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Most random processes studied in nonlinear time series analysis take values on sets endowed with

a group structure, e.g., the real and rational numbers, and the integers. This fact allows to associate

with each pair of group elements a third element, called their transcript, which is defined as the

product of the second element in the pair times the first one. The transfer entropy of two such

processes is called algebraic transfer entropy. It measures the information transferred between two

coupled processes whose values belong to a group. In this paper, we show that, subject to one

constraint, the algebraic transfer entropy matches the (in general, conditional) mutual information

of certain transcripts with one variable less. This property has interesting practical applications,

especially to the analysis of short time series. We also derive weak conditions for the 3-

dimensional algebraic transfer entropy to yield the same coupling direction as the corresponding

mutual information of transcripts. A related issue concerns the use of mutual information of tran-

scripts to determine coupling directions in cases where the conditions just mentioned are not ful-

filled. We checked the latter possibility in the lowest dimensional case with numerical simulations

and cardiovascular data, and obtained positive results. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4967803]

The elucidation of causality relations between interacting

dynamical systems or random processes is an important

though difficult undertaking in time series analysis. To

this end a number of quantitative approaches have been

proposed in the literature in which Wiener’s criterion,

based on predictability, was possibly the first one. In this

paper we focus on transfer entropy, which can be consid-

ered for the implementation of Wiener’s criterion which

has become one of the most popular tools. Even in this

limited setting, the determination of causality in practice

remains subtle and challenging due to a number of fac-

tors such as (i) symbolization, (ii) observational noise, (iii)

poor statistical estimations, or (iv) hidden drivers. The

topic of this paper is related to (iii) since it deals with the

possibility of computing transfer entropy and coupling

directions with a lower dimensional quantity when the

data being analyzed belong to an algebraic group. Such is

the case of numerical observations and certain symbolic

representations (e.g., ordinal patterns). This property can

make a difference when studying information directional-

ity with short time series. In any case, the use of direc-

tionality indicators with lower dimensionality enhances

the statistical quality of the results.

I. INTRODUCTION

There are several ways of materializing the concept of

causality between processes or systems wherein one of the

proposals goes back to Wiener.1 In short, a random process

ðYnÞn2Z is said to (Wiener-)cause another process ðXnÞn2Z if,

given the past history of Xn, the additional knowledge of the

past history of Yn improves the prediction of the present value

Xn. The implementation of this principle in linear time series

analysis goes by the name of Granger causality.2–4 In a deter-

ministic setting, though, Granger causality may be problem-

atic, as Granger himself recognized.2 Causality is often

referred to as coupling direction or temporal causality in non-

linear dynamics, where there are a number of alternative pro-

posals for its determination. Just to mention a few, some use

mutual prediction,5,6 and others recurrences,7 proximity of the

embedding vectors in the reconstructed attractors,8,9 or the so-

called convergent cross mappings.10 One has to move on to

information theory to recover the original spirit of Wiener

causality; this time it is formulated by means of asymmetric

dependence measures. One of the most popular choices, since

Schreiber11 proposed transfer entropy to measure information

transfer, has been conditional mutual information. This way

one can quantify the reduction of uncertainty about Xn that

supposes the additional knowledge of the past history of Yn. If

one repeats the calculation with the roles of the random pro-

cesses ðXnÞn2Z and ðYnÞn2Z interchanged and subtracts both

results, the bottom line is a measure of the net amount of

information between ðXnÞn2Z and ðYnÞn2Z. The sign of the net

information transfer gives then the direction in which most

information flows. If this direction goes, e.g., from ðYnÞn2Z to

ðXnÞn2Z, then the former process drives the latter one more

than in the opposite direction; that is, ðYnÞn2Z is the dominant

or leading driver. For a general overview of causality detec-

tion based on information-theoretical methods, the interested

reader is referred to Ref. 12.
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In this paper, we follow the information-theoretical

approach with a twist, since we are going to focus on the

algebraic structure that the values of the processes consid-

ered or their symbolic representation might have. Formally,

suppose that G is an algebraic group and ðXnÞn2Z is a G-val-

ued random process. Any realization ðxnÞn2Z is then called

an algebraic time series. The examples of such algebraic

time series are very common and include numerical observa-

tions, binning, instantaneous phases, and, of course, sym-

bolic representations with elements of a group, e.g.,

permutations. Although G may have different cardinalities

(finite, infinite countable, infinite uncountable) and topolo-

gies (discrete, continuous), in practice, the group elements

with a positive probability (observable data) build a finite

subset.

