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ABSTRACT

The aim of the study was to develop an automated computer-aided system for analysis of spectrograms obtained
from measurements of biological samples performed with a low-coherence Fabry-Pérot interferometer. Informa-
tion necessary to determine dispersion characteristics of measured materials can be calculated from the positions
of the maxima and minima that are present in their spectra. The main challenge faced during the development
of the system was reliable detection of these maxima and minima in the presence of noise, without requiring
substantial user interaction, and with an acceptable computational complexity.
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1. INTRODUCTION

The aim of the study was to develop an automated computer-aided system for analysis of spectrograms obtained
from measurements of biological samples1�5 performed with a low-coherence �ber-optic Fabry-Pérot interferom-
eter.

An example of a spectrogram obtained from a measurement of an empty interferometer cavity is presented
in �g. 1.
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Figure 1. Example of a measured spectrogram used in analysis
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Spectrograms obtained from the performed measurements show a repeating pattern of maxima and minima,
with the maxima corresponding to constructive interference in the interferometer cavity, and minima correspond-
ing to destructive interference.7 Positions of these extrema can be used to determine the dispersion characteristic
of the medium present in the cavity.

2. MEASUREMENT SETUP

The measurement setup presented in �g. 2 consists of a �ber-optic Fabry-Pérot interferometer, a low-coherence
source, and an optical spectrum analyzer. To a �rst approximation, light propagating in the interferometer
cavity (�g. 2) can be modeled with a planar wave. Due to a 180◦ phase shift6 upon re�ection from the surface
of the silver mirror, the wave re�ected from the end of the optical �ber interferes constructively with the wave
passing through the cavity for wavelengths satisfying the following equation:

2nL =

(
m+

1

2

)
λmax,m = 0, 1, 2, . . . , (1)

where n is the refractive index of the material �lling the cavity of the interferometer, L is the geometric length
of the cavity, and λmax is a wavelength at which the re�ectivity of the interferometer attains maximum. The
waves will interfere destructively for wavelength satisfying the equation:

2nL = mλmin,m = 1, 2, 3, . . . , (2)

where λmin is a wavelength at which the re�ectivity of the interferometer attains minimum.
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Figure 3. Interferometer cavity
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3. CONSIDERED ALGORITHMS

The algorithm chosen for determination of the positions of maxima and minima of the spectrum should satisfy
the following requirements:

• Detect the maxima and minima, in the presence of noise, with no false positives or negatives.

• Require minimal user interaction.

• Have low computational complexity.

The following algorithms were considered:

• Comparison of di�erences between consecutive maxima and minima against a given threshold.8 This
algorithm �nds spectral lines by comparing the distance between spectral maximum and minimum against
a threshold selected by user.

• Using Fourier domain.7 This algorithm uses information obtained from the Fourier transform of the input
spectrogram to determine approximate positions of the spectral maxima and minima and searches for
extrema of the signal in the vicinity of these positions.

Peak detection by height comparison requires only one pass over the input spectrogram and does not require
resampling, therefore its computational complexity is lower than the other method. The disadvantage of this
algorithm is that it can result in false positives in presence of noise, or fail to detect peaks if the threshold value is
chosen inappropriately. Therefore, this algorithm requires substantial user interaction, and has been discarded.

Fourier transform of the signal reveals the frequency of the modulation superimposed on the source spectrum.
The transform has to be calculated from a signal resampled to the wavenumber domain, as spectral lines are not
uniformly distributed in the wavelength domain, even in the ideal case of no dispersion.

There are thus two possible means of obtaining the transform:

• Nonuniform Discrete Fourier Transform.9 Discrete Fourier Transform can be calculated for a nonuniformly
sampled signal, although the Fast Fourier Transform algorithm cannot be used, and the transform has to
be calculated directly from the de�nition.

• Uniform DFT preceded by resampling.7 This method of calculating the Fourier transform requires an
additional step in order to obtain a signal sampled uniformly in the wavenumber domain, but the FFT
algorithm can be used afterwards.

The computational complexity of NDFT is quadratic in the general case, as opposed to O(N log2N) (where
N is the number of samples in the input signal) complexity of FFT. For the sizes of data sets used in this analysis
this complexity outweighs the cost of resampling, therefore the NDFT algorithm has been discarded.

3.1 Resampling

The resampling process has to preserve the total power of the signal, i.e. the integral of the signal under any
portion of the spectrum. For two arbitrary wavelengths λ1 < λ2 and their respective wavenumbers k1 = 2π

λ1
and

k2 = 2π
λ2
, the original signal f(λ) and the resampled signal g(k) have to satisfy the following equation:6

∫ λ2

λ1

f(λ)dλ =

∫ k1

k2

g(k)dk. (3)

In particular, two consecutive samples in the wavelength domain, λ1 and λ1 + ∆λ (where ∆λ is the sampling
interval) have to satisfy equation:
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∫ λ1+∆λ

λ1

f(λ)dλ =

∫ 2π
λ1

2π
λ1+∆λ

g(k)dk, (4)

which, if the signals are approximated with step functions, reduces to

g

(
2π

λ1

)
= f(λ1)

(λ1 + ∆λ)λ1

2π
. (5)

Following this transformation, the distances between the signal's samples can be uniformized. In general
case, for a given window function w(k), the resulting series of samples h[i] can be obtained from the original
signal f(λ) using equation (5) as follows

h[o] = h(k0 + o∆k) =

i2∑
i=i1

g

(
2π

λ0 + i∆λ

)
w

(
k0 + o∆k − 2π

λ0 + i∆λ

)

=

i2∑
i=i1

f(λ0 + i∆λ)
(λ0 + (i+ 1)∆λ)(λ0 + i∆λ)

2π
w

(
k0 + o∆k − 2π

λ0 + i∆λ

)
, (6)

where λ0 is the initial wavelength of the original spectrogram, k0 is the initial wavenumber of the resampled
spectrogram, ∆k is the sampling interval of the resampled spectrogram, h[o] are the samples of the resampled
spectrogram, w(k) is the window function, and i1, i2 are the indices of samples of the original spectrogram
where the window function takes nonzero values (calculated based on the current sample index in the resampled
spectrogram and length of the window function). As the length of any practical window function is signi�cantly
lower than the size of the input data and does not directly depend on it, this algorithm can be considered to
have linear algorithmic complexity.

Lanczos window (�g. 4) was chosen for the purpose of interpolation, as it is a commonly used resampling
function.10 The Lanczos window is de�ned as a family of functions indexed by a shape parameter a:

w′a(x) =

{
sinc(x)sinc(xa ) for x ∈ [−a, a]

0 for other x
, (7)

where sinc(x) = sin(πx)
πx .

To use this window with wavenumber values, the sample positions can be scaled by the sampling interval:

wa(k) = w′a

(
k

∆k

)
. (8)
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Figure 4. Lanczos window function used in the resampling process
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3.2 Fourier domain

A Fourier transform of an input spectrogram corresponds to an interferogram of the measured signal as a function
of optical path length. An example of a Fourier transform of a measured spectrogram is presented in �g. 5
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Figure 5. Fourier transform of the spectrogram presented in �g. 1, in lin-log scale

The second peak in the Fourier transform of the spectrogram corresponds to the mean optical path length
di�erence between the interfering waves 2n∆L, and thus the base frequency of the modulation present in the
spectrum. Position of this peak can be obtained by �nding the point with maximum di�erence between its height
and the minimum of the signal up to that point. Afterwards, this information can be used to divide the original
into equal parts of length π

n∆L , and to �nd the maxima and minima of these parts.

3.3 Dispersion characteristics

Transforming equation (1), the order of interference of each maximum can be obtained as follows

m′i =
2nL

λi
− 1

2
, (9)

where m′i is the approximate order of interference of ith maximum, and λi is wavelength of ith maximum.

Assuming that these numbers should be consecutive and decreasing, after �nding the index ibest such that m′
best

is closest to an integer, the integral orders of interference can be calculated as follows

mi = ibest − i+ [m′
best

] , (10)

where [.] denotes the nearest integer number.

Using equation (1) again, and assuming that geometric length L of the interferometer cavity is known (it can be
obtained by taking a measurement with empty cavity, and assuming the refractive index of air to be equal to 1),
the dispersion characteristics of the material in the cavity of the interferometer can be calculated as follows:

n(λi) =
1

2L

(
mi +

1

2

)
λi. (11)

Positions of the spectral minima and equation (2) can be used in a similar manner to obtain more data points.
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4. RESULTS

Comparison of calculated and expected dispersion characteristics of free air is presented on �g. 6. The discrepancy
from the expected constant index of refraction equal to 1 results from the di�erence between the positions of
maxima in the intensity of received light and the maxima of the re�ectance of the interferometer. As a source
with Gaussian spectral characteristics was used, the maxima of received intensity are shifted by the slopes of the
input spectrum. The relative error does not exceed 0.06%, and is deemed acceptable.
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Figure 6. Calculated (points) and expected (line) dispersion characteristics of an empty cavity

5. CONCLUSION

A computer-aided, fully automated system capable of determining the dispersion characteristics with relative
error no higher than 0.06% has been developed. Further studies can be undertaken to improve the accuracy of
results. Possible improvement can be achieved by taking into account the e�ects of non-�at spectral characteris-
tics of the source, Gouy phase shift, and coupling coe�cients between the optical �ber and interferometer cavity,
although these methods introduce additional computational complexity.
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