Training Selection Testing
Sum squared error 500.105 321.972 307.902
Mean squared error 0.136 0.262 0.250
Root mean squared error 0.368 0.512 0.500
Normalised squared error 0.344 0.424 0.407
Minkowski error 1706.130 905.095 879.370
MLM3
Training Selection Testing
Sum squared error 473.081 318.669 301.983
Mean squared error 0.128 0.259 0.245
Root mean squared error 0.358 0.509 0.495
Normalised squared error 0.308 0.415 0.391
Minkowski error 1608.550 889.350 844.676
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MLM4
Training Selection Testing
Sum squared error 419.356 315.651 295.121
Mean squared error 0.114 0.257 0.240
Root mean squared error 0.337 0.507 0.490
Normalised squared error 0.242 0.407 0.374
Minkowski error 1407.230 862.350 814.506
MLM5
Training Selection Testing
Sum squared error 455.535 317.058 283.630
Mean squared error 0.123 0.258 0.230
Root mean squared error 0.351 0.508 0.480
Normalised squared error 0.286 0.411 0.345
Minkowski error 1529.650 866.807 798.284

In Figure 11, a clear error downward trend can be noticed for the NSE metric in the
training, selection, and testing sections and for the ME metric in the training section in
all three series, with the increase in computational complexity. Simultaneously, a milder
error downward trend can be observed in the remaining metrics, along with the increase
in computational complexity. Statistical calculations were conducted for individual target
variables, presented in Table 4. Table 4 provides minimums, maximums, averages, and
standard deviations of absolute and percentage errors of the model for the test data.
Figure 12 shows the values of mean error (absolute error, relative error, percentage error)
for every model in series I, II, and III.
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Figure 11. Error metrics for MLM1, MLM2, MLM3, MLM4, MLMS5 in series I, II, and III. Error metrics
used: mean squared error (MSE) (B), Minkowski error (ME) (A), normalized squared error (NSE) (B),
root mean squared error (RMSE) (B), sum squared error (SSE) (A).

Table 4. Error statistics for calculation of target value f.

Series |

Minimum Maximum Mean Deviation

Absolute error

MLM1 0.00000119209 0.0695368 0.00936655 0.00818558
MLM2 0.00000104308 0.0120825 0.00145332 0.00118896
MLM3 0.000000119209 0.0879388 0.00273278 0.0041617
MLM4 0.00000119209 0.148637 0.00331478 0.00663424
MLM5 0.00000119209 0.148637 0.00331478 0.00663424
Relative error
MLM1 0.0000011413 0.0665743 0.00896749 0.00783684
MLM2 0.00000851071 0.0985832 0.011858 0.009701
MLM3 0.000000296304 0.218579 0.00679255 0.0103442
MLM4 0.00000213266 0.265913 0.00593016 0.0118687
MLM5 0.00000119209 0.148637 0.00331478 0.00663424
Percentage error
MLM1 0.00011413 6.65743 0.896749 0.783684
MLM2 0.000851071 9.85832 1.1858 0.9701
MLM3 0.0000296304 21.8579 0.679255 1.03442
MLM4 0.000213266 26.5913 0.593016 1.18687
MLM5 0.00000119209 0.148637 0.00331478 0.00663424
Series II
Minimum Maximum Mean Deviation

Absolute error

MLM1 0.00000119209 0.0695368 0.00936655 0.00818558
MLM2 0.00000104308 0.0120825 0.00145332 0.00118896
MLM3 0.000000119209 0.0879388 0.00273278 0.0041617
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Table 4. Cont.

MLM4 0.00000119209 0.148637 0.00331478 0.00663424
MLM5 0.00000119209 0.148637 0.00331478 0.00663424
Relative error
MLM1 0.0000011413 0.0665743 0.00896749 0.00783684
MLM2 0.00000851071 0.0985832 0.011858 0.009701
MLM3 0.000000296304 0.218579 0.00679255 0.0103442
MLM4 0.00000213266 0.265913 0.00593016 0.0118687
MLM5 0.00000119209 0.148637 0.00331478 0.00663424
Percentage error
MLM1 0.00011413 6.65743 0.896749 0.783684
MLM2 0.000851071 9.85832 1.1858 0.9701
MLM3 0.0000296304 21.8579 0.679255 1.03442
MLM4 0.000213266 26.5913 0.593016 1.18687
MLM5 0.00000119209 0.148637 0.00331478 0.00663424
Series III
Minimum Maximum Mean Deviation
Absolute error
MLM1 0.00000119209 0.0695368 0.00936655 0.00818558
MLM2 0.00000104308 0.0120825 0.00145332 0.00118896
MLM3 0.000000119209 0.0879388 0.00273278 0.0041617
MLM4 0.00000119209 0.148637 0.00331478 0.00663424
MLM5 0.00000119209 0.148637 0.00331478 0.00663424
Relative error
MLM1 0.0000011413 0.0665743 0.00896749 0.00783684
MLM2 0.00000851071 0.0985832 0.011858 0.009701
MLM3 0.000000296304 0.218579 0.00679255 0.0103442
MLM4 0.00000213266 0.265913 0.00593016 0.0118687
MLM5 0.00000119209 0.148637 0.00331478 0.00663424
Percentage error
MLM1 0.00011413 6.65743 0.896749 0.783684
MLM2 0.000851071 9.85832 1.1858 0.9701
MLM3 0.0000296304 21.8579 0.679255 1.03442
MLM4 0.000213266 26.5913 0.593016 1.18687
MLM5 0.00000119209 0.148637 0.00331478 0.00663424
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Figure 12. The values of mean error (absolute error (A), relative error (B), percentage error (C)) for
MLv1 B Vv B, Vv B hvivia B0 vipvis B0 in series 1, 11, and TI1L

Analysing Table 4 and Figure 12A—C, one can observe that the average error decreases
with the increase in the model’s computational complexity for absolute error, relative error,
and percentage error. Figures 13-15 represent the distribution of the relative error for the
target variable fy. The abscissa represents the centres of the containers, and the ordinate
represents their corresponding frequencies. Error histograms show the distribution of
errors from the model for the test subset. A normal distribution for the target variable is
expected. For Figure 13A, the maximum frequency is 36.75%, which corresponds to the bin
centred at 0%. The minimum frequency is 0.2%, which corresponds to the bins with centres
at —48.277%. For Figure 13B, the maximum frequency is 39%, corresponding to the bin
centred at 0%. The minimum frequency is 0.12%, corresponding to the bins with centres at
—47.614%. For Figure 13C, the maximum frequency is 38.76%, which corresponds to the
bin centred at 0%. The minimum frequency is 0.28%, which corresponds to the bins with
centres at 47.656%. For Figure 13D, the maximum frequency is 42.11%, corresponding to
the bin centred at 0%. The minimum frequency is 0.04%, corresponding to the bins with
centres at —53.646%. For Figure 13E, the maximum frequency is 42.37%, which corresponds
to the bin centred at 0%. The minimum frequency is 0.12%, which corresponds to the bins
with centres at —52.676%.
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Figure 13. Error histogram for developed models in series I: MLM1 (A), MLM2 (B), MLM3 (C),
MLM4 (D), MLMS5 (E).
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Figure 14. Error histogram for developed models in series II: MLM1 (A), MLM2 (B), MLM3 (C),
MLM4 (D), MLMS5 (E).
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Figure 15. Error histogram for developed models in series III: MLM1 (A), MLM2 (B), MLM3 (C),
MLM4 (D), MLMS5 (E).

For Figure 14A, the maximum frequency is 36.75%, which corresponds to the bin
centred at 0%. The minimum frequency is 0.08%, which corresponds to the bins with
centres at —49.165%. For Figure 14B, the maximum frequency is 41.3%, corresponding to
the bin centred at 0%. The minimum frequency is 0.04%, corresponding to the bins with
centres at —54.49%. For Figure 14C, the maximum frequency is 38.93%, which corresponds
to the bin centred at 0%. The minimum frequency is 0.33%, which corresponds to the bins
with centres at —44.438%. For Figure 14D, the maximum frequency is 42.6%, corresponding
to the bin centred at 0%. The minimum frequency is 0.12%, corresponding to the bins with
centres at —54.26%. For Figure 14E, the maximum frequency is 39.65%, which corresponds
to the bin centred at 0%. The minimum frequency is 0.24%, which corresponds to the bins
with centres at —45.284%.

For Figure 15A, the maximum frequency is 35.93%, which corresponds to the bin
centred at 0%. The minimum frequency is 0.04%, which corresponds to the bins with
centres at —48.049%. For Figure 15B, the maximum frequency is 37.62%, corresponding
to the bin centred at 0%. The minimum frequency is 0.24%, corresponding to the bins
with centres at —45.596%. For Figure 15C, the maximum frequency is 41.64%, which
corresponds to the bin centred at 0%. The minimum frequency is 0.12%, which corresponds
to the bins with centres at —54.004%. For Figure 15D, the maximum frequency is 42.29%,
corresponding to the bin centred at 0%. The minimum frequency is 0.2%, corresponding to
the bins with centres at —50.63%. For Figure 15E, the maximum frequency is 36.95%, which
corresponds to the bin centred at 0%. The minimum frequency is 0.24%, which corresponds
to the bins with centres at —40.473%.

It should be noted that all error histograms presented in Figures 13-15 have a bell
shape, which indicates a correctly obtained normal distribution [108,109]. The models are
designed to estimate concrete compressive strength as determined by the composition of
the concrete mixture. It is important to bear in mind that numerous additional elements,
primarily linked to the technological process of concrete production and environmental
conditions, exert influence over the concrete’s strength. The initial critical aspect involves
the proper maintenance of concrete after the setting process. Incorrect handling of concrete
can lead to a substantial deterioration its attributes, particularly its durability. Taking
environmental aspects into account, it is essential to consider the effect of environmental
aggression [110] that detrimentally affect concrete quality, such as frost action or exposure
large amounts of alkalis. One of pivotal concern is pouring concrete under unfavourable
weather conditions, particularly subjecting it to excessive shrinkage due to rapid drying
under high temperatures or freezing early in the setting process. The arrangement and
size distribution of the aggregates dictate the requirements for an appropriately workable
concrete paste as well as the source, shape, and texture of aggregates. It impact especially
the workability and durability of the concrete [111,112]. Admixtures and additives are also
important in whole process, especially those that profoundly affect the chemical properties
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of the mixture. This assessment has omitted several factors, including environmental
elements, technological processes, and properties of raw materials. It is assumed that the
quality of the produced concrete samples met acceptable standards. The source code of all
Al models presented in this research is available in an open repository [113].

4. Summary and Conclusions

In concrete structure production technology, a key challenge lies in ensuring pre-
dictable characteristics in the raw concrete mix and the hardened end product. Concrete
mix manufacturers are responsible for guaranteeing that the concrete they deliver to
construction sites meets the desired standards. However, achieving these standards consis-
tently throughout the manufacturing process can prove daunting. Reliable prediction of
concrete technical parameters is intricate, and most current solutions in the engineering
field are estimations, which have increasingly become obsolete due to rapid advancements
in material engineering. Predictive analytics dedicated to forecasting various phenomena,
attributes, and patterns based on machine learning holds the potential to enhance the
methodology behind concrete mix design substantially. The paper analyses the impact of
computational complexity on the effectiveness of predicting the compressive strength of
concrete using machine learning models. This study focuses on the growing interest in
applying machine learning algorithms in material engineering, specifically in predicting the
compressive strength of concrete, a key indicator of its quality. Computational complexity
in this research refers to the number of hidden layers in the neural network architecture.
In the context of machine learning models, computational complexity is essential, as it
can influence the speed and effectiveness of the model’s training and its ability to gener-
alise to new data. This study evaluated five deep neural network models (MLM1, MLM2,
MLM3, MLM4, MLM5) of varying computational complexity in three series. Each of the
MLM1-MLM5 models underwent training, selection, and testing in each three series. The
crux of this research was to establish an ideal deep neural network structure and train
it using a vast database of concrete mix recipes and their associated laboratory-based
destructive tests.

Presented machine learning models predicts the compressive strength of the concrete
mix based on its unique composition. Based on the obtained results, the following conclu-
sions can be formulated. There is a relationship between the computational complexity
of deep neural network models and their ability to predict the compressive strength of
concrete. The conducted analyses showed that as the computational complexity of the
model increases, so does its predictive ability. This means that the more complex the neural
network architecture, the more effective it is in predicting the compressive strength of
concrete within the conducted analyses. Several parameters point to the above conclusion.
In all three series, the coefficient of determination (R?) increase was observed along with the
increase in the model’s computational complexity. The smallest value of R?> was captured
for model MLM1 and the largest for MLMS5. It can be observed that errors in the five
analysed metrics, namely mean squared error (MSE), Minkowski error (ME), normalized
squared error (NSE), root mean squared error (RMSE), sum squared error (SSE), in training,
selection, and testing decrease with the increase in the model’s computational complexity,
with the greatest error decrease observable for the NSE metric in training, selection, and
testing and the ME metric in training. Furthermore, it is worth examining the mean values
of absolute error, relative error, and percentage error, which tend to decrease as the compu-
tational complexity of the model increases. The error histograms for all analysed models
in all series have a normal distribution. While the proposed method offers a promising
solution, it possesses certain limitations and does not comprehensively encapsulate all
the interactions between concrete mix components and their resulting properties. This is
aresearch gap that necessitates further exploration. Nonetheless, the outcomes of this paper
inspire optimism for this method’s expanded application in practical engineering settings.

Future investigations should aim to broaden this method’s utility in the concrete
mix design process by predicting additional fresh and hardened concrete properties such
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as durability, workability, air entrainment, and reliability. A more holistic strategy for
optimising concrete mix design is also essential to development. The findings from this
research lay a robust groundwork for further refinement and application of the proposed
Al-driven method in concrete mix design. Al-driven methods automate the traditionally
labour-intensive tasks, granting civil and structural engineers the liberty to tackle more
intricate and inventive challenges. It is anticipated that this method will improve both the
efficiency and precision of the design process, particularly in an era where advancements
in hardware are accelerating the computational capabilities of AL
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