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Computationally‑efficient 
statistical design and yield 
optimization of resonator‑based 
notch filters using feature‑based 
surrogates
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Modern microwave devices are designed to fulfill stringent requirements pertaining to electrical 
performance, which requires, among others, a meticulous tuning of their geometry parameters. When 
moving up in frequency, physical dimensions of passive microwave circuits become smaller, making 
the system performance increasingly susceptible to manufacturing tolerances. In particular, inherent 
inaccuracy of fabrication processes affect the fundamental operating parameters, such as center 
frequency or bandwidth, which is especially troublesome for narrow‑band structures, including notch 
filters. The ability to quantify the effects of tolerances, and—even more—to account for these in the 
design process, are instrumental in making the designs more reliable, and to increase the likelihood 
that adequate operation is ensured despite manufacturing errors. This paper proposes a simple yet 
computationally efficient and reliable procedure for statistical analysis and yield optimization of 
resonator‑based notch filters. Our methodology involves feature‑based surrogate models that can be 
established using a handful of training data points, and employed for rapid evaluation of the circuit 
fabrication yield. Furthermore, a yield optimization procedure is developed, which iteratively sets up a 
sequence of feature‑based models, constructed within local domains relocated along the optimization 
path, and uses them as predictors to find a robust (maximum yield) design at a low computational 
cost. The presented approach has been demonstrated using two complementary split ring resonator 
(CSRR)‑based notch filters. The cost of statistical design is about a hundred of EM simulations of the 
respective filter, with yield evaluation reliability corroborated through EM‑based Monte Carlo analysis.

Microwave notch filters are essential components of industrial microwave and millimeter-wave systems. Micro-
wave filters are continually gaining momentum as they play a crucial role in frequency-agile RF interfaces and 
payloads, driven by rapid evolution in the wireless electronics  industry1 and the growing need for more efficient 
and adaptive multichannel communication  systems2. The RF filter market is predicted to increase at a rate of 
more than ten percent per year, surpassing $168 million by  20273, owing mostly to important industrial sectors 
such as radar systems, and telecommunication. Microwave notch filters are used in communication systems to 
prevent interference from unwanted signals. Furthermore, these filters are used in the rapid prototyping industry 
to measure angular  displacement4, proximity and  rotation5.

Design of microwave filters can be challenging due to several factors, including frequency dependence, band-
width, insertion loss, temperature stability, manufacturing tolerances, size, and weight. Depending on the specific 
application, microwave notch filters have been designed utilizing a variety of techniques. Notch filters with cavity 
 resonators6, waveguide  structures7, and microstrip transmission  lines8 are just a few of the popular techniques. 
Waveguide and cavity-based notch filters exhibit certain advantages such as a high quality factor, minimum 
insertion loss, high power handling, and steady performance, but also disadvantages such as a limited tuning 
range, a bulky size, higher manufacturing costs, as well as integration  difficulties9. On the other hand, microstrip 
notch filters feature small size, low cost, broad frequency ranges of operation, and overall good performance. 
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Their disadvantages include a limited power handling capability, temperature sensitivity, limited bandwidth, 
susceptibility to external interference, and tuning  difficulty10. Recently, complementary metamaterial resonators 
have been found to offer a promising approach to design microwave notch filters. Their unique electromagnetic 
properties make them well-suited for applications in microwave communication systems and other areas where 
precise filtering of microwave radiation is  required11. However, the performance of complementary metamaterial-
based microwave notch filters depends on the precision of their fabrication and  calibration12. Microwave notch 
filters based on complementary metamaterial resonators can be rendered unusable by even minute changes in 
geometric dimensions. The microwave filters presented  in13–16, have been fabricated using various manufacturing 
techniques and measured using different vector network analyzers. However, a discrepancy of up to four percent 
has been observed between the simulation-based predictions and the experimental validation. To minimize these 
differences, pre- or post-fabrication tuning is required, especially for high-frequency resonators. At the same 
time, understanding the effects of manufacturing inaccuracies is a prerequisite for realizing high-performance 
designs. Preferably, quantification of geometrical dimension discrepancies and other types of uncertainties (e.g., 
pertinent to material parameters) should be incorporated into the design process so as to render circuits that are 
more robust and immunized against tolerances.

Manufacturing tolerances are stochastic in nature, and can therefore be described using appropriate prob-
ability distributions. Consequently, their evaluation requires statistical  analysis17, which is a computationally 
expensive endeavor if carried out using electromagnetic (EM) simulation models. In particular, direct EM-based 
Monte Carlo  analysis18 typically requires many hundreds of system evaluations, which often turns prohibitive. 
Accelerated methods rely on simplifications (e.g., worst case  analysis19), fast replacement models (surrogates), 
e.g., neural  networks20, polynomial chaos  expansion21,22, dimensionality reduction (e.g., principal component 
 analysis23, variable-fidelity  simulations24 or physics-based  modeling25).