The transfer entropy of two random processes taking

values on the same group will be called algebraic transfer

entropy (ATE). Note that the qualifier “algebraic” adds noth-

ing to the definition of transfer entropy; it only signalizes the

fact that the data being analyzed are amenable to algebraic

operations. In particular, the concept of transcript exploits

this feature. Given two elements of the group G, their tran-

script is the composition of the second element with the

inverse of the first one, thus an element of G as well.

However simple this concept may appear, it is fundamental

for the core results of this paper. Transcripts were introduced

in Ref. 13 for ordinal symbolic representations and further

studied in Refs. 14–16. Transcripts in general algebraic time

series representations were first considered in Ref. 17.

More importantly, in Ref. 17, it is shown that, under cer-

tain constraints, the algebraic (i.e., G-valued) conditional

multi-information can be calculated by a (in general condi-

tional) mutual information of transcripts with one variable

less. In this paper, we generalize this result along two lines.

First of all, we consider a general algebraic transfer entropy

(based on arbitrary, finite histories of ðXnÞn2Z and ðYnÞn2Z)

instead. Therefore, the present results refer to ATEs of any

dimension, while in Ref. 17, the connection to ATE could be

established only in the lowest, three dimensional case.

Second, the constraints that allow equating an ATE to a

mutual information of transcripts of lower dimension (its

“transcript dimensional reduction”) are weaker than the con-

straints for the algebraic conditional multi-information.

Specifically, two restrictions were needed in Ref. 17, to wit:

one on the entropies of the processes and the other on the so-

called coupling complexity coefficients. Here, only one

restriction on the coupling complexity coefficients will be

required. This is a fine result because, as we will review in

Sec. V, that restriction can be often satisfied in practice by

choosing the time delay adequately.

In sum, the results contained in this paper are not only

interesting from a formal point of view but also from a prac-

tical one. Regarding this, we stress that the practical applica-

tion of transfer entropy is challenging for a number of

reasons that have been recently discussed in the literature.

Among them, small data sets are, of course, directly related

to the topic of this paper. Others include indirect influen-

ces,18–20 redundancy,21 low resolution,19,22 anticipatory cou-

plings,20,22 choice of parameters,23,24 and dominance of

neighbors.20 Possible remedies can be found in Ref. 25, as

well as in the respective papers.

The rest of this paper is organized as follows. Sec. II con-

tains the conceptual baggage needed to make this paper self-

contained, most notably the concept of transcript (Sec. II B)

and coupling complexity coefficients (Sec. II C). Once the

notational and conceptual framework has been set, we derive

in Sec. III the main theoretical result of the paper, Theorem 1,

which states that an n-dimensional ATE equals an (n – 1)-

dimensional conditional mutual information of transcripts, sub-

ject to a constraint involving coupling complexity coefficients.

Some results of Sec. III are then generalized in Sec. IV in that

their hypotheses are weaker but still sufficient to guarantee that

a given ATE and its transcript dimensional reduction yield the

same coupling direction. The practical implementation of

Theorem 1 is discussed in Sec. V. Finally, we illustrate the per-

formance of the transcript 2-dimensional reduction as a direc-

tionality indicator in cases in which the constraints required in

Secs. III and IV are not fulfilled. This is done with numerical

simulations (Sec. VI A) and cardiovascular data (Sec. VI B).

II. THEORETICAL FRAMEWORK

The mathematical framework of our analysis is set by

random variables and stationary random processes taking

values on an algebraic group. The concept of transcript, pre-

sented in Sec. II B, is a simple way of exploiting that alge-

braic structure. Transcripts go into the definition of coupling

complexity coefficients, Sec. II C, which are necessary for

the main results of this paper.

A. Algebraic time series

Let x ¼ ðxnÞn2T be a one sided (T ¼N0 :¼ f0g [N)

or two-sided (T ¼ Z) time series taking values on a set G.

We say, that x is an algebraic time series if G is an algebraic

group. Examples of groups that appear in applications are

the following.

(G1): If xn are measurements with finite precision, binned

observations, or digitalized analog signals, then G ¼ Z or

Qk, the rational numbers with k� 1 decimal digits. The

composition law is the addition. Measurements with ideally

infinite precision correspond to G ¼ R.

(G2): Binary sequences are used in digital communications

and cryptography. In this case, G ¼ f0; 1g equipped with

the XOR addition (0 � 0 ¼ 1 � 1 ¼ 0; 0 � 1 ¼ 1 � 0 ¼ 1).

(G3): If xn are instantaneous phases, then G ¼ ð½0; 1Þ
mod1Þ. In practice, these phases will be also rational num-

bers with k decimal digits in the interval [0, 1), the compo-

sition law being addition modulo 1.

(G4): If x is symbolically represented by the elements of a

group, then we obtain an algebraic representation. In par-

ticular, an ordinal representation is an algebraic representa-

tion by means of ordinal patterns26,28 or, for that matter,

permutations of length L� 2. Specifically, we trade off

each xn 2 R for the rank vector r ¼ ðq0;…; qL�1Þ of the

block xn; xnþ1…; xnþL�1, i.e., the permutation ðq0;…; qL�1Þ
of (0,…, L – 1) is the ordinal L-pattern r of xn if

113115-2 Amig�o et al. Chaos 26, 113115 (2016)
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xnþq0
< xnþq1

< � � � < xnþqL�1
:

Thus, in this case, G ¼ SL, the symmetric group of degree

L� 2. The composition law is the composition or “product”

of permutations.14 This group is non-commutative for

L� 3. Other definitions, e.g., using the block xn�Lþ1;…;
xn�1; xn, are also possible.

We assume throughout this paper that x is the output of

a stationary random process X ¼ ðXnÞn2T (possibly a noisy

deterministic or “coarse grained” dynamics) or a symbolic

representation thereof. Furthermore, we may assume that

only a finite number of group elements have a positive prob-

ability because this is what happens in practice. Therefore,

all the entropies considered below are finite (otherwise, we

should suppose case by case that the corresponding numeri-

cal series is convergent). As an additional remark, finite

groups may have also elements with zero probability. For

instance, time series which are generated by piecewise

strictly monotonic interval maps have forbidden ordinal pat-

terns for sufficiently large pattern lengths.27,28

B. Transcripts

Let G be a group. Given x; y 2 G, there always exists a

unique t ¼ tðx; yÞ 2 G, called the transcript from the element
x to the element y,13 such that

t ¼ yx�1: (1)

For generality, we use a multiplicative notation, i.e., the

inverse x 2 G is written as x�1, and the composition or

“product” of two elements of G is denoted by concatenating

them in the correct order (since G might be non-commuta-

tive). When the elements being multiplied, x and y in (1), are

important for the discussion, we write tx,y. It follows from (1)

that

ty;x ¼ ðtx;yÞ�1; (2)

and

ty;ztx;y ¼ zy�1yx�1 ¼ zx�1 ¼ tx;z:

In case that G has a finite cardinality jGj, the map G � G
! G defined by ðx; yÞ 7! tx;y is jGj-to- 1 since the jGj distinct

pairs (x, tx) are sent to t for all x 2 G. Reciprocally, any pair

ðx; yÞ 2 G � G whose transcript is t must have y¼ tx by (1).

As two simple examples of transcripts, consider (i) G ¼ R

(G1 in Sec. II A) and (ii) G ¼ SL (G4 in Sec. II A). Then,

tx,y¼ y – x in case (i). As for (ii), if x ¼ ðn0;…; nL�1Þ and

y ¼ ðg0;…; gL�1Þ, then

tx;y ¼ ðg0;…; gL�1Þðn0;…; nL�1Þ�1

¼ ðg0;…; gL�1Þðp0;…; pL�1Þ
¼ ðpg0

;…; pgL�1
Þ;

where ðp0;…; pL�1Þ is the ordinal pattern of the string

n0;…; nL�1.14

C. Coupling complexity coefficients

The coupling complexity coefficient of the G-valued ran-

dom variables X1,…, XN (N� 2), denoted by C(X1,…, XN), is

directly linked to their transcripts. They are defined as14,15

CðX1;X2;…;XNÞ ¼ min1�n�NHðXnÞ � HðX1;X2;…;XNÞ
þHðTx1;x2

; Tx2;x3
;…; TxN�1;xN

Þ; (3)

where H(…) is the (joint) entropy of the random variable(s)

in the argument, and Txi;xiþ1
is a random variable that outputs

the transcript txi;xiþ1
whenever Xi¼ xi and Xiþ1 ¼ xiþ1. It can

be shown15,17 that

CðX1;X2;…;XNÞ ¼ min
1�n�N

IðXn; Tx1;x2
; Tx2;x3

;…; TxN�1;xN
Þ;

(4)

where Ið�; �Þ is the mutual information between the random

variables in the argument separated by the semicolon. These

coefficients were introduced in Ref. 14 to discriminate differ-

ent synchronization regimes in coupled dynamics.

The coefficients CðX1;…;XNÞ have a number of interest-

ing properties. Among the basic ones, they are invariant under

permutation of their arguments. The next property will be

needed in Sec. IV. We use the notation CðX1;…; �Xk; …;XNÞ
to indicate that the variable Xk has been omitted in the argu-

ment of CðX1;…;Xk;…;XNÞ. By convention we set

CðXÞ :¼ 0 (5)

to cover the one-dimensional case CðX1Þ or CðX2Þ of

CðX1;…; �Xk;…;XNÞ when N¼ 2.

Lemma 1. (Monotonicity property of the coupling com-
plexity coefficients.) Consider the G- valued random varia-
bles X1,…, XN, where N� 2.

(i) If there is only one variable Xnmin
such that

min1�n�NHðXnÞ¼HðXnmin
Þ, then CðX1;…;XNÞ�CðX1;

…; �Xk;…;XNÞ for all k 6¼nmin.

(ii) If there are at least two variables with minimum
entropy, then CðX1;…;XNÞ � CðX1;…; �Xk;…;XNÞ
for all k¼ 1,…, N.

We conclude from Lemma 1 that CðX1;…;XNÞ
< CðX1;…; �Xk;…;XNÞ is only possible when H(Xk) is a

unique minimum. For the proofs of the above and other

properties of the coupling complexity coefficients, the inter-

ested reader is referred to Refs. 15 and 17.

To conclude this section, let us also mention the equiva-
lence property. By this, we mean the fact that different sets

of variables composed of group elements and their tran-

scripts contain the same information just because the varia-

bles in one set univocally determine the variables in the

other sets. Thus, given the triple (x, y, tx,y), any pair of ele-

ments, i.e., (x, y), (x, tx,y), or (y, tx,y), univocally determines

the remaining element. The same happens with (x, y, ty,x)

because of (2). This simple observation implies

Hð…;X; Y;…Þ ¼ Hð…;X; Tx;y;…Þ ¼ Hð…;X; Ty;x;…Þ (6)

¼ Hð…; Tx;y; Y;…Þ ¼ Hð…; Ty;x; Y;…Þ (7)

113115-3 Amig�o et al. Chaos 26, 113115 (2016)
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because any of the random variable pairs explicitly shown in

(6) and (7) can be determined from any other variable pair.

A similar property holds with higher numbers of symbols

and their transcripts.

III. COMPUTING ALGEBRAIC TRANSFER ENTROPY
VIA TRANSCRIPTS

Let G be a group, and X ¼ ðXnÞn2Z and Y ¼ ðYnÞn2Z two

G-valued, stationary random processes. Roughly speaking, the

transfer entropy from Y to X is the reduction of uncertainty in

future values of X, given past values of X, due to the addi-

tional knowledge of past values of Y. We remind next its stan-

dard definition11 by means of conditional entropies; thereby,

we introduce the term “algebraic transfer entropy” to under-

line that the values of Xn and Yn have an extra algebraic struc-

ture. For r, s� 1 set XðrÞn :¼Xn;…;Xn�rþ1, and YðsÞn :¼Yn;…;
Yn�sþ1.

Definition 1. The algebraic transfer entropy from the pro-

cess Y to the process X with coupling delay K� 1 is defined as

AT
s;rð Þ

Y!X Kð Þ ¼ H XnþKjX rð Þ
n

� �
� H XnþKjX rð Þ

n ; Y sð Þ
n

� �

¼
X

xnþK;x
rð Þ

n ;y
sð Þ

n

p xnþK; x
rð Þ

n ; y sð Þ
n

� �

� log
p xnþKjx rð Þ

n ; y
sð Þ

n

� �

p xnþKjx rð Þ
n

� � : (8)

Therefore, AT
ðs;rÞ
Y!XðKÞ ¼ 0 if and only if pðxnþKjxðrÞn ;

yðsÞn Þ ¼ pðxnþKjxðrÞn Þ for all xnþK; xðrÞn :¼ xn;…; xn�rþ1, and

yðsÞn :¼ yn;…; yn�sþ1. If, otherwise, AT
ðs;rÞ
Y!XðKÞ > 0 we say,

that there is an information transfer from the process Y to

the process X with coupling delay K. In Ref. 11 and often in

applications, K¼ 1. Ideally, one should set s¼ r¼�1 in

(8) but, bearing in mind the applications, it is more conve-

nient to consider rather finite histories.

Alternatively, AT
ðs;rÞ
Y!XðKÞ can be also written as condi-

tional mutual information, to wit:

AT
s;rð Þ

Y!X Kð Þ ¼ I XnþK; Y sð Þ
n jX rð Þ

n

� �

¼
X

xnþK;x
rð Þ

n ;y
sð Þ

n

p xnþK; x
rð Þ

n ; y sð Þ
n

� �

� log
p xnþK; y

sð Þ
n jx rð Þ

n

� �

p xnþKjx rð Þ
n

� �
p y

sð Þ
n jx rð Þ

n

� � : (9)

Other definitions of transfer entropy (e.g., with n – 1 instead

of n, or with s¼ r) can be found in the literature too. For def-

initeness, logarithms are taken to be base 2 throughout the

paper.

Unlike the (unconditioned) mutual information,

AT
ðs;rÞ
Y!XðKÞ is not symmetric under the exchange of the pro-

cesses X and Y. Therefore, the directionality indicator

DAT
ðs;rÞ
Y!XðKÞ ¼ AT

ðs;rÞ
Y!XðKÞ � AT

ðr;sÞ
X!YðKÞ ¼ �DAT

ðr;sÞ
X!YðKÞ

(10)

measures the net transfer of information between the pro-

cesses X and Y. For example, if DAT
ðs;rÞ
Y!XðKÞ > 0, then Y is

the dominant driving process with a coupling delay K. This

so-called coupling direction is one of the main objectives in

the study of interacting systems.

The next lemma relates DAT
ðs;rÞ
Y!XðKÞ to transcripts of

XKþn; XðrÞn , and YðsÞn via coupling complexity coefficients.

For notational convenience, we introduce the symbols

CðX1;…;XN jY1;…; YMÞ :¼ CðX1;…;XN; Y1;…; YMÞ
� CðY1;…; YMÞ: (11)

Lemma 2. If r� 2,

AT
ðs;rÞ
Y!XðKÞ ¼ IðTxnþK;xn

; Txn�rþ1;yn
; Tyn;yn�1

;…;

Tyn�sþ2;yn�sþ1
jTxn;xn�1

;…; Txn�rþ2;xn�rþ1
Þ

þCðXnþKjXn;…;Xn�rþ1; Yn;…; Yn�sþ1Þ
� CðXnþKjXn;…;Xn�rþ1Þ: (12)

If r¼ 1,

AT
ðs;1Þ
Y!XðKÞ ¼ IðTxnþK;xn

; Txn;yn
; Tyn;yn�1

;…; Tyn�sþ2;yn�sþ1
Þ

þCðXnþKjXn; Yn;…; Yn�sþ1Þ � CðXnþKjXnÞ:
(13)

Proof. Suppose r� 2. First of all, note that HðXnþKÞ
¼ HðXnÞ ¼ � � � ¼ HðXn�rþ1Þ, and HðYnÞ ¼ � � � ¼HðYn�sþ1Þ.
From (3) and (11), it follows:

HðXnþKjXn;…;Xn�rþ1Þ
¼ HðXnþK;Xn;…;Xn�rþ1Þ � HðXn;…;Xn�rþ1Þ
¼ HðTxnþK;xn

jTxn;xn�1
;…; Txn�rþ2;xn�rþ1

Þ
� CðXnþKjXn;…;Xn�rþ1Þ;

since

minfHðXnþKÞ;HðXnÞ;…;HðXn�rþ1Þg ¼ HðXnÞ

and

minfHðXnÞ;…;HðXn�rþ1Þg ¼ HðXnÞ:

Likewise,

HðXnþKjXn;…;Xn�rþ1; Yn;…; Yn�sþ1Þ
¼ HðXnþK;Xn;…;Xn�rþ1; Yn;…; Yn�sþ1Þ
� HðXn;…;Xn�rþ1; Yn;…; Yn�sþ1Þ
¼ HðTxnþK;xn jTxn;xn�1

;…; Txn�rþ2;xn�rþ1
; Txn�rþ1;yn ;

Tyn;yn�1
;…; Tyn�sþ2;yn�sþ1

Þ
�CðXnþKjXn;…;Xn�rþ1; Yn;…; Yn�sþ1Þ;

since

minfHðXnþKÞ;HðXnÞ;…;HðXn�rþ1Þ;HðYnÞ;…;HðYn�sþ1Þg
¼ minfHðXnÞ;HðYnÞg

and
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minfHðXnÞ;…;HðXn�rþ1Þ;HðYnÞ;…;HðYn�sþ1Þg
¼ minfHðXnÞ;HðYnÞg:

Plug now these two expressions into the definition (8).

The case r¼ 1 follows analogously. (
The following result is a straightforward consequence of

Lemma 2.

Theorem 1. If

CðXnþKjXn;…;Xn�rþ1; Yn;…; Yn�sþ1Þ
¼ CðXnþKjXn;…;Xn�rþ1Þ (14)

then

AT
ðs;1Þ
Y!XðKÞ ¼ IðTxnþK;xn

; Txn;yn
; Tyn;yn�1

;…; Tyn�sþ2;yn�sþ1
Þ (15)

and (r� 2)

AT
ðs;rÞ
Y!XðKÞ ¼ IðTxnþK;xn

; Txn�rþ1;yn
; Tyn;yn�1

;…;

Tyn�sþ2;yn�sþ1
jTxn;xn�1

;…; Txn�rþ2;xn�rþ1
Þ: (16)

Note in Theorem 1 that AT
ðs;rÞ
Y!XðKÞ has sþ rþ 1 varia-

bles (of which r� 1 are conditioning variables, see (9)),

while

IðTxnþK;xn
; Txn;yn

; Tyn;yn�1
;…; Tyn�sþ2;yn�sþ1

Þ

(rhs of (15)) and

IðTxnþK;xn
; Txn�rþ1;yn

; Tyn;yn�1
;…; Tyn�sþ2;yn�sþ1

jTxn;xn�1
;…;

Txn�rþ2;xn�rþ1
Þ;

(rhs of (16) have sþ r variables (of which r – 1 are condi-

tioning in the second case, and none in the first). For conve-

nience, we will refer to the rhs of (15) and (16) as the

transcript dimensional reduction of AT
ðs;rÞ
Y!XðKÞ, even when

the constraint (14) is not fulfilled.

Remark 1.

(i) A similar result for the algebraic multi-information

function29

IðX1;…;XNÞ ¼
XN

n¼1

HðXnÞ � HðX1;…;XNÞ

can be found in Theorem 1 of Ref. 17. Note that I(X1,

X2) is mutual information; hence, it leads to a transfer

entropy after proper conditioning. The comparison of

both theorems shows a common feature and a crucial dif-

ference. The common feature is a constraint involving

the coupling complexity coefficients. The constraint for

the multi-information function is however different from

(14), except for r¼ s¼ 1. The crucial difference is that

Theorem 1 of Ref. 17 requires as well a further constraint

involving the entropies of the processes considered. No

such a constraint is needed in the case of an ATE.

(ii) If

CðXnþK;Xn;Xn�1;…;Xn�rþ1; Yn; Yn�1;…; Yn�sþ1Þ ¼ 0

(17)

and

CðXnþK;Xn;Xn�1;…;Xn�rþ1Þ ¼ 0 (18)

then,

CðXnþKjXn;Xn�1;…;Xn�rþ1; Yn; Yn�1;…; Yn�sþ1Þ
¼ CðXnþKjXn;Xn�1;…;Xn�rþ1Þ ¼ 0

by the monotonicity property of the coupling com-

plexity coefficients, Lemma 1. This being the case,

the condition (14) holds then trivially.

(iii) Owing to the equivalence property mentioned in Sec.

II, Eqs. (15) and (16) can be written in different,

equivalent forms.

The computation of the transfer entropy supposes the

estimation of the probabilities in (8) or (9), usually by their

relative frequencies. Due to the difficulty of estimating reli-

ably those probabilities in high dimensions, researchers

mostly use the lowest dimensional case, namely:

AT
ð1;1Þ
Y!XðKÞ ¼ IðXnþK; YnjXnÞ: (19)

For notational simplicity, AT
ð1;1Þ
Y!XðKÞ ¼: ATY!XðKÞ hereaf-

ter. Setting s¼ r¼ 1 in Theorem 1, and noting

that CðXnþKjXn; YnÞ ¼ CðXnþK;Xn; YnÞ � CðXn; YnÞ, and

CðXnþKjXnÞ ¼ CðXnþK;XnÞ (since C(Xn)¼ 0 by (5)), we

obtain the following result.

Corollary 1. If

CðXnþK;Xn; YnÞ ¼ CðXnþK;XnÞ þ CðXn; YnÞ (20)

then

ATY!XðKÞ ¼ IðTxnþK;xn
; Txn;yn

Þ: (21)

Corollary 1 spells out that if the condition on the cou-

pling complexity coefficients (20) holds, then the algebraic

transfer entropy ATY!XðKÞ can be calculated as a mutual

information of certain transcripts. Let us set

TIY!XðKÞ :¼ IðTxnþK;xn
; Txn;yn

Þ (22)

for further reference. Note that the mutual information

IðTxnþK;xn
; Txn;yn

Þ is not symmetric under the swap of X and Y,

then TIX!YðKÞ :¼ IðTynþK;yn
; Tyn;xn

Þ ¼ IðTynþK;yn
; Txn;yn

Þ (in

virtue of the equivalence property, Sec. II B); hence,

TIX!YðKÞ 6¼ TIY!XðKÞ in general.

By setting r¼ s¼ 1 in Remark 1(ii), we obtain the fol-

lowing special version of Corollary 1.

Corollary 2. If

CðXnþK;Xn; YnÞ ¼ CðXnþK;XnÞ ¼ 0; (23)

then IðXnþK; YnjXnÞ ¼ IðTxnþK;xn
; Txn;yn

Þ, i.e.,

ATY!XðKÞ ¼ TIY!XðKÞ:

From Corollaries 1 and 2, we conclude that, under con-

ditions (20) or (23) on the coupling complexity coefficients,

the algebraic transfer entropy ATY!XðKÞ can be calculated
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by means of mutual information of transcripts. In some cases,

the condition (20) can be satisfied by selecting the time delay

appropriately. More frequently, the conditions (23) can be met

approximately by choosing the time delay sufficiently large.

These practical issues will be considered in Sec. V.

IV. DIRECTIONALITY INDICATORS

In view of the definition (10) of DAT
ðs;rÞ
Y!XðKÞ and

Lemma 2, set

DTI
ðs;rÞ
Y!XðKÞ ¼ IðTxnþK;xn

; Txn�rþ1;yn
; Tyn;yn�1

;…;

Tyn�sþ2;yn�sþ1
jTxn;xn�1

;…; Txn�rþ2;xn�rþ1
Þ

�IðTynþK;yn
; Tyn�sþ1;xn

; Txn;xn�1
;…;

Txn�rþ2;xn�rþ1
jTyn;yn�1

;…; Tyn�sþ2;yn�sþ1
Þ

if r, s� 2, and

DTI
ðs;1Þ
Y!XðKÞ ¼ IðTxnþK;xn

; Txn;yn
; Tyn;yn�1

;…; Tyn�sþ2;yn�sþ1
Þ

�IðTynþK;yn
; Tyn�sþ1;xn

jTyn;yn�1
;…; Tyn�sþ2;yn�sþ1

Þ;
(24)

DTI
ð1;rÞ
Y!XðKÞ ¼ IðTxnþK;xn

; Txn�rþ1;yn
jTxn;xn�1

;…; Txn�rþ2;xn�rþ1
Þ

�IðTynþK;yn ; Tyn;xn ; Txn;xn�1
;…; Txn�rþ2;xn�rþ1

Þ:
(25)

Lemma 3. The following identity holds:

DAT
ðs;rÞ
Y!XðKÞ ¼ DTI

ðs;rÞ
Y!XðKÞ

þ CðYn;…; Yn�sþ1jXnþK;Xn;…;Xn�rþ1Þ
� CðYn;…; Yn�sþ1Þ
�CðXn;…;Xn�rþ1jYnþK; Yn;…; Yn�sþ1Þ
þ CðXn;…;Xn�rþ1Þ: (26)

Proof. Consider the case r, s� 2. From Lemma 2, Eq.

(12), it follows

DAT
ðs;rÞ
Y!XðKÞ ¼ DTI

ðs;rÞ
Y!XðKÞ

þ CðXnþKjXn;…;Xn�rþ1; Yn;…; Yn�sþ1Þ
� CðXnþKjXn;…;Xn�rþ1Þ
�CðYnþKjXn;…;Xn�rþ1; Yn;…; Yn�sþ1Þ
þ CðYnþKjYn;…; Yn�sþ1Þ

Replace now the definition of the different coupling com-

plexity coefficients, see Eq. (11), to derive the simplified

expression (26).

The other cases are checked similarly. (
Lemma 3 yields readily sufficient conditions for the

computation of DAT
ðs;rÞ
Y!XðKÞ with one variable less. Rather

than delving into the general case, we are going to focus, as

in Sec. III, on the lowest dimensional case because of the

applications. Thus, set s¼ r¼ 1 in (26) and remember that

CðXnÞ ¼ CðYnÞ :¼ 0 to obtain

DATY!XðKÞ ¼ DTIY!XðKÞ þ CðYnjXnþK;XnÞ
� CðXnjYnþK; YnÞ; (27)

where

DATY!XðKÞ :¼ DAT
ð1;1Þ
Y!XðKÞ

¼ IðXnþK; YnjXnÞ � IðYnþK; XnjYnÞ; (28)

(see (10) and (19)), and

DTIY!XðKÞ :¼ DTI
ð1;1Þ
Y!XðKÞ

¼ IðTxnþK;xn
; Txn;yn

Þ � IðTynþK;yn
; Txn;yn

Þ; (29)

(see (24) or (25)).

Eq. (27) gives sufficient conditions for DTIY!XðKÞ to

coincide in magnitude and sign with the directionality indica-

tor DATY!XðKÞ. More often than not, however, the data ana-

lyst is only interested in the coupling direction. This being the

case, we derive in the following also sufficient conditions for

DTIY!XðKÞ to have the same sign as DATY!XðKÞ.
Theorem 2. (a) If

CðYnjXnþK;XnÞ � CðXnjYnþK; YnÞ; (30)

then

DTIY!XðKÞ > 0 ) DATY!XðKÞ > 0:

(b) If, otherwise,

CðYnjXnþK;XnÞ � CðXnjYnþK; YnÞ; (31)

then

DTIY!XðKÞ < 0 ) DATY!XðKÞ < 0:

(c) Finally, if

CðYnjXnþK;XnÞ ¼ CðXnjYnþK; YnÞ; (32)

then DATY!XðKÞ ¼ DTIY!XðKÞ.
The following theorem formulates similar results with

the help of entropies:

Theorem 3. (a) If HðXnÞ � HðYnÞ and

CðYnþK;Xn; YnÞ � CðYnþK; YnÞ; (33)

then

DTIY!XðKÞ > 0 ) DATY!XðKÞ > 0:

(b) If, otherwise, HðYnÞ � HðXnÞ and

CðXnþK; Yn;XnÞ � CðXnþK;XnÞ; (34)

then

DTIY!XðKÞ < 0 ) DATY!XðKÞ < 0:

(c) If HðXnÞ ¼ HðYnÞ and

CðXnþK; Yn;XnÞ ¼ CðYnþK;Xn; YnÞ ¼ 0; (35)

then,

DTIY!XðKÞ ¼ DATY!XðKÞ:
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Proof. (a) If HðXnÞ � HðYnÞ, then

CðXnþK; Yn;XnÞ � CðXnþK;XnÞ

by the monotonicity property of the coupling complexity

coefficients, Lemma 1 (note again that HðXnþKÞ ¼ HðXnÞ).
Assumption (33) entails then that the condition (30) of

Theorem 2(a) is fulfilled.

(b) Follows by interchanging Xn and Yn in (a)

(c) By the monotonicity property of the coupling com-

plexity coefficients (see Lemma 1), the assumption HðXnÞ
¼ HðYnÞ implies both

CðXnþK; Yn;XnÞ � CðXnþK;XnÞ and

CðYnþK;Xn; YnÞ � CðYnþK; YnÞ:

The second assumption CðXnþK;Yn;XnÞ¼CðYnþK;Xn;YnÞ ¼0

implies then

CðXnþK; Yn;XnÞ ¼ CðXnþK;XnÞ ¼ 0 and

CðYnþK;Xn; YnÞ ¼ CðYnþK; YnÞ ¼ 0;

respectively, because the coupling complexity coefficients

are nonnegative. Apply now Theorem 2(c). (
According to Lemma 1, the condition

CðYnþK;Xn; YnÞ < CðYnþK; YnÞ

in (33) is only possible if HðXnÞ < HðYnÞ. Likewise, the

condition

CðXnþK; Yn;XnÞ < CðXnþK;XnÞ

in (34) is only possible if HðYnÞ < HðXnÞ. So, the conditions

on the entropies and coupling complexity coefficients in

Theorems 3(a) and (b) are consistent.

V. PRACTICAL CONSIDERATIONS

We consider next some practical issues concerning the

theoretical results in Sections III and IV. For this reason, we

concentrate on the lowest, 3-dimensional transfer entropy,

ATY!XðKÞ ¼ IðXnþK; YnjXnÞ, and its transcript 2-dimensional

reduction TIY!XðKÞ ¼ IðTxnþK;xn
; Txn;yn

Þ.
To begin with, the possibility of computing or estimat-

ing the ATE with a lower dimensional quantity is a welcome

property because it can avoid undersampling and, in any

case, it improves the quality of the statistical estimates which

go into the computation of the transfer entropy. For example,

if one uses two decimal digits for the observations, the com-

putation of ATY!XðKÞ needs to estimate the O(106) 3-variate

probabilities pðxnþK; xn; ynÞ (see (8)), whereas TIY!XðKÞ
requires the estimation of the O(104) 2-variