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Abstract

The numerical investigations of size effects in granular bodies during a plane strain compression test are performed. To
describe a mechanical behaviour of a cohesionless granular material during a monotonous deformation path in a plane
strain compression test, a micro-polar hypoplastic constitutive model was used. It includes particle rotations, curvatures,
non-symmetric stresses, couple stresses and the mean grain diameter as a characteristic length. In the paper, deterministic
and statistical size effects in geometrically similar granular specimens are analysed. The deterministic calculations were car-
ried out with a uniform distribution of the initial void ratio. To investigate a statistical size effect, in order to reduce the
number of realizations without loosing the accuracy of the calculations, a Latin hypercube method was applied to generate
Gaussian truncated random fields in a granular specimen. The results show that the statistical size effect is significantly
stronger than the deterministic one. The shear resistance decreases and the rate of softening increases with increasing spec-
imen size. The effect of the boundary roughness on shear localization is pronounced.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

One of the most important properties of the behaviour of many engineering materials is the size effect phe-
nomenon, viz. experimental results vary with the size of the specimen. In the case of granular bodies, the shear
resistance increases with decreasing specimen size and increasing mean grain diameter during many experi-
ments with strain localization (Wernick, 1978; Tatsuoka et al., 1997; Tejchman and Herle, 1999; Tejchman,
2004b). Thus, results from laboratory tests which are scaled versions of the actual structures cannot be directly
transferred to them. Similarly as in brittle materials (Bazant and Planas, 1998), two features can be defined:
deterministic and statistical. The first one is caused by strain localization which cannot be appropriately scaled
in laboratory tests. The specimen strength increases with increasing ratio lc/L (lc, characteristic length of
0020-7683/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
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microstructure influencing both the thickness and spacing of strain localization; L, specimen size). This feature
is strongly influenced by the pressure level (Tatsuoka et al., 1997); friction ratio and dilatancy decrease with
increasing pressure. A statistical (or stochastic) effect is caused by the spatial randomness of material proper-
ties. According to Weibull’s (1951) theory, this effect is caused by weak spots whose relative amount usually
grows with increasing specimen size. Thus, the strength diminishes with increasing specimen size. Up to now,
such size effects are not taken into account in the specifications like design codes for engineering structures.
The physical understanding of size effects is of major importance for civil engineers who try to extrapolate
experimental outcomes at laboratory scale to results which can be used in big scale situations. Since large geo-
systems or structures are beyond the range of testing in laboratories their design has to rely on a realistic
extrapolation of testing results with smaller size.

In the case of granular materials involving shear localization, empirical size effect laws are not known as the
performance of laboratory tests with large specimens is more complex than in brittle solids. In addition, the
effect of pressure is more pronounced. Deterministic size effects have already been studied in granular mate-
rials using a FEM based on enhanced continua including a characteristic length for a kind of micro-structure
(e,g. Maier, 2002; Tejchman, 2004a), and by a strong discontinuity approach (Regueiro and Borja, 2001)
whereas statistical size effects have rarely been simulated (Gutierrez and de Borst, 1998; Gutierrez, 2006; Nie-
munis et al., 2005).

For brittle materials are only few reliable approaches to the size effect. For example, two deterministic size
effects proposed by Bazant (Bazant and Planas, 1998) for geometrically similar structures allow to take into
account a size difference by determining the tensile strength of pre-notched structures and structures without
an initial crack. The material strength is bound for small sizes by a plasticity limit whereas for large sizes the
material follows linear elastic fracture mechanics. The most known statistical effect is the already mentioned
Weibull’s (1951) theory (called also the weakest link theory) which is based on a distribution of flaws in mate-
rials. It postulates that a structure is as strong as its weakest component. The structure fails when its strength is
exceeded, since a stress redistribution is not considered. This model is not able to account for a spatial corre-
lation between local material properties.

The intention of the numerical simulations for this paper is to investigate deterministic and statistical
size effects (expressed by the specimen size and the distribution of the initial void ratio) in cohesionless
granular materials like sand by considering the influence of shear localization under quasi-static conditions
on the peak shear resistance and at residual states. In the calculations, attention was laid on the effect of a
stochastic distribution of the initial void ratio on the shear zone formation. Size effects were investigated
only for a plane strain compression test under constant lateral pressure, which is an important test to
investigate granular materials (Vardoulakis, 1977; Vardoulakis et al., 1978; Desrues and Viggiani, 2004).
A finite element method with a micro-polar hypoplastic constitutive model (Tejchman and Gudehus,
2001; Tejchman and Niemunis, 2006) was used which is able to describe the essential properties of gran-
ular bodies during shear localization in a wide range of pressures and densities during monotonous defor-
mation paths. Various properties of granular bodies may be considered as randomly distributed. In the
present work, for the sake of simplicity, only fluctuations of void ratio are of primary interest as proposed
by Gudehus and Nübel (2004). Deterministic plane strain calculations were performed with a uniform dis-
tribution of the initial void ratio in dense sand for six geometrically similar specimens of different sizes.
The statistical size effect analyses were carried out with spatially correlated homogeneous distributions
of an initial void ratio for two specimen sizes of dense sand. The effect of boundary roughness on size
effects and shear localization was also investigated. Truncated Gaussian random fields were generated
using a conditional rejection method (Walukiewicz et al., 1997) for weakly and strongly correlated random
fields. The approximated results were obtained using a Latin hypercube sampling method (Bazant and Lin,
1985; Florian, 1992) belonging to a group of reduced Monte Carlo Methods (Hurtado and Barbat, 1998).
This approach enables a significant reduction of the sample number without loosing the accuracy of cal-
culations. Due to the lack of experimental data with respect to the specimen size and statistical distribu-
tion of the initial void ratio, the FE-results have not been compared with laboratory tests except of results
for the specimen size of 40 · 140 mm2 which were confronted with corresponding laboratory experiments
performed by Vardoulakis (1977) and Vardoulakis et al. (1978). It should be pointed out that our analysis
can be considered as a preliminary one and no general conclusions in the context of usefulness to practice
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can be formulated yet since our calculations were carried out only for geometrically similar specimens and
the effect of varying pressure was not taken into account.

This paper continues the papers presented by Tejchman and Górski (2007a,b). In the first paper (Tejchman
and Górski, 2007a), deterministic and statistical size effects were investigated during quasi-static shearing of an
infinite granular layer between two very rough boundaries under constant vertical pressure using the direct
Monte Carlo method and two reduction approaches: stratified sampling and Latin hypercube sampling.
The calculations have shown that the solution of nonlinear problems with random distributions on the basis
of several samples is feasible. The deterministic size effect was rather small. The shear resistance at peak and at
residual state decreased slightly with increasing ratio of the layer height h0 and mean grain diameter d50. How-
ever, the material ductility defined as the ratio between the energy consumed during shearing after and before
the peak strongly increased with decreasing h0/d50. The mean shear resistance at peak with random void ratios
was always smaller than this with the same initial mean void ratio. It diminished with increasing h0/d50. Thus,
the statistical size effect was stronger than the deterministic one. In turn, in the second paper (Tejchman and
Górski, 2007b), calculations with deterministic and statistical size effect were performed in granular specimens
subject to plane strain compression. To estimate the statistical size effect, only Latin hypercube sampling was
used. The deterministic size effect turned out again smaller than the statistical one. As compared to the FE-
results published by Tejchman and Górski (2007b), the innovations in the present paper are the following: (a)
to reduce the effect of the element mesh dimensions, a local average procedure was additionally applied, (b) the
effect of the roughness of the top and bottom boundary on size effects was studied, and (c) the influence of the
standard deviation and correlation range on the shearing resistance was investigated.