Accurate quantification of the effects of uncertainties is a prerequisite for robust design (design  centering26, 
tolerance-aware  design27), which attempts to improve the system immunity to fabrication or other types of toler-
ances. The underlying task may be formulated in various ways (e.g., reduction of the system response sensitivity 
to parameter deviations, maximization of  yield28, maximization of tolerance  hypervolume29), although in the 
case of microwave components, the most common approach is the improvement of the fabrication yield. The 
latter is a likelihood that given performance specifications will be satisfied under the assumed parameter devia-
tions. Similarly, as for statistical analysis, practical robust design involves surrogate modeling  techniques30–34. 
The bottleneck is a large number of EM analyses necessary to set up a reliable model, which has to be valid over a 
relatively large portion of the parameter space due to the expected design relocation in the course of the optimiza-
tion process. A possible way of alleviating this issue is sequential approximate  optimization35, where the surrogate 
model is iteratively constructed in a local domain that moves along the optimization path. Another possibility 
is a response feature  technology36. Therein, design problem is reformulated in terms of so-called characteristic 
points (response features) of the system outputs, which are normally in weakly-nonlinear relationships with 
the geometry parameters. Inherent regularization offered by this approach facilitates a construction of accurate 
behavioral models at low computational  expenses37.

In this paper, we address the problem of rapid uncertainty quantification and yield optimization of resonator-
based notch filters using feature-based surrogate models. A set of characteristic points accounting for the operat-
ing parameters of the notch filter is introduced, which are extracted from EM-simulated transmission responses, 
and demonstrated to be in weakly-nonlinear relationship with the circuit geometry parameters. Subsequently, 
a reliable behavioral model is constructed at the level of response features using a handful of training data sam-
ples, and shown to exhibit a remarkable predictive power, both in terms of generalization and extrapolation, as 
compared to conventional data-driven modeling methods. The feature-based model is applied to evaluate the 
filter fabrication yield, and to carry out yield optimization upon being embedded in the sequential approximation 
optimization loop. Two examples of resonator-based notch filters are considered as demonstration case studies, a 
circular and square complementary split ring resonator (SCRR)-based ones. Maximum yield designs are obtained 
at the computational costs of merely about a hundred of EM analyses of the respective structures. The observed 
yield improvements are considerable (from about 80 percent to well over 90 percent, depending on the design 
scenario). At the same time, the accuracy of yield estimation is excellent as corroborated using direct EM-driven 
Monte Carlo analysis. The proposed approach can be used to achieve pre-fabrication robustness improvement 
of microstrip resonator-based notch filters at extremely low computational expenses.

Resonator‑based notch filters: case studies
This section recalls the background information about microstrip resonator-based notch filters, and discusses 
two specific structures to be considered case studies in the later parts of this paper.

Resonator‑based notch filters. Microwave notch filters based on complementary resonators are a type of 
structures that utilize the resonant behavior of complementary metamaterial to suppress or attenuate a specific 
frequency or range of frequencies. In order to design planar microwave notch filters, complementary resonators 
are etched in the ground plane below the microstrip transmission line (MTL), which is the region with the high-
est electric field strength, and in an axial direction, as illustrated in Fig. 1a. In this work, a 50-Ω MTL is designed 
on a dielectric substrate (RO4003C) with relative permittivity εr = 3.38 ± 0.05, dl = 30  mm, dw = 25  mm, and 
dh = 0.813 mm, as shown in Fig. 1b. The impedance of the MTL can be calculated using the following  equations38:
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where the effective dielectric constant of the transmission line is εre = 2.67 and the impedance of wave in free 
space is η = 120π Ω, and the width of the microstrip is cw = 1.88 mm.

The basic structure of complementary resonators consists of two resonators, each of which is designed to 
have an electric dipole moment that cancels out the electric dipole moment of the other resonator. This cancel-
lation leads to a null or notch in the transmission response of the filter at the resonant frequency. The bandwidth 
and depth of the notch can be adjusted by modifying the resonators’ geometrical properties, such as their size, 
shape, and spacing.

Case studies: circular and square CSRR filters. Consider the following two basic complementary met-
amaterial resonators, a circular complementary split ring resonator (CC-SRR)39, and a square complementary 
split ring resonator (SC-SRR)40.

Both are used to design two microwave notch filters, which will serve as case studies in "Surrogate-assisted 
statistical design of notch filters using response features" and "Demonstration examples" sections of this work. 
Five variables are used to describe the geometry of CC-SRR (r1, r2, r3, r4, and s) and SC-SRR (d1, d2, d3, d4, and d5) 
as shown in Fig. 2a and b, respectively. For the sake of illustration, the geometric parameters of both resonators 

(2)Zc =
η

√
εre
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Figure 1.  (a) The direction of electric and magnetic fields generated by the microstrip transmission line (MTL) 
coupled to a ground plane, (b) dimensions of MTL and a dielectric substrate.

Figure 2.  Resonator-based notch filters: (a) geometry of the circular complementary split ring resonator 
(CC-SRR), (b) geometry of the square complementary split ring resonator (SC-SRR), (c) fabricated microwave 
notch filter based on CC-SRR (d) fabricated microwave notch filter based on SC-SRR.
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are optimized to achieve a 15 GHz resonance frequency with maximum notch depth. CC-SRR optimization 
results in r1 = 0.41 mm, r2 = 0.59 mm, r3 = 0.87 mm, r4 = 1.23 mm, and s = 0.18 mm. The resonant frequency is 
15 GHz, and the notch depth of − 26.65 dB is obtained by optimization of CC-SR. The optimization of SC-SRR 
yields the following dimensions d1 = 0.82 mm, d2 = 1.05 mm, d3 = 1.42 mm, d4 = 2.07 mm, and d5 = 0.34 mm. The 
simulated resonance frequency is 15 GHz, and the observed notch depth is − 26.05 dB.

Filter prototyping: manufacturing tolerances. The optimized microwave notch filters have been 
manufactured by chemical etching on a double-sided copper-clad laminated (17.5 μm) RO4003C substrate, as 
illustrated in Fig. 2c and d, respectively.

The simulated and measured results for both microwave notch filters are shown in Fig. 3. The measured reso-
nant frequency of the CC-SRR microwave notch filter is 14.51 GHz with a notch depth of − 19.83 dB, indicating 
a difference of 0.49 GHz between simulation and measurement. The SC-SRR microwave notch filter’s measured 
resonant frequency is 14.62 GHz with a notch depth of − 21.2 dB, showing a 0.38 GHz difference between simu-
lation and measurement. These discrepancies illustrate the effects of manufacturing tolerances elaborated on in 
"Introduction" section, although the frequency shifts are—in part—due to inaccurate simulation process. The 
filters of Fig. 2 will be used as demonstration case studies to explain and illustrate the robust design procedure 
discussed in the remaining part of this article.

Surrogate‑assisted statistical design of notch filters using response features
This section introduces the proposed statistical design approach. We start by discussing design specifications 
for the notch filters considered in this work as well as design optimization procedure ("Performance specifica-
tions: nominal design and design optimization" section), followed by a definition of the fabrication yield in the 
context of notch filters ("Fabrication yield: definition and numerical estimation" section), as well as formulating 
the robust design task ("Robust design and its challenges" section). The algorithmic tools developed to carry out 
yield maximization in a computationally-efficient manner, i.e., feature-based surrogate models and surrogate-
assisted framework involving sequential approximate optimization, are introduced in "Feature-based surrogate 
modeling of notch filters" and "Surrogate-assisted yield estimation and optimization by feature-based models" 
section, respectively.

Performance specifications: nominal design and design optimization. The concept of design 
optimality depends on the performance specifications imposed upon the circuit at hand. For the purpose of sub-
sequent considerations, let us assume that ft − B/2 ≤ f ≤ ft + B/2 be the range of frequencies f of interest, over which 
the filter transmission coefficient |S21(x,f)| should not exceed Lmax (e.g., − 15 dB), where B is the target operating 
bandwidth; ft is the target center frequency. We also assume that this condition is fulfilled at the nominal design 
x(0), i.e., we have

The nominal design itself, is assumed to be obtained by allocating the filter resonance at the prescribed (target) 
frequency ft and, simultaneously, by minimizing the level of transmission |S21| at ft. We use the following notation:

• x = [x1 … xn]T—a vector of designable (geometry) parameters of the filter;
• f0(x)—resonant frequency at design x;
• L0(x) − |S21| level at f0 and design x.

(3)
∣

∣

∣
S21

(

x(0), f
)∣

∣

∣
≤ Lmaxfor all f ∈ F =

[

ft−B/2, ft + B/2
]

Figure 3.  Transmission coefficients |S21| of the simulated and measured microwave notch filters based on 
CC-SRR and SC-SRR.
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Consequently, the nominal design x(0) is found by solving

where the objective function

Thus, the goal is to minimize the level L0 while ensuring that the resonant frequency equals to ft. Note that we 
have two objectives here, with the level being the primary one, and the resonant frequency allocation  implicitly41 
handled as an equality constraint. The second term in (5) is a penalty term that enforces satisfaction of the con-
dition f0(x(0)) = ft

42. Here, the problem (4), (5) is solved using the trust-region (TR) gradient-based  algorithm43 
with the filter sensitivities estimated using finite differentiation (FD)44. The TR algorithm produces a series x(i), 
i = 0, 1, …, of approximations to x(0)

The linearized objective UL is defined similarly as in (5) but the with filter transmission S21 evaluated using 
the first-order Taylor model S21L

(i)(x,f) = S21(x(i),f) + G21(x(i),f)⋅(x − x(i)). As mentioned, the gradient G21(x,f) of 
S21(x,f) at x and frequency f is evaluated using  FD44. The search size d(i) > 0 is adjusted using the TR  rules43. The 
sub-problem (6) is solved using a Sequential Quadratic Approximation (SQP)  algorithm45. More specifically its 
implementation available in Matlab Optimization Toolbox is  employed46.

For the sake of illustration and subsequent considerations, the circular and square CSRR-based filters of "Res-
onator-based notch filters: case studies" section have been optimized assuming ft = 10 GHz. The initial designs are 
xinit = [0.5 0.8 1.1 1.4 0.3]T and xinit = [1.0 1.6 2.2 2.8 0.2]T for the circular and square filters, respectively, whereas 
the nominal design found using (4), (3) are x(0) = [0.433 0.790 1.305 1.685 0.202]T and x(0) = [0.956 1.563 2.152 
2.791 0.221]T, respectively (dimensions in mm). The computational cost of the optimization process was 48 and 
27 EM analyses of the respective circuit. Figure 4 shows the filter responses at the initial and nominal designs.

Fabrication yield: definition and numerical estimation. Let x(0) be a nominal design of the CSRR-
based filter as discussed in "Performance specifications: nominal design and design optimization" section. Recall, 
that x(0) has been obtained to allocate the notch at the target frequency f0 and to increase its depth L0 as much 
as possible. As indicated in "Filter prototyping: manufacturing tolerances" section, unavoidable manufacturing 
tolerances may lead to a severe misalignment between the simulation-predicted and experimentally-validated 
circuit response, especially in terms of the notch frequency shifts. In particular, the filter prototype may fail to 
fulfill the performance specifications imposed on its electrical characteristics. The purpose of statistical analysis 
and robust design is to quantify the effects of manufacturing inaccuracies, and to increase the likelihood that the 
specifications are satisfied under the assumed tolerance levels. Let dx stand for a vector of deviations of the cir-
cuit geometry parameters. Here, it is assumed that these deviations are a result of manufacturing imperfections, 
e.g., under/over etching in chemical processing pertinent to the PCB technology. In this work, it is assumed that 
dx follows joint Gaussian distribution with zero mean and variance σ, which is identical for all parameters. In 
general, the distribution may account for parameter correlations and described using an appropriate covariance 
matrix.

(4)x(0) = argmin
x

U
(

x, ft
)

(5)U
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)

= L0(x)+ β
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Figure 4.  CSRR-based filters of "Resonator-based notch filters: case studies" section: initial and optimized 
nominal designs assuming target operating frequency ft = 10 GHz: (a) circular filter, (b) square filter.
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We also define an auxiliary function H(x), which is used to discriminate between designs that satisfy perfor-
mance specifications (for which H(x) = 1) and those that do not (for which H(x) = 0). Going back to our notch 
filter, we would have

The primary statistical figure of merit is the fabrication yield Y, which is defined as follows. Let p(x,x(0)) be 
the probability density function describing deviations of the actual design x from the nominal one x(0). We  have47

The feasible set Xf contains all designs that satisfy the performance specifications, i.e., x ∈ Xf if and only if 
H(x) = 1.

In practice, the feasible set is not known explicitly, therefore, the yield is estimated using numerical methods, 
in particular, Monte Carlo (MC) simulation. Let dx(k), k = 1, …, Nr, be random designs randomly assigned using 
the density function p. The estimated yield is then obtained as

where H is defined as in (7).

Robust design and its challenges. A robust design task can be posed in various ways, e.g., as design 
centering, yield optimization, tolerance hypervolume  maximization26,29,33,48. Notwithstanding, the overall objec-
tive is to increase the likelihood that the performance specifications imposed upon the circuit are satisfied under 
the assumed uncertainties, both aleatory (such as manufacturing inaccuracies)21 and epistemic (such as the lack 
of knowledge about operating conditions, etc.)30. Here, we are only interested in fabrication tolerances, and the 
robust design problem is formulated as yield maximization. Consequently, the optimum design is found by 
solving

As already mentioned in "Introduction" section, statistical design is a computationally expensive endeav-
our. On the one hand, numerical estimation of the statistical figures of merit such as yield (cf. "Performance 
specifications: nominal design and design optimization" section) is already expensive. For example, producing 
reliable results through MC simulation (cf. (5)) normally requires hundreds of EM analyses, whereas solving 
(5) entails a large number of yield estimations, which is prohibitive when carried out directly at the level of EM 
simulations. Consequently, the majority of practical robust design techniques involve fast surrogate models to 
expedite evaluation of the yield and its optimization. As indicated in "Introduction" section, behavioural models 
are typically used such as kriging, neural networks, or polynomial chaos  expansion20,22,31,34,49. Notwithstanding, 
constructing reliable metamodels over multidimensional parameter space poses considerable challenges, and 
generally requires large amounts of training data, which is detrimental to the computational efficiency of the 
design process. In this work, in order to facilitate surrogate model construction of notch filters for the purpose 
of yield estimation, a response feature technology is  incorporated50, as elaborated on in "Feature-based surrogate 
modeling of notch filters" section.

Feature‑based surrogate modeling of notch filters. Behavioral modeling of highly-nonlinear 
responses of notch filters is a challenging task, which requires considerable computational investments in terms 
of training data acquisition. In this work, we use a response feature technology to facilitate the modeling process, 
and reduce to cost of statistical analysis of the filters, and, subsequently, their yield optimization. Reformulating 
the modeling task in terms of appropriately defined characteristic points smoothens out the functional land-
scape to be handled, and makes a construction of a surrogated model considerably  simpler49,50. The characteris-
tic (or feature) points should account for design specifications. Given the condition (3) assumed in this paper, it 
is sufficient to consider the following vectors

and

where fL(x) and fH(x) are the frequencies corresponding to the filter bandwidth at the Lmax level (cf. (3)) of the 
transmission characteristic |S21|. Correspondingly, LL(x) and LH(x) are both equal to Lmax. Thus, the vectors pf 
and pL stand for the frequency and level coordinates of the feature points. We will also use the notation

(7)H(x) =
{

1 max
{

f ∈ F : |S21(x, f )|
}

≤ Lmax

0 otherwise

(8)Y(x(0)) =
∫

Xf

p(x, x(0))dx

(9)Y(x(0)) = N−1
r

∑Nr

k=1
H(x(0) + dx(k))

(10)x∗ = argmin
x

{−Y(x)}

(11)pf (x) = [fL(x) fH (x)]T

(12)pL(x) = [LL(x) LH (x)]T

(13)P(x) = [pf (x)T pL(x)
T ]T
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The vector P(x) is sufficient to determine whether the filter satisfies the performance condition (3) at design 
x, which can be re-written in terms of the feature points as

Figure 5a shows an exemplary response of a notch filter (here, the circular CSRR-based structure of "Resona-
tor-based notch filters: case studies" section) along with the corresponding feature points. Further, Fig. 5b shows 
a family of filter responses evaluated over a selected region of the parameter space, here, x = [r1 r2 r3 r4 s]T with 
0.4 ≤ r1 ≤ 0.6, 0.8 ≤ r2 ≤ 1.0, r3 = 1.3, r4 = 1.7, s = 0.2 (all dimensions in mm), whereas Fig. 5c illustrates the frequency 
coordinates of the feature points of the same region. It can be observed that behavioral modeling of the feature 
point is considerably simpler than modeling of the complete filter responses, which is due to weakly-nonlinear 
dependence between pf(x) and geometry parameter vector x.

Given the aforementioned properties of response features, the feature-based surrogate considered in this work 
takes a simple form, which is a quadratic model without mixed terms, defined below. In Sect. "Surrogate-assisted 
yield estimation and optimization by feature-based models," we will be discussing an iterative yield optimization 
procedure, which produces a sequence of designs x(i), i = 0, 1, … (x(0) being the nominal design of "Fabrication 
yield: definition and numerical estimation" section). The feature-based surrogates constructed in each iteration 
will be denoted as sP

(i), and defined as

The coefficient vector λ = [λL
T λH

T]T, λL = [λL.0 … λL.2n]T and λH = [λH.0 … λH.2n]T, is found by solving the regres-
sion problems

where {xB
(k),pf(xB

(k))} are training pairs with xB
(0) = [xB.1

(0) … x B.n
(0)]T = x(i) = [x1

(i) … xn
(i)]T, xB

(k) = [x1
(i) … 

xk−1
(i) xk

(i) + dmax xk+1
(i) … xn

(i)]T for k = 1, …, n (positive perturbations), and xB
(k) = [x1

(i) … xk−1−n
(i) xk−n

(i) − dmax 
xk+1−n

(i) … xn
(i)]T f or k = n + 1, …, 2n (negative perturbations). Here, dmax = 3σ where σ was the joint variance 

of the Gaussian probability distribution assumed to govern the fabrication tolerances of the filter (cf. "Robust 
design and its challenges" section).

(14)fL(x) ≤ ft−B/2 AND fH (x) ≥ ft + B/2
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Figure 5.  Response features of notch filters: (a) transmission responses and two feature points with the 
corresponding feature vectors pf(x) = [fL(x) fH(x)]T and pL(x) = [LL(x) LH(x)]T, here, corresponding to 
Lmax = − 15 dB; (b) family of filter responses corresponding to vectors x = [r1 r2 r3 r4 s]T with 0.4 ≤ r1 ≤ 0.6, 
0.8 ≤ r2 ≤ 1.0, r3 = 1.3, r4 = 1.7, s = 0.2 (all dimensions in mm); (c) frequency coordinates of the feature points 
corresponding to the same parameter space region. Observe that modeling of complete responses is 
incomparably more challenging than modeling of the feature point coordinates.
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Because the problems (16) are linear regression tasks, the coefficients λ can be found analytically as

and

where

The mentioned weakly-nonlinear dependence between the feature point coordinates the geometry param-
eters of the notch filter makes the model (15) reliable despite being set up using only 2n + 1 training samples. 
Furthermore, its extrapolation capability is expected to be superior to that of conventional (e.g., kernel-based) 
surrogates such as radial-basis functions or kriging, let alone neural networks.

For illustration purposes, a feature-based surrogate (15) has been established for the circular CSRR-based 
filter of "Resonator-based notch filters: case studies" section at the nominal design x(0) = [0.344 0.790 1.305 1.685 
0.202]T discussed in "Fabrication yield: definition and numerical estimation" section. The assumed variance 
σ = 0.017 mm with the corresponding dmax = 0.05 mm, which are the figures corresponding to typical manufac-
turing tolerances for PCB technology (chemical etching). The assumed target level Lmax = − 10 dB.

Table 1 shows the relative RMS error values for the feature-based surrogate sP
(0)(x) and the kriging interpola-

tion  models51, set up in the interval X(0) = [x(0) − dmax, x(0) + dmax] using 11, 20, 50 and 100 training data samples 
allocated using Latin Hypercube  Sampling52. Here, kriging has been employed as a benchmark method as one of 
the most popular data-driven modeling approaches. The modeling error has been estimated using 50 independ-
ent testing points allocated in the interval X(0) (to test generalization error of the surrogates), and then, in the 
interval [x(0) − 4dmax/3, x(0) + 4dmax/3] \ X(0) to test the extrapolation capability of the models within the region 
of the ‘thickness’ dmax/3 out of X(0). The latter will correspond to the local yield optimization domain discussed 
in "Feature-based surrogate modeling of notch filters" section. In the case of kriging, the surrogate has been 
established for the complete transmission characteristics (separately for the real and imaginary parts thereof); 
however, for fair comparison, the error has been evaluated for the feature point coordinates extracted from the 
model-predicted filter characteristics. As it can be observed, the feature-based surrogate model exhibits excel-
lent generalization corresponding to only 0.17% of relative RMS error, which is significantly better than kriging 
model set up using the same number of training samples (eleven). As a matter of fact, conventional surrogate 
needs 100 training samples (cf. last row of Table 1) to match the predictive power of the feature-based model. 
In terms of extrapolation capability, which is important from the perspective of using the metamodel for yield 
optimization, the feature-based model exhibits by far the best performance of 1.5% of relative RMS error, which 
cannot be matched by conventional models even when using 100 training data samples.

Figure 6 shows the scatter plots of the feature-based model for both frequencies fL and fH. Excellent predictive 
power of the model can be observed.

Surrogate‑assisted yield estimation and optimization by feature‑based models. The filter 
yield is optimized using the feature-based surrogate model (15), starting from the nominal design x(0). The opti-
mization process is iterative, and the new iteration point is obtained by solving

(17)�L = A−1FL

(18)�H = A−1FH

(19)A =









1 x
(0)
B.1 · · · x

(0)
B.n (x

(0)
B.1)

2 · · · (x
(0)
B.n)

2

...
...

. . .
...

... · · ·
...

1 x
(2n)
B.1 · · · x

(2n)
B.n (x

(2n)
B.1 )2 · · · (x

(2n)
B.n )2









(20)FL =











fL(x
(0)
B )

...

fL(x
(2n)
B )











, FH =











fH (x
(0)
B )

...

fH (x
(2n)
B )











Table 1.  Predictive power of the feature-based and conventional surrogate models. #  Testing samples allocated 
in the same domain X(0) = [x(0) − dmax, x(0) + dmax] as used to establish the model. $  Testing samples allocated in 
the domain [x(0) − 2dmax, x(0) + 2dmax] \ X(0), which is external to the domain of model establishment.

Modeling technique Number of training samples Generalization  error# (%) Extrapolation  error$ (%)

Feature-based surrogate 11 0.17 1.5

Kriging interpolation

11 2.44 4.8

20 0.40 3.0

50 0.20 2.4

100 0.16 2.0
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where the symbol YS
(i) refers to the circuit yield estimated using the surrogate model sP

(i)(x) using the Monte 
Carlo process with 10,000 random samples generated using joint Gaussian distribution with the variance σ. 
The maximum deviation is limited to dmax = 3σ. The search domain is set to be an interval X(i) = [x(i) − dmax/3, 
x(i) + dmax/3]. It should be noted that evaluation of the yield YS

(i)(x) for any x ∈ X(i) different than x(i) partially 
requires extrapolation. This is because the surrogate model domain is the interval [x(i) − dmax, x(i) + dmax], whereas 
the yield estimation is based on the samples generated within the interval [x − dmax, x + dmax]. However, as demon-
strated in "Robust design and its challenges" section, the extrapolation capability of the feature-based metamodel 
is excellent within the considered region (cf. Table 1).

The search process is terminated upon convergence in argument, i.e., when ||x(i+1) − x(i)||< ε, where ε =  10−2 
for the experiments of "Demonstration examples" section. Figure 7 shows a graphical illustration of the initial 
surrogate model domain and the search region, as well as the progression of the search domains leading to the 
final design x* = x(i+1), with i being the index of the iteration at which the optimization process was terminated. 
The flow diagram of the surrogate-assisted yield optimization process can be found in Fig. 8.

Demonstration examples
This section discusses several demonstration examples that illustrate the operation and performance of the robust 
design procedure introduced in "Surrogate-assisted statistical design of notch filters using response features" sec-
tion. We consider the circular and square CSRR-based notch filters introduced in "Resonator-based notch filters: 
case studies" section. In both cases, the nominal design is obtained for the target operating frequency of 10 GHz 

(21)x(i+1) = arg min
x∈X(i)

{−Y
(i)
S (x)}
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Figure 6.  Scatter plots for feature-based surrogate model (15) constructed using 11 training samples for the 
circular CSRR-based notch filter at the nominal design x(0), assuming − 10 dB target level. Solid line represents 
an identify function, whereas circles represent 50 testing points. For comparison, gray circles show the scatter 
plot for kriging interpolation surrogates constructed using 20 training samples.

                                                    (a)                                                                           (b)

x(0)

2dmax

x(1)

Initial search domain

2dmax/3
Initial surrogate

model domain x(0)

x(1)

x(2) x*

Figure 7.  Yield optimization using feature-based surrogates: (a) nominal design, initial surrogate model 
domain (interval [x(0) − dmax, x(0) + dmax]) and initial search domain (interval [x(0) − dmax/3, x(0) + dmax/3]); (b) yield 
optimization with consecutive search domains marked as dashed-line intervals. A new feature-based surrogate 
model is constructed at each point x(k) as described in "Robust design and its challenges" section.
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as elaborated on in "Performance specifications: nominal design and design optimization" section. The assumed 
variance for geometry parameter tolerances is σ = 0.017 mm, which corresponds to the maximum deviation of 
about 0.05 mm, consistent with PCB technology (chemical etching). The yield estimation and optimization results 
obtained using the feature-based surrogates are validated using EM-driven Monte Carlo analysis.

Example I: circular CSRR‑based notch filter. Our first demonstration example is the circular CSRR-
based notch filter of "Resonator-based notch filters: case studies" section. The following two scenarios were 
considered:

• Target bandwidth B = 200 MHz with the target level Lmax = − 15 dB;
• Target bandwidth B = 500 MHz with the target level Lmax = − 10 dB.

In both cases, the center frequency is f0 = 10 GHz, and the nominal design x(0) = [0.433 0.790 1.305 1.685 
0.202]T mm is found as described in "Performance specifications: nominal design and design optimization" sec-
tion. The yield-optimized designs are x*.I = [0.499 0.709 1.253 1.757 0.256]T and x*.II = [0.493 0.694 1.230 1.772 
0.242]T, for Case I and II, respectively. Table 2 shows the initial and final values of the fabrication yield predicted 
by the surrogate model, as well as validated using EM-based Monte Carlo analysis. Excellent agreement between 
surrogate-predicted and EM-simulated data can be observed. In both cases, the yield has been improved by 
about ten percent. One of the most important advantages of the presented approach is remarkable computational 
efficiency. The cost of the entire optimization process is lower than one hundred EM analyses. Table 2 also shows 
comparison with yield optimization using sequential approximate optimization and kriging interpolation as 
the surrogate modeling method. The kriging surrogate has been established in each iteration using 100 training 
samples, which ensures the accuracy comparable to the feature-based model (cf. Table 1), but with still noticeably 
worse extrapolation capability. Complete frequency responses of the filter are being modelled in this case. As it 
can be observed, the yield optimization results are generally similar in terms of the final yield values; however, 
the agreement between surrogate- and EM-simulation-predicted yield is not as good as for the feature-based 
model. Furthermore, the computational cost of the optimization process is significantly higher, by about an order 
of magnitude, due to a considerably larger size of the training dataset required to establish the model.

Nominal 

design x(0)

Tolerance parameters 

(variance )

Set iteration index i = 0

Generate design perturbations xB(k), k = 1, …, 2n, of x(i)

Perform EM analysis and extract feature vectors pf(xB(k))

Identify feature-based surrogate sP(i)(x)

Set up search domain X(i)

Obtain new design

Termination 

condition?

No

Yes

EM 

Solver

END

i = i + 1

Figure 8.  Flow diagram of the yield optimization process using feature-based surrogates.
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Figures 9 and 10 show the filter transmission responses at the nominal and yield-optimized designs along 
with the visualization of EM-based Monte Carlo simulation for both considered cases. As it can be seen, the 
number of circuit responses violating design specifications is considerably smaller for the optimized designs as 
compared to the nominal ones, which is indicative of (visually) improved fabrication yield.

Example II: square CSRR‑based notch filter. The second demonstration example is the square CSRR-
based notch filter, also introduced in "Resonator-based notch filters: case studies" section. We consider the same 
scenarios as in "Example I: circular CSRR-based notch filter" section, i.e.: (1) target bandwidth B = 200 MHz 

Table 2.  Yield optimization and benchmarking results for circular CSRR-based notch filter. $  Monte Carlo 
simulation carried out using 500 random samples. #  Cost expressed in terms of the number of EM simulations 
of the filter.

Case
Surrogate modeling 
method

Design specifications Initial yield Optimized yield

Yield optimization 
 cost#B [MHz] Lmax [dB]

Surrogate-predicted 
(%)

EM-driven MC 
 simulation$ (%)

Surrogate-predicted 
(%)

EM-driven MC 
 simulation$ (%)

I
Feature-based (this 
work) 200 − 15

78 78 88 88 99

Kriging interpolation 75 73 87 84 800

II
Feature-based (this 
work) 500 − 10

87 87 98 98 88

Kriging interpolation 91 86 100 95 900

Figure 9.  Yield optimization of circular CSRR-based notch filter, Case I: (a) transmission response at the 
nominal and optimized designs, (b) visualization of the EM-driven MC analysis at the nominal design, (c) 
visualization of the EM-driven MC analysis at the optimized design. The black lines represent the filter response 
at the nominal and the optimized designs, respectively, whereas the horizontal lines mark the target operating 
bandwidth.
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with the target level Lmax = − 15 dB; (2) target bandwidth B = 500 MHz with the target level Lmax = − 10 dB. The 
center frequency is as before f0 = 10 GHz. The nominal design x(0) = [0.956 1.563 2.152 2.791 0.221]T mm has 
been obtained as discussed in "Performance specifications: nominal design and design optimization" section. 
The yield-optimized designs are x*.I = [9.997 1.429 2.120 2.879 0.204]T and x*.II = [0.945 1.479 2.145 2.863 0.214]T, 
for Case I and II, respectively. The initial and final values of the fabrication yield predicted by the surrogate 
model and corroborated through EM-based Monte Carlo analysis can be found in Table 3. Again, the agree-
ment between the feature-model-predicted and EM-simulated data is excellent. The yield improvement is twelve 
percent for Case I, and fifteen percent for Case II. Similarly as for the circular filter, the optimization cost is very 
low and corresponds to only about a hundred of EM analyses on the average. The filter transmission responses 

Figure 10.  Yield optimization of circular CSRR-based notch filter, Case II: (a) transmission response at the 
nominal and optimized designs, (b) visualization of the EM-driven MC analysis at the nominal design, (c) 
visualization of the EM-driven MC analysis at the optimized design. The black lines represent the filter response 
at the nominal and the optimized designs, respectively, whereas the horizontal lines mark the target operating 
bandwidth.

Table 3.  Yield optimization and benchmarking results for square CSRR-based notch filter. $  Monte Carlo 
simulation carried out using 500 random samples. #  Cost expressed in terms of the number of EM simulations 
of the filter.

Case
Surrogate modeling 
method

Design specifications Initial yield Optimized yield

Yield optimization 
 cost#B [MHz] Lmax [dB]

Surrogate-predicted 
(%)

EM-driven MC 
 simulation$ (%)

Surrogate-predicted 
(%)

EM-driven MC 
 simulation$ (%)

I
Feature-based (this 
work) 200 − 15

77 78 89 89 110

Kriging interpolation 80 77 91 87 800

II
Feature-based (this 
work) 500 − 10

78 80 93 94 77

Kriging interpolation 75 78 97 92 800
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at the nominal and yield-optimized designs as well as visualization of EM-based Monte Carlo simulation can be 
found in Figs. 11 and 12 for both considered cases. Similarly as for the previous example, the proposed method 
has been benchmarked against kriging interpolation as the surrogate modeling technique (cf. Table 3). Here, the 
kriging surrogate has been established in each iteration using 100 training samples to ensure fair comparison, 
i.e., similar predictive power of the kriging surrogate versus feature-based one. The results are consisted with 
those obtained for the first example: the yield optimization results are similar but the agreement between sur-
rogate- and EM-simulation-predicted yield is noticeably degraded as compared with the feature-based model. 
Also, kriging-based optimization incurs considerably (almost ten-fold) higher computational expenses.

Discussion. The results presented in Table 1 through 3 allow us to make several observations concerning 
the performance of the proposed feature-based yield estimation and optimization procedure. These have been 
summarized below:

• Appropriate definition and utilization of characteristic points (here, the frequencies corresponding to the 
assumed target level of the transmission response) enables a considerable simplification and regularization 
of the yield estimation task, which carries over to yield optimization;

• Feature-based model exhibits remarkable predictive power while being established using a handful of training 
data samples (here, only 2n + 1 = 11). Analytically, the model is a low-order polynomial operating at the level 
of the feature points, which ensures excellent generalization but also extrapolation. The latter is instrumental 
for the reliability of the optimization process.

• When compared to conventional behavioral modeling, here, kriging interpolation, feature-based model 
can be set up using ten-fold smaller training datasets. This is essential for the efficiency of the optimization 
process, which requires rendition of multiple models.

Figure 11.  Yield optimization of square CSRR-based notch filter, Case I: (a) transmission response at the 
nominal and optimized designs, (b) visualization of the EM-driven MC analysis at the nominal design, (c) 
visualization of the EM-driven MC analysis at the optimized design. The black lines represent the filter response 
at the nominal and the optimized designs, respectively, whereas the horizontal lines mark the target operating 
bandwidth.
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• It can be noted that maximum-yield designs are not optimum in the nominal sense, as the resonant frequency 
of the filter is generally misaligned with respect to its target value (cf. Figures 9a, 10a, 11a, and 12a). Instead, 
the optimization process relocates the design so that the filter transmission response is adjusted in a more 
advantageous position (from the point of view of its deviations due to tolerances) at the target level Lmax. 
When changing Lmax (Case I vs. Case II), the optimum design is adjusted accordingly.

• Yield estimation accuracy is excellent as corroborated using EM-driven Monte Carlo analysis based on 500 
random samples. The differences are within one percent, which is actually less than the yield estimation 
variance by the MC process.

• The overall computational cost of yield optimization process is around one hundred EM analyses, which is 
an exceptionally low number in the context of robust design. As a matter of fact, this cost is comparable to 
that of conventional gradient-based optimization, and very much practical from the engineering perspective.

• Improvement of the fabrication yield, here, by ten to fifteen percent, depending on the considered case, greatly 
improves the likelihood that the assumed performance specifications will be satisfied given the underlying 
manufacturing tolerances.

Overall, the performance of the presented feature-based statistical design procedure is highly competitive. 
The algorithm itself is straightforward to implement and incorporated into conventional optimization routines.

Conclusion
In this work, we introduced a simple yet powerful and computationally efficient procedure for statistical design of 
microstrip resonator-based notch filters. Our methodology capitalizes on the response feature approach, where 
the evaluation of the filter performance is carried out at the level of appropriately defined characteristics points 
of the system outputs. An accurate and analytically straightforward behavioral model is then constructed at the 
same level and utilized for rapid estimation of statistical figures of merit (here, the fabrication yield). A yield 

Figure 12.  Yield optimization of square CSRR-based notch filter, Case II: (a) transmission response at the 
nominal and optimized designs, (b) visualization of the EM-driven MC analysis at the nominal design, (c) 
visualization of the EM-driven MC analysis at the optimized design. The black lines represent the filter response 
at the nominal and the optimized designs, respectively, whereas the horizontal lines mark the target operating 
bandwidth.
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maximization procedure is developed by iteratively re-building the feature-based surrogate over local domain 
relocated along the optimization path. The operation and performance of the proposed approach has been 
demonstrated using two resonator-based notch filters, as well as a comparison of the modeling accuracy to the 
conventional methods working with complete filter responses. The obtained results corroborate a remarkably 
good predictive power of the feature-based metamodels, including their extrapolation capability. The models are 
constructed using a very small number of training data samples, which is linearly-dependent on the parameter 
space dimensionality. On the other hand, the computational cost of the yield optimization process corresponds 
to only about one hundred of EM simulations of the respective filter structure. At the same time, the yield esti-
mation reliability is excellent, as validated through EM-driven Monte Carlo analysis.

Owing to its accuracy and computational efficiency, the statistical design procedure presented in this article 
can be considered a practical methodology for improving robustness of microstrip notch filter designs. It is 
straightforward to implement and handle, and it can be combined with various local search routines as optimiza-
tion engines for solving local yield improvement sub-problems. The future work will be focused on expanding 
the applicability scope of the method, in particular, to include other types of uncertainties, e.g., pertaining to 
material parameters of the circuit substrate, as well as assembly inaccuracies.

A potential limitation of the proposed technique is that it requires the existence of the feature points across 
the entire yield estimation and optimization domain. This may become a problem if parameter deviations are 
excessively large, and the circuit responses are severely distorted. On the other hand, in the context of statistical 
design, this potential difficulty would not be as much pronounced because parameter deviations are normally 
reasonably small. Their sources are manufacturing imperfections, and, depending on the fabrication process, 
the tolerance levels are within the range of small fractions of millimeters. For example, the numbers assumed in 
"Demonstration examples" section (maximum deviation of 0.05 mm) are typical for chemical etching. In the case 
of mechanical or laser-based milling, the tolerances are even smaller, at the level of 0.01 mm or less. Furthermore, 
maintaining high values of yield throughout the optimization process implies that the circuit response will be 
not be distorted, which reduces the likelihood of feature disappearance.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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