The effect of the distribution of the initial void ratio on the sand behaviour during a plane strain compres-
sion test has been already performed by Gudehus and Nübel (2004). However, a spatial correlation of the ini-
tial void ratio was ignored in their calculations.

The outline of the present paper is as follows. First, the employed micro-polar hypoplastic model is briefly
summarized (Section 2). Then, the simulation of discrete random fields is described. Information about the
finite element discretisation and boundary conditions are given in Section 3. The numerical results of the deter-
ministic and statistical size effects are discussed in Section 4. Conclusions are listed in Section 5.

2. Micro-polar hypoplastic model

Granular materials consist of grains in contact, and of voids. Their micromechanical behaviour is inher-
ently discontinuous, heterogeneous and non-linear. Despite the discrete nature of granular materials, their
mechanical behaviour can be reasonably described by continuum models, in particular elastoplastic (Lade,
1977; Vermeer, 1982; Pestana and Whittle, 1999; Hattamleh et al., 2005) and hypoplastic ones (Kolymbas,
1977; Desrues and Chambon, 1989; Wu, 1992; Darve et al., 1995). Non-polar hypoplastic constitutive models
formulated at Karlsruhe University (Gudehus, 1996; Bauer, 1996; von Wolffersdorff, 1996) describe the evo-
lution of the effective stress tensor depending on the current void ratio, stress state and rate of deformation by
isotropic non-linear tensorial functions according to a representation theorem by Wang (1970). These consti-
tutive models were formulated by a heuristic process considering the essential mechanical properties of gran-
ular materials undergoing homogeneous deformations. A striking feature of hypoplasticity is that the stress
rate is homogeneous of order 1 in the deformation rate. Hypoplastic models are capable of describing a num-
ber of significant properties of granular materials: non-linear stress–strain relationship, dilatant and contract-
ant behaviour, pressure dependence, density dependence and material softening. A further feature of
hypoplastic models is the inclusion of critical states, i.e. states in which a grain aggregate can deform contin-
uously be deformed at constant stress and constant volume. In contrast to elasto-plastic models, a decompo-
sition of deformation components into elastic and plastic parts, the formulation of a yield surface, plastic
potential, flow rule and hardening rule are not needed. The hallmark of these models is their simple formu-
lation and procedure for determining material parameters with standard laboratory experiments. The material
parameters are related to granulometric properties, viz. size distribution, shape, angularity and hardness of
grains (Herle and Gudehus, 1999). A further advantage lies in the fact that one single set of material param-
eters is valid for a wide range of pressures and densities. An exhaustive review of the development of hypo-
plasticity can be found in Wu and Kolymbas (2000) and Tamagnini et al. (2000). To increase the

http://mostwiedzy.pl
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application range, a hypoplastic constitutive law has been extended for an elastic strain range (Niemunis and
Herle, 1997), anisotropy (Tejchman et al., 2007) and for viscosity (Niemunis, 2003; Gudehus, 2006). It can be
also used for soils with low friction angles (Herle and Kolymbas, 2004) and clays (Masin, 2005).

Hypoplastic constitutive models without a characteristic length can describe realistically the onset of shear
localization, but not its further evolution (Maier, 2002). A characteristic length can be introduced into hyp-
oplasticity by means of micro-polar, non-local or second-gradient theories (Maier, 2002; Tejchman, 2004a).
In this paper, a micro-polar theory was adopted (Tejchman and Wu, 1993). The micro-polar model makes
use of rotations and couple stresses which have clear physical meaning for granular materials. The rotations
can be observed during shearing, but remain negligible during homogeneous deformations (Oda, 1993). Pas-
ternak and Mühlhaus (2001) have demonstrated that the additional rotational degree of freedom of a micro-
polar continuum arises naturally by mathematical homogenization of an originally discrete system of spherical
grains with contact forces and contact moments.

A micro-polar continuum combines two kinds of deformations at two different levels, viz: micro-rotation at
the particle level and macro-deformation at the structural level (Schäfer, 1962; Mühlhaus, 1990). For the case
of plane strain, each material point has three degrees of freedom: two translations and one independent rota-
tion (Fig. 1). The gradients of the rotation are related to the curvatures, which are associated with the couple
stresses. The presence of the couple stresses gives rise to a non-symmetry of the stress tensor and to a char-
acteristic length.

The constitutive relationship between the rate of stress, the rate of couple stress, the strain rate and the cur-
vature rate can be generally expressed by the following two equations (Tejchman and Gudehus, 2001; Tejch-
man and Niemunis, 2006; Tejchman and Górski, 2007a):
Fig. 1.
(b) stre
rij
0 ¼ F ijðe; rkl;mi; d

c
kl; ki; d50Þ ð1Þ

mi
0 ¼ Giðe; rkl;mi; d

c
kl; ki; d50Þ; ð2Þ
The Jaumann stress rate and Jaumann couple stress rate therein are defined by
rij
0 ¼ rij

� �wikrkj þ rikwkj ð3Þ
and
m
0

i ¼ m
�

i � 0:5wikmk þ 0:5mkwki: ð4Þ
The functions Fij and Gi in Eqs. (1) and (2) represent isotropic tensor-valued functions of their arguments;
rij is the Cauchy stress tensor, mi is the couple stress vector, e denotes the current void ratio, dc

kl is the polar
strain rate and ki denotes the rate of curvature vector:
Plane Cosserat continuum: (a) degrees of freedom (u1, horizontal displacement; u2, vertical displacement; xc, Cosserat rotation),
sses rij and couple stresses mi at an element.
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dc
ij ¼ dij þ wij � wc

ij; and ki ¼ wc
;i: ð5Þ
The rate of deformation tensor dij and the spin tensor wij are related to the velocity vi as follows:
dij ¼ ðvi;j þ vj;iÞ=2; wij ¼ ðvi;j � vj;iÞ=2; ðÞ;i ¼ oðÞ=oxi: ð6Þ
The rate of Cosserat rotation wc is defined by
wc
21 ¼ �wc

12 ¼ wc and wc
kk ¼ 0: ð7Þ
For moderate pressures, the grains can be assumed to be isochoric. In this case, the change of void ratio
depends only on the strain rate via
e
� ¼ ð1þ eÞdkk: ð8Þ
For the numerical calculations, the following micro-polar hypoplastic constitutive equation are employed
(Tejchman and Gudehus, 2001):
r
0

ij ¼ fs Lijðr̂kl; m̂k; d
c
kl; kkd50Þ þ fdN ijðr̂ijÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dc

kld
c
kl þ kkkkd2

50

q� �
ð9Þ
and
m
0

i=d50 ¼ fs Lc
i ðr̂kl; m̂k; d

c
kl; kkd50Þ þ fdN c

i ðm̂iÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dc

kld
c
kl þ kkkkd2

50

q� �
; ð10Þ
wherein the normalized stress tensor r̂ij is defined by
r̂ij ¼
rij

rkk
ð11Þ
and the normalized couple stress vector m̂i is defined by
m̂i ¼
mi

rkkd50

; ð12Þ
wherein d50 is the mean grain diameter. The scalar factors fs = fs (e,rkk) and fd = fd (e,rkk) in Eqs. (9) and (10)
describe the influence of density and stress level on the incremental stiffness. The factor fs depends on the gran-
ulate hardness hs, the mean stress rkk, the maximum void ratio ei and the current void ratio e by:
fs ¼
hs

nhi

1þ ei

ei

� �
ei

e

� �b
� rkk

hs

� �1�n

ð13Þ
with
hi ¼
1

c2
1

þ 1

3
� ei0 � ed0

ec0 � ed0

� �a 1

c1

ffiffiffi
3
p : ð14Þ
In the above equations, the granulate hardness hs represents a reference pressure, the coefficients a and b
express the dependence on density and pressure respectively, and n denotes the compression coefficient. The
multiplier fd represents the dependence on a relative void ratio via:
fd ¼
e� ed

ec � ed

� �a

: ð15Þ
The relative void ratio in the above expression involves the void ratio in critical state ec, the minimum void
ratio ed (the densest packing) and the maximum void ratio ei (the loosest packing). In a critical state, a gran-
ular material experiences continuous deformation while the void ratio remains unchanged. The current void
ratio e is bounded by the two extreme void ratios ei and ed. Based on experimental observations, the void
ratios ei, ed and ec are assumed to depend on the pressure rkk (Fig. 2):
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Fig. 2. Relationship between void ratios ei, ec and ed and mean pressure ps in a logarithmic (a) and linear (b) scale (grey zones denote
inadmissible states).

J. Tejchman, J. Górski / International Journal of Solids and Structures 45 (2008) 1546–1569 1551

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

ei ¼ ei0 exp½�ð�rkk=hsÞn�; ð16Þ
ed ¼ ed0 exp½�ð�rkk=hsÞn�; ð17Þ
ec ¼ ec0 exp½�ð�rkk=hsÞn�; ð18Þ
wherein ei0, ed0 and ec0 are the values of ei, ed and ec at rkk = 0, respectively. For the functions Lij, Nij, Lc
i and

Nc
i , the following specific expressions are used (Tejchman and Gudehus, 2001):
Lij ¼ a2
1dc

ij þ r̂ijðr̂kld
c
kl þ m̂kkkd50Þ; ð19Þ

Lc
i ¼ a2

1kid50 þ a2
1m̂iðr̂kld

c
kl þ m̂kkkd50Þ; ð20Þ

Nij ¼ a1ðr̂ij þ r̂�ijÞ; ð21Þ
Nc

i ¼ a2
1acm̂i; ð22Þ
where
a�1
1 ¼ c1 þ c2

ffiffiffiffiffiffiffiffiffiffiffiffi
r̂�klr̂

�
lk

p
½1þ cosð3hÞ�; ð23Þ

cosð3hÞ ¼ �
ffiffiffi
6
p

½r̂�pqr̂
�
pq�

1:5
ðr̂�klr̂

�
lmr̂�mkÞ ð24Þ
with
c1 ¼
ffiffiffi
3

8

r
ð3� sin /cÞ

sin /c
; c2 ¼

3

8

ð3þ sin /cÞ
sin /c

: ð25Þ
The parameter /c is the friction angle in critical states, and the parameter h denotes the Lode angle in the
deviatoric plane at r̂ii ¼ 1, and r̂�ij denotes the deviatoric part of r̂ij. The micro-polar parameter ac in Eq. (22)
can be correlated with the grain roughness. This correlation can be established by studying the shearing of a
narrow granular strip between two rough boundaries (Tejchman and Gudehus, 2001). It can be represented by
a constant, e.g. ac = 1–5, or connected to the parameter a�1

1 , e.g. ac ¼ ð0:5� 1:5Þ � a�1
1 . The parameter a�1

1 lies
in the range of 3.0–4.3 for the usually critical friction angle.

The constitutive relationship requires the following ten material parameters: ei0, ed0, ec0, /c, hs, b, n, a, ac

and d50. The parameters hs and n are estimated from a single oedometric compression test with an initially
loose specimen (hs reflects the slope of the curve in a semi-logarithmic representation, and n its curvature).
The parameters a and b can be determined from a triaxial or plane strain test with a dense specimen and trig-
ger the magnitude and position of the peak friction angle. The critical friction angle /c can be determined from
the angle of repose or measured in a triaxial test with a loose specimen. The parameters ei0, ed0, ec0 and d50 are
obtained from conventional index tests (ec0 � emax, ed0 � emin, ei0 � (1.1–1.5)emax). A calibration procedure
was given in detail by Herle and Gudehus (1999).
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3. FE-input data

3.1. Deterministic calculations

The FE-calculations of a plane strain compression test (assuming a uniform distribution of the initial void
ratio e0) were performed with six different sand specimen sizes b0 · h0 (b0, initial width; h0, initial height) which
were geometrically similar: 10 · 35, 20 · 70, 40 · 140, 80 · 280, 160 · 560 and 320 · 1120 mm2 (Tejchman and
Górski, 2007b). The specimen depth was equal to l = 1.0 m with plane strain condition. The specimen dimen-
sions of 40 · 140 mm2 were similar as in the experiments by Vardoulakis (1977) and Vardoulakis et al. (1978).
In all cases, 896 quadrilateral elements divided into 3584 triangular elements were used. The quadrilateral ele-
ments composed of four diagonally crossed triangles were used to avoid volumetric locking due to dilatancy
effects (Groen, 1997). Linear shape functions were used for displacements and for the Cosserat rotation. The
integration was performed with one sampling point placed in the middle of each element. To properly capture
shear localization inside of the granular specimen, the size of the finite elements se should be not larger than
five mean grain diameters d50 (Tejchman and Bauer, 1996). For specimen sizes changing from 10 · 35 up to
40 · 140 mm2 this condition was fulfilled (se 6 5 · d50). However, for specimen sizes larger than 40 · 140 mm2

this condition was violated (e.g se = 40 · d50 for 320 · 1120 mm2). Thus, these latter FE-results were mesh-
dependent; the mesh-dependence increased with increasing specimen size. A further increase of the amount
of finite elements would increase the computation time drastically. A remedy in the form of remeshing (which
is effective in such cases, Ehlers and Graf, 2003) was not the aim of our FE-analyses.

A quasi-static deformation in sand was imposed through a constant vertical displacement increment Du

prescribed at nodes along the upper edge of the specimen. The boundary conditions implied no shear stress
imposed at the smooth top and bottom of the specimen. To preserve the stability of the specimen against hor-
izontal sliding, the node in the middle of the top edge was kept fixed. To simulate a movable roller bearing in
the experiment (Vardoulakis et al., 1978), the horizontal displacements along the specimen bottom were con-
strained to move by the same amount. Thus, no imperfections were used to induce shear localization with an
uniform distribution of e0. Comparative calculations were also performed with a very rough top and bottom
boundary. In this case, the horizontal displacement and Cosserat rotation along both horizontal edges were
assumed to be equal to zero. The vertical displacement increments were chosen as Du/h0 = 0.0000025. About
3000 steps were performed.

As an initial stress state, a K0-state with r22 = cdx2 and r11 = K0cdx2 was assumed in the specimen; x2 is the
vertical coordinate measured from the top of the specimen, cd = 16.5 kN/m3 denotes the initial volumetric
weight and K0 = 0.50 is the earth pressure coefficient at rest (r11, horizontal normal stress; r22, vertical normal
stress). Then, a uniform confining pressure of rc = 200 kPa was prescribed.

For the solution of a non-linear equation system, a modified Newton–Raphson scheme with line search was
used. The global stiffness matrix was calculated with only line terms of the constitutive equations (Eqs. (1) and
(2)). The stiffness matrix was updated every 100 steps. In order to accelerate the convergence in the softening
regime, the initial increments of displacements and Cosserat rotations in each calculation step were assumed to
be equal to the final increments in the previous step. The procedure was found to yield sufficiently accurate
solutions with a fast convergence. The magnitude of the maximum out-of-balance force at the end of each
calculation step was found to be smaller than 2% of the calculated total vertical force of the granular speci-
men. Due to non-linear terms in deformation rate and material softening this procedure turned out to be more
efficient than a full Newton–Raphson method. The iteration steps were performed using translational and
rotational convergence criteria. For the time integration of stresses in finite elements, a one-step Euler forward
scheme was applied. The calculations were carried out with large deformations and curvatures using a so-
called ‘‘Updated Lagrangian’’ formulation by taking into account the Jaumann stress rate and Jaumann cou-
ple stress rate and the actual shape and area of finite elements.

3.2. Statistical calculations

In the case of nonlinear random field calculations, the only reliable solution is the direct Monte Carlo
method. Contrary to stochastic finite element codes, the Monte Carlo method does not impose any restriction
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to the solved random problems. The only limitation of the Monte Carlo method is the time of calculations. To
reproduce exactly the input random data at least 2000 random samples should be used (Bielewicz and Górski,
2002; Górski, 2006). Any nonlinear calculations for such number of initial data are, however, impossible due
too excessive computation times. To determine a minimal, but sufficient number of samples (which allows to
estimate the results with a specified accuracy), a convergence analysis of the outcomes has been proposed (Bie-
lewicz and Górski, 2002). It has been estimated that in case of various engineering problems only ca. 50 real-
izations have to be considered. A further decrease of sample numbers can be obtained using Monte Carlo
reduction methods. In the paper by Tejchman and Górski (2007a) stratified and Latin sampling methods were
considered. It should be pointed out that these methods were not used for the generation of two-dimensional
random fields, but for their classification. The calculations have shown that using these reduction methods the
results can be properly estimated by several realizations (e.g. 12–15). Following this conclusion, in this work
the Latin sampling method was applied.

According to the Latin hypercube sampling method, the random field realizations were chosen in a strictly
defined manner (Fig. 3). First, an initial set of random samples was generated in the same way as in the case of
the direct Monte Carlo method. Next, the generated samples were classified according to chosen parameters,
for example norms of the random vectors, mean values, changes of the vector signs and others. The samples
were arranged according to this classification. On this basis, their distributions in the form of frequency his-
tograms were specified. The whole space of the samples was divided into subsets of equal probability and num-
bered. The Latin hypercube sampling method combines at random each subset number with other subset
numbers of the remaining variables only once. From each subset defined in this way, only one sample was
chosen for the analysis (Fig. 3).

The input data of the considered problem was a set of random fields describing the initial void ratio e0. A
truncated Gaussian random field was applied
e0 ¼ �e0ð1þ mbðx1; x2ÞÞ; ð26Þ
where �e0 is the mean value of the initial void ratio, m ¼ se0
=�e0 is the coefficient of variation, se0

describes the
standard deviation of the mean value, and b(x1,x2) stands for the normalized homogeneous random field.
Randomness of the initial void ratio was described by a correlation function. For lack of the appropriate data
the correlation function is usually chosen arbitrarily. Here, the following second order, homogeneous corre-
lation function was adopted (Bielewicz and Górski, 2002)
Kðx1; x2Þ ¼ s2
e0
� e�kx1

Dx1ð1þ kx1
Dx1Þe�kx2Dx2ð1þ kx2

Dx2Þ; ð27Þ
where Dx1 and Dx2 is are the distances between two field points along the horizontal axis x1 and vertical axis
x2, kx1 and kx2 are the decay coefficients (damping parameters) characterizing a spatial variability of the spec-
imen properties (i.e. describe the correlation between the random field points), while the standard deviation se0

represents the field scattering. The scale of fluctuation h (introduced by Vanmarcke, 1983) to approximate the
variance function by a parameter independently of the character and shape of the correlation function was
Fig. 3. Latin hypercube method – the scheme of random sampling.
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h = 4/k (for the normalized function of Eq. (27) with Dx! 0). The parameter is twice as big as the fluctuation
scale of a standard first order correlation function Kðx1; x2Þ ¼ e�kx1

Dx1 e�kx2Dx2 (Knabe et al., 1998). Thus, by
using appropriate values of the decay coefficients k, the second order correlation function can be approxi-
mated by the first order one. It was demonstrated that the results obtained using these two functions described
by the same scale of fluctuation are almost identical (Przewłócki and Górski, 1999). The second order homo-
geneous function (Eq. (27)) proved to be very useful (Przewłócki and Górski, 2001).

In finite element methods, continuous functions are represented by a finite set of nodal point parameters.
The same has to be applied to random fields. A discretization procedure is the approximation of a random
field by its estimator defined by means of a finite set of random variables grouped in a random vector. The
discretization methods can be divided into the following groups: point discretization methods, average discret-
ization methods and series expansion methods. Here, the procedure of local averages of the random fields pro-
posed by Vanmarcke (1983) was adopted. After an appropriate integration of the correlation function (Eq.
(27)), the following expression describing the variances Dw and covariances Kw were obtained (Knabe
et al., 1998):
DwðDx1;Dx2Þ ¼
2

kx1
Dx1

s2
e0

2þ e�kx1
Dx1 � 3

kx1
Dx1

ð1� e�kx1
Dx1Þ

� �

� 2

kx2
Dx2

2þ e�kx2
Dx2 � 3

kx2
Dx2

1� e�kx2
Dx2

	 
� �
; ð28Þ

KwðDx1;Dx2Þ ¼
ekx1

Dx1

ðkx1
Dx1Þ2

s2
e0

cosðkx1
Dx1Þ � sinðkx1

Dx1Þ½ � þ 2kx1
Dx1 � 1

� �
� ekx2

Dx2

ðkx2
Dx2Þ2

s cosðkx2
Dx2Þ � sinðkx2

Dx2Þ½ � þ 2kx2
Dx2 � 1

� �
: ð29Þ
The random fields were generated using a conditional rejection method proposed by Walukiewicz et al.
(1997). According to his method a discrete random field was described by multidimensional random variables
defined at mesh nodes. The random variable vector of initial void ratio e0(m · 1) was divided into blocks con-
sisting of the unknown eou(n · 1) and the known eok(p · 1) elements (n + p = m). The covariance matrix
K(m · m) and the expected values vector �e0ðm� 1Þ were also appropriately split:
e0 ¼
eou

eok

 �
n

p
; K ¼

K11 K12

K21 K22

� �
n

p
;

n p

�e0 ¼
�eou

�eok

 �
n

p : ð30Þ
The unknown vector eou was estimated from the following conditional truncated distribution
ftðeou=eokÞ ¼ ð1� tÞ�m=2ðdet KcÞ�1=2ð2pÞ�m=2 � exp � 1

2ð1� tÞ ðeou � �eocÞTK�1
c ðeou � �eocÞ

� �
; ð31Þ
where Kc and �eoc are described as the conditional covariance matrix and conditional expected value vector:
Kc ¼ K11 � K12K�1
22 K21; ð32Þ

�eoc ¼ �xu þ K12K�1
22 ðeok � �eokÞ: ð33Þ
The constant t in Eq. (31) is the truncation parameter
t ¼
se0
� expð�s2

e0
=2Þffiffiffiffiffiffi

2p
p

erf ðse0
Þ

ð34Þ
with
erf ðse0
Þ ¼ 1ffiffiffiffiffiffi

2p
p

Z se0

0

exp � x2

2

� �
dx: ð35Þ
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According to the conditional rejection method, any mesh point value is generated using the values calcu-
lated earlier. When large problems are solved, such approach is inefficient. Therefore, a kind of ‘base scheme’
was defined (Walukiewicz et al., 1997). The scheme covered a limited mesh area (hundred points), and only
these points were used in the calculations of the next random values (Fig. 4). The simulation process was
divided into three stages. First, the four-corner random values were generated (Fig. 4a) using an unconditional
method. Next, all random variables in the defined base scheme (dotted rectangle in Fig. 4) were generated, one
by one, using the conditional method (Fig. 4b). In the third stage, the base scheme was appropriately shifted,
and the next group of unknown random values was simulated (Fig. 4c). The base scheme was translated so as
to cover all the field nodes (Fig. 4d). It is noted that this approach allows for generation of practically unlim-
ited random fields (thousands of discrete points).

To describe the discrepancies between the theoretical (Eqs. (28) and (29)) and generated fields, the following
global Ger and local Ver errors were calculated (Walukiewicz et al., 1997):
GerðK; bKÞ ¼ jkKk � kbKkjkKk � 100%; ð36Þ

V erðkii; k̂iiÞ ¼
Xm

i¼1

ðkii � k̂iiÞ
ðkiiÞ

� 100%; ð37Þ
where bK is the estimator of the covariance matrix K
bK ¼ 1

NR� 1

XNR

i¼1

ðêoi � �̂e0Þðêoi � �̂e0ÞT; �̂e0 ¼
1

NR

XNR

i¼1

êoi: ð38Þ
The parameter ê0 is the estimator of the random vector e0, and �̂e0 is the estimator of its mean value, NR

denotes the number of realizations, kKk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
trðKÞ2

q
is the matrix norm, kii and k̂ii denote the diagonal element

of the covariance matrix K and its estimators bK, respectively.
When a stochastic distribution of the initial void ratio was assumed, two different specimen sizes were used:

40 · 140 mm2 (medium size) and 320 · 1120 mm2 (large size). In the probabilistic calculations, the same
1

3

2

Mc

N

d

4

known values
simulated value

known values not included in
the base scheme calculations

the next step of the base 
scheme shifting

unknown values simulated
in one base scheme step

Fig. 4. Successive coverage of the field points with the moving propagation scheme (Walukiewicz et al., 1997).
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and 12–10.
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assumption as in the case of a deterministic analysis were applied: a mean value of the initial void ratio
�e0 ¼ 0:60 (initially dense sand). First, we assumed a strong correlation of the initial void ratio e0 in both direc-
tions (kx1 = 1 and kx2 = 1 in Eqs. (28) and (29)) and a low standard deviation sd = 0.05 to simulate a careful
specimen preparation method (Vardoulakis et al., 1978). In this case, the range of significant correlation was
approximately 60 mm. In addition, the calculations were performed for a weak correlation of e0 in both direc-
tions (kx1 = 3 and kx2 = 3 in Eqs. (28) and (29)) and a large standard deviation sd = 0.10 (the correlation range
was about 40 mm). The initial void ratio scattering in the specimen was also limited by the pressure dependent
void ratios ei0 (upper bound) and ed0 (lower bound) (Eqs. (16) and (17)). The truncation parameter t of the
Gaussian field (Eq. (34)) allows to fulfill these conditions. The dimension of the random field was the same
as the finite element mesh, i.e. m = 16 · 56 = 896 points. The following dimension of the base scheme was
applied: c = d = 16 (Fig. 4). Using the algorithm described above, 2000 field realizations of the initial void
ratio were generated. The global Ger and local (variance) Ver errors of the generation were calculated (Eqs.
(36) and (37)): Ger = 2.02, Ver = 1.44. Next, the generated fields were classified according to two parameters:
the mean value of the initial void ratio and the gap between the lowest and the highest value of the initial void
ratio. The joint probability distribution (so-called ‘‘ant hill’’) is presented in Fig. 5. One dot represents one
random vector described by its mean value and the difference between its extreme values. The two variable
domains were divided in 12 intervals of equal probabilities (see vertical and horizontal lines in Fig. 5). Next,
according to the Latin hypercube sampling assumptions, 12 random numbers in the range 1–12 were gener-
ated (one number appeared only once) using the uniform distribution. The generated numbers formed the fol-
lowing 12 pairs: 1–2, 2–3, 3–7, 4–9, 5–8, 6–4, 7–6, 8–1, 9–11, 10–12, 11–5 and 12–10. According to these pairs,
the appropriate areas (subfields) were selected (they are presented as rectangles in Fig. 5). From each subfield
only one realization was chosen and used as the input data to the FEM calculations. In this way the results of
12 realizations were analyzed.
4. FE-results

4.1. Deterministic size effect

4.1.1. Smooth boundaries

Fig. 6 shows results for an initially dense sand during plane strain compression for six different spec-
imen sizes b0 · h0 (same b0/h0): 10 · 35, 20 · 70, 40 · 140, 80 · 280, 160 · 560 and 320 · 1112 mm2, with a
uniform distribution of the initial void ratio e0 = 0.60 and the lateral confining pressure p = 200 kPa. Pre-
sented is the evolution of the normalized vertical force P/(rcb0l) versus the normalized vertical displace-
ment of the top boundary ut

2=h0 (Tejchman and Górski, 2007b). In addition, the deformed FE-meshes for
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Fig. 6. Evolution of normalized vertical force P/(rcb0l) versus normalized vertical displacement of the upper edge ut
2=h0 and deformed FE-

meshes with the distribution equivalent total strain measure during plane strain compression with a dense specimen (e0 = 0.60) for six
different specimen sizes: (a) 10 · 35 mm2, (b) 20 · 70 mm2, (c) 40 · 140 mm2, (d) 80 · 280 mm2, (e) 160 · 560 mm2, (f) 320 · 1120 mm2

(uniform distribution of initial void ratio, smooth edges) (note that the specimens are not proportionally scaled).
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different sizes at ut
2=h0 ¼ 0:075 with the distribution of the distribution of equivalent total strain �e ¼ ffiffiffiffiffiffiffiffiffi

eijeij
p

are additionally shown in Fig. 6 (Tejchman and Górski, 2007b). Table 1 presents overall internal friction
angles at peak /p and residual friction angles /cr (at ut

2=h0 ¼ 0:10), vertical strain corresponding to the
maximum force ut

2=h0 and normalized shear zone thickness ts/d50 (Tejchman and Górski, 2007b). The
overall friction angle was calculated from the formula including the principal stresses on the basis of
the Mohr’s circle
/ ¼ arcsin
r1 � r2

r1 þ r2

����
���� ð39Þ
with r1 = P/(bl)(b is the actual specimen width) and r2 = rc (rc = 200 kPa – uniform confining pressure).
The resultant vertical force on the specimen top increases first, shows a pronounced peak, drops later and

reaches then a residual value. The strength increases and the softening rate decreases with decreasing specimen
size. The peak friction angle /p insignificantly increases, only from /p = 45.38� (32 · 1120 mm2) to
/p = 45.92� (10 · 35 mm2), due to a similar failure mechanism and pressure level. The vertical strain corre-
sponding to the peak grows with decreasing specimen size (from 2.29% up to 2.50%). The residual friction
angle is similar for all specimen sizes, it changes between 34.5� and 36� at ut

2=h0 ¼ 7:5%.
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Table 1
The values of peak friction angles /p, residual friction angles /cr, vertical strain corresponding to the maximum vertical force ut

2=h0,
normalized shear zone thickness ts/d50 (uniform distribution of initial void ratio with e0 = 0.60, smooth boundaries)

Specimen size b0 · h0 (mm2) /p [�] /cr [�] U t
2=h0 ts/d50

10 · 35 45.92 35.9 0.0250 7
20 · 70 45.71 34.7 0.0240 11
40 · 140 45.62 34.8 0.0236 14
80 · 280 45.55 35.4 0.0233 28
160 · 560 45.48 35.20 0.0231 46
320 · 1120 45.38 34.5 0.0229 46
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The obtained friction angles at peak and at residual state, and the corresponding vertical shortening of the
sand specimen for the specimen of 40 · 140 mm2 (/p = 45.6�, /res = 34�, ut

2=h0 ¼ 0:0236) are in a satisfactory
agreement with laboratory results with Karlsruhe sand carried out by Vardoulakis (1977) and Vardoulakis
et al. (1978), where the dimensions of the sand specimen were: h0 = 140 mm, b0 = 40 mm and l0 = 80 mm.
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Fig. 7. Evolution of normalized vertical force P/(rcb0l) versus normalized vertical displacement of the upper edge ut
2=h0 and deformed FE-

meshes with the distribution equivalent total strain measure during plane strain compression with a dense specimen (e0 = 0.60) for three
different specimen sizes: (a) 10 · 35 mm2; (b) 40 · 140 mm2; (c) 320 · 1120 mm2 (uniform distribution of initial void ratio, very rough
boundaries) (note that the specimens are not proportionally scaled).
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The experiments with dense sand (e0 = 0.55–0.60) resulted in /p = 45–48� and /cr = 32–33� at rc = 200 kPa.
However, the calculated stiffness is higher before the peak than observed.

The thickness of the shear zone at mid-point of the specimen increases with increasing specimen size; it var-
ies between 7 · d50 up to 46 · d50. The thickness of the shear zone for the specimen sizes larger than
40 · 140 mm2 is certainly influenced by the mesh discretisation (as it was noted in Section 3.1) – it is too large.
The thickness of the shear zone was determined on the basis of shear deformation and Cosserat rotation. To
define the edges of the shear zone, we assumed that the Cosserat rotation larger than 0.1 occurred in the shear
zone. The calculated thickness for the specimen of 40 · 140 mm2, ts = 14 · d50, is similar as the observed thick-
ness, ts = 15 · d50, during plane strain compression tests with dense sand (e0 = 0.60) at rc = 200 kPa (Vardo-
ulakis, 1977). The calculated inclination of the shear zone (about h = 53–54�) is also close to the experiment
with dense sand (55–60�). The thickness of the shear zone on the basis of an increase of void ratio is slightly
larger because each dense granulate undergoes dilatancy before shear localization occurs.

4.1.2. Very rough boundaries

Results for an initially dense sand during plane strain compression for three different specimen sizes b0 · h0

(geometrically similar): 10 · 35, 40 · 140 and 320 · 1112 mm2 with a uniform distribution of the initial void
ratio e0 = 0.60, lateral confining pressure of 200 kPa and very rough horizontal boundaries are shown in
Fig. 7 and Table 2.

The evolution of the normalized vertical force is similar as for smooth plates. The friction angle at peak /p

increases from: /p = 45.4� (32 · 1120 mm2) to /p = 45.7� (10 · 35 mm2) (the values are almost identical as for
smooth plates). The residual friction angle changes between 39.5� and 40.4� at ut

2=h0 ¼ 10%. It is significantly
higher (by about 5�) than for smooth plates.

In contrast to smooth plates, two symmetric intersecting shear zones always appear inside of the specimen
(Fig. 7).
Table 2
The values of peak friction angles /p, residual friction angles /cr, vertical strain corresponding to the maximum vertical force ut

2=h0,
normalized shear zone thickness ts/d50 (uniform distribution of initial void ratio with e0 = 0.60, very rough boundaries)

Specimen size b0 · h0 (mm2) /p [�] /cr [�] ut
2=h0 ts/d50

10 · 35 45.70 39.40 0.0235 9
40 · 140 45.60 40.40 0.0239 13
320 · 1120 45.40 39.70 0.0234 57
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Fig. 8. Evolution of normalized vertical force P/(rcb0l) (a) and P/(rcbl) (b) versus normalized vertical displacement of the upper edge
ut

2=h0 during plane strain compression with a dense specimen for 12 different random fields of e0 (�e0 ¼ 0:60, specimen size 40 · 140 mm2,
smooth boundaries, kx1 = 1, kx2 = 1, sd = 0.05).
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4.2. Statistical size effect

4.2.1. Medium sand specimen (smooth boundaries, specimen 40 · 140 mm2, kx1 = 1, kx2 = 1, sd = 0.05)

Twelve selected random samples using Latin hypercube sampling are shown in Fig. 5. The evolution of the
normalized vertical force with respect to the initial specimen width b0, P/(rcb0l) (Fig. 8a), and with respect to
the actual specimen width b, P/(rcbl) (Fig. 8b), versus the normalized vertical displacement of the top bound-
ary ut

2=h0 and the deformed FE-meshes at ut
2=h0 ¼ 0:075 with the distribution of equivalent total strain

�e ¼ ffiffiffiffiffiffiffiffiffi
eijeij
p

are shown in Figs. 8 and 9, respectively (b – actual specimen width). Table 3 includes overall friction
angles at peak /p, residual friction angle /cr, vertical strain corresponding to the maximum force ut

2=h0 and
normalized shear zone thickness ts/d50 for 12 random fields.

The evolution of the normalized vertical force depends of the location of the shear zone. If this hits the top
boundary, the residual normalized vertical force P/(rcb0l) has a increasing tendency (caused by an increase of
the specimen’s width). If the shear zone intersects the vertical sides the evolution of the residual normalized
vertical force P/(rcb0l) is similar as for a uniform distribution of e0. The shear zone develops inside of the spec-
imen somewhere at the weakest spot, depending on the initial distribution of e0 (Fig. 8). The shear zone width
changes between 11 · d50 and 17 · d50.
Fig. 9. Deformed FE-mesh with the distribution equivalent total strain measure during compression with a dense specimen for 12 different
random fields of e0 (�e0 ¼ 0:60, specimen size 40 · 140 mm2, smooth boundaries, kx1 = 1, kx2 = 1, sd = 0.05).
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Table 3
The values of peak friction angles /p, residual friction angles /cr, vertical strain corresponding to the maximum vertical force ut

2=h0,
normalized shear zone thickness ts/d50 for different random fields (�e0 ¼ 0:60, b0 = 40 mm, h0 = 140 mm, smooth boundaries, kx1 = 1,
kx2 = 1, sd = 0.05)

Nr /p [�] /cr [�] ut
2=h0 ts/d50

S-01a 46.87 35.60 0.0193 14
S-02a 45.26 34.91 0.0196 11
S-03a 43.87 32.90 0.0184 14
S-04a 45.47 34.43 0.0209 11
S-05 43.63 33.55 0.0196 14
S-06 43.49 33.11 0.0188 14
S-07 43.31 33.32 0.0187 14
S-08 43.61 33.18 0.0192 14
S-09a 42.34 31.92 0.0193 14
S-10 42.95 33.05 0.0218 17
S-11a 42.43 32.90 0.0190 17
S-12 40.91 32.33 0.0190 14

Mean value 43.67 33.43 0.0195 14
Uniform distribution of e0 45.62 34.80 0.0236 14

a Shear zone hitting the top boundary.
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The estimated expected value and standard deviations were for the peak friction angles /̂p ¼ 43:67	 and
ŝ/p
¼ 1:52, the normalized horizontal displacement of the top boundary ut

1=h0 corresponding to the peak
ût

1=h0 ¼ 0:0195 and ŝut
1
=h0 ¼ 0:00092 and the normalized shear zone thickness t̂s=d50 ¼ 14. and ŝts=d50 ¼ 1:7.

The peak friction angle (/̂p ¼ 43:74	) is by 2� smaller than with a uniform initial void ratio (/p = 45.62�),
whereas the shear zone thickness is similar. The residual friction angle (/cr = 33.4� at ut

2=h0 ¼ 7:5%) is by
1�-2� smaller. The residual friction angle is slightly larger if the shear zone hits the top boundary (Fig. 8b).
4.2.2. Large sand specimen (smooth boundaries, specimen 320 · 1120 mm2, kx1 = 1, kx2 = 1, sd = 0.05)

A large sand specimen of (320 · 1120 mm2) was subject to a similar FE-analysis (Figs. 10 and 11, Table 4).
The results are qualitatively the same as for a medium sand specimen (however, their scattering is smaller). For
3 cases, a shear zone hits a top boundary, and the residual normalized vertical force P/(rcb0l) is higher.

The estimated expected value and standard deviations were, respectively: for the peak friction angle
/̂p ¼ 44:22	 and ŝ/p

¼ 0:37	, the normalized horizontal displacement of the top boundary ut
1=h0 corresponding
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Fig. 10. Evolution of normalized vertical force P/(rcb0l) versus normalized vertical displacement of the upper edge ut
2=h0 during plane

strain compression with a dense specimen for 12 different random fields of e0 (�e0 ¼ 0:60, specimen size 320 · 1120 mm2, smooth
boundaries, kx1 = 1, kx2 = 1, sd = 0.05).
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Fig. 11. Deformed FE-mesh with the distribution equivalent total strain measure during compression with a dense specimen for 12
different random fields of e0 (�e0 ¼ 0:60, specimen size 320 · 1120 mm2, smooth boundaries, kx1 = 1, kx2 = 1, sd = 0.05).
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to the peak ût
1=h0 ¼ 0:0020 and ŝut

1
=h0 ¼ 0:00062 and the normalized shear zone thickness t̂s=d50 ¼ 70:3 and

ŝts=d50 ¼ 14:59. The peak friction angle (/̂p ¼ 44:23	) is by 1.0� smaller than this with the uniform initial void
ratio (/p = 45.38�). The shear zone thickness (ts/d50 = 70) is larger than with a uniform initial void ratio ts/
d50 = 34. The residual friction (/cr = 34.5� at ut

2=h0 ¼ 7:5%) is by 1.5� smaller.

4.2.3. Medium sand specimen (very rough boundaries, specimen 40 · 140 mm2, kx1 = 1, kx2 = 1, sd = 0.05)

The results are demonstrated in Figs. 12 and 13 and Table 4 (for the same random fields of e0 as in the case
of smooth boundaries).

In all cases, two non-symmetric shear zones appear inside of the specimen. The peak friction angle
(/̂p ¼ 45:24	) is by 0.5� smaller than with a uniform initial void ratio (/p = 45.60�). The shear zone thickness
(ts/d50 = 13.3) is slightly smaller than this with the uniform initial void ratio ts/d50 = 14. The residual friction
angle (/cr = 38.77� at ut

2=h0 ¼ 10%) is smaller by 1.7�.

4.2.4. Medium sand specimen (smooth boundaries, specimen 40 · 140 mm2, kx1 = 3, kx2 = 3, sd = 0.1)

The results with a large standard deviation and a weak correlation of e0 are demonstrated in Figs. 14 and 15
and Table 5.
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Fig. 12. Evolution of normalized vertical force P/(rcb0l) versus normalized vertical displacement of the upper edge ut
2=h0 during plane

strain compression with a dense specimen for 12 different random fields of e0 (�e0 ¼ 0:60, specimen size 40 · 140 mm2, very rough
boundaries, kx1 = 1, kx2 = 1, sd = 0.05).

Table 4
The values of peak friction angles /p, residual friction angles /cr, vertical strain corresponding to the maximum vertical force ut

2=h0,
normalized shear zone thickness ts/d50 for different random fields (�e0 ¼ 0:60, b0 = 320 mm, h0 = 1120 mm, smooth boundaries, kx1 = 1,
kx2 = 1, sd = 0.05).

Nr /p [�] /cr [�] ut
2=h0 ts/d50

B-01 44.69 32.9 0.0200 68.4
B-02 44.38 32.9 0.0201 45.6
B-03 44.34 32.7 0.0194 91.2
B-04 44.78 32.8 0.0205 68.4
B-05 44.01 32.6 0.0194 68.4
B-06 44.53 32.8 0.0206 91.2
B-07 43.80 32.9 0.0191 68.4
B-08a 44.49 32.7 0.0213 68.4
B-09 44.19 32.9 0.0201 68.4
B-10a 44.22 34.3 0.0203 45.6
B-11 43.67 33.0 0.0195 91.2
B-12a 43.61 33.4 0.0194 68.4

Mean value 44.22 33.0 0.0200 70.3
Uniform distribution of e0 45.38 34.5 0.0229 46

a Shear zone hitting the top boundary.
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The effect of the random distribution of e0 on the friction angle and shear zone thickness is more pro-
nounced. The peak friction angle (/̂p ¼ 40:69	) is by 5� smaller than with a uniform initial void ratio
(/p = 45.62�). The residual friction angle (/cr = 33.02� at ut

2=h0 ¼ 7:5%) is smaller by 2�. In all cases, only
one shear zone appears inside of the specimen. The shear zone thickness (ts/d50 = 11.6) (Table 6) is smaller
by 20% than with a uniform initial void ratio (ts/d50 = 14) (Table 1).

Finally, the evolution of deformation, void ratio and Cosserat rotation is shown for one selected ran-
dom field with two intersecting shear zones (medium specimen size of Fig. 13d, very rough boundaries).
During deformation, first, a pattern of shear zones can be observed in the specimen (strain localization
starts in corners), Fig. 16a. Next, deformation continues to localize within an inclined single shear zone
(just before the peak at ut

2=h0 ¼ 2%). This shear zone becomes well visible after the peak at
ut

2=h0 ¼ 2:1% (Fig. 16c). Next, a second intersecting shear zone occurs at ut
2=h0 ¼ 3:5% (it causes a small

jump on the load-displacement curve, Fig. 12). The evolution of deformation is in agreement with
experiments (Vardoulakis, 1977, Desrues and Viggiani, 2004). In the specimen region beyond the shear
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Fig. 13. Deformed FE-mesh with the distribution equivalent total strain measure during compression with a dense specimen for 12
different random fields of e0 (�e0 ¼ 0:60, specimen size 40 · 140 mm2, very rough boundaries, kx1 = 1, kx2 = 1, sd = 0.05).
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Fig. 14. Evolution of normalized vertical force P/(rcb0l) versus normalized vertical displacement of the upper edge ut
2=h0 during plane

strain compression with a dense specimen for 12 different random fields of e0 (�e0 ¼ 0:60, specimen size 40 · 140 mm2, smooth boundaries,
kx1 = 3, kx2 = 3, sd = 0.10).
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Fig. 15. Deformed FE-mesh with the distribution equivalent total strain measure during compression with a dense specimen for 12
different random fields of e0 (�e0 ¼ 0:60, specimen size 320 · 1120 mm2, smooth boundaries, kx1 = 3, kx2 = 3, sd = 0.10).

Table 5
The values of peak friction angles /p, residual friction angles /cr, vertical strain corresponding to the maximum vertical force ut

2=h0,
normalized shear zone thickness ts/d50 for different random fields (�e0 ¼ 0:60, b0 = 40 mm, h0 = 140 mm, very rough boundaries, kx1 = 1,
kx2 = 1, sd = 0.05)

Nr /p [�] /cr [�] ut
2=h0 ts/d50

SR-01 48.31 35.87 0.0202 11
SR-02 45.54 37.78 0.0196 14
SR-03 44.82 40.57 0.0189 11
SR-04 46.25 38.25 0.0201 14
SR-05 43.56 39.61 0.0198 14
SR-06 43.71 39.52 0.0189 11
SR-07 43.46 40.21 0.0193 14
SR-08 44.04 37.92 0.0196 14
SR-09 44.98 39.58 0.0216 14
SR-10 42.86 38.03 0.0214 14
SR-11 42.93 38.98 0.0201 14
SR-12 41.43 38.96 0.0202 14

Mean value 45.24 38.77 0.0200 13.3
Uniform distribution of e0 45.60 40.4 0.0239 13
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Table 6
The values of peak friction angles /p, residual friction angles /cr, vertical strain corresponding to the maximum vertical force ut

2=h0,
normalized shear zone thickness ts/d50 for different random fields (�e0 ¼ 0:60, b0 = 40 mm, h0 = 140 mm, smooth boundaries, kx1 = 3,
kx2 = 3, sd = 0.10)

Nr /p [�] /cr [�] ut
2=h0 ts/d50

SS-01a 41.50 34.80 0.0148 14
SS-02a 39.55 31.87 0.0134 14
SS-03 41.00 33.26 0.0161 14
SS-04a 43.23 33.65 0.0203 11
SS-05a 39.50 31.69 0.0145 14
SS-06 41.16 33.75 0.0173 14
SS-07a 40.80 33.48 0.0204 14
SS-08 40.05 33.47 0.0161 14
SS-09 40.03 33.23 0.0161 11
SS-10a 39.98 31.03 0.0163 17
SS-11 39.91 33.42 0.0215 11
SS-12a 41.61 32.53 0.0167 14

Mean value 40.69 33.02 0.0170 11.6
Uniform distribution of e0 45.62 34.80 0.0236 14

a Shear zone hitting the top boundary.
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zone, small changes of void ratio are visible, what is also in agreement with experiments by Yoshida
et al. (1994).

5. Conclusions

The following conclusions can be drawn from our preliminary non-linear FE-investigations of deterministic
and statistical size effects in geometrically similar granular bodies during plane strain compression under con-
stant lateral pressure:

The deterministic size effect (decrease of the shear resistance with increasing specimen size) is insignificant
independently of the boundary roughness due to the fact that both the essential features of the material failure
and the pressure level are similar. The difference in the peak friction angle is only 0.5�. The residual friction
angle is larger for very rough boundaries and does not depend on the specimen size. The rate of material soft-
ening strongly decreases with decreasing specimen size. The thickness of the shear zone increases with increas-
ing specimen size (due to a decreasing rate of softening). The number of shear zones depends on the boundary
roughness. Two symmetric intersecting shear zones appear inside of the specimen with very rough boundaries
and one shear zone with smooth boundaries.

The statistical size effect is significantly stronger than the deterministic one. The mean shear resis-
tance at peak with a stochastic distribution of the initial void ratio is always smaller than with a uni-
form distribution of the initial void ratio. For a small standard deviation and strongly correlated fields
of the initial void ratio in both directions, the difference in the peak internal friction angle at peak and
residual state is rather negligible for large and small specimens. In turn, for a large standard deviation
and weakly correlated fields in both directions, the difference in the friction angle becomes more pro-
nounced, e.g. 5� (at peak) and 2� (at residual state). This difference is not influenced by the specimen
size and boundary roughness.

The location and type of shear localization depends on a stochastic distribution of the initial void ratio and
boundary roughness. During deformation, first, a pattern of shear bands can be observed in the sand speci-
men. Next, deformation continues to localize within a single shear zone (smooth boundaries) or two non-sym-
metric shear zones (very rough boundaries). The shear zone can hit the top smooth boundary. The mean
thickness of the shear zone and its inclination are insignificantly influenced by a stochastic distribution of
the initial void ratio.
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Fig. 16. Evolution of equivalent total strain measure (A), void ratio (B) and Cosserat rotation (C) field during a plane strain compression
test (random field of Fig. 13d) at: (a) ut

2=h0 ¼ 0:011, (b) ut
2=h0 ¼ 0:021, (c) ut

2=h0 ¼ 0:028, (d) ut
2=h0 ¼ 0:036, (e) ut

2=h0 ¼ 0:042
(�e0 ¼ 0:60, very rough boundaries, specimen size 40 · 140 mm2).
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Przewłócki, J., Górski, J., 1999. Stochastic FEM analysis of strip foundation. TASK Quarterly 3 (2), 173–181.
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J. Tejchman, J. Górski / International Journal of Solids and Structures 45 (2008) 1546–1569 1569

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

Tamagnini, C., Viggiani, C., Chambon, R., 2000. A review of two different approaches to hypoplasticity. In: Kolymbas, D. (Ed.),
Constitutive Modeling of Granular Materials. Heidelberg, Berlin, pp. 107–145.

Tatsuoka, F., Goto, S., Tanaka, T., Tani, K., Kimura, Y., 1997. Particle size effects on bearing capacity of footing on granular material.
In: Asaoka, A., Adachi, T., Oka, F. (Eds.), Deformation and Progressive Failure in Geomechanics. Pergamon, pp. 133–138.

Tejchman, J., Wu, W., 1993. Numerical study on shear band patterning in a Cosserat continuum. Acta Mechanica 99, 61–74.
Tejchman, J., Bauer, E., 1996. Numerical simulation of shear band formation with a polar hypoplastic model. Computers and Geotechnics

19 (3), 221–244.
Tejchman, J., Herle, I., 1999. A ‘‘class A’’ prediction of the bearing capacity of plane strain footings on granular material. Soils and

Foundations 39 (5), 47–60.
Tejchman, J., Gudehus, G., 2001. Shearing of a narrow granular strip with polar quantities. Journal of Numerical and Analytical Methods

in Geomechanics 25, 1–18.
Tejchman, J., 2004a. FE-simulations of a direct wall shear box test. Soils and Foundations 44 (4), 67–81.
Tejchman, J., 2004b. Influence of a characteristic length on shear zone formation in hypoplasticity with different enhancements.

Computers and Geotechnics 31 (8), 595–611.
Tejchman, J., Niemunis, A., 2006. FE-studies on shear localization in an anisotropic micro-polar hypoplastic granular material. Granular

Matter 8 (3-4), 205–220.
Tejchman, J., Bauer, E., Wu, W., 2007. Effect of texturial anisotropy on shear localization in sand during plane strain compression. Acta

Mechanica 1-4, 23–51.
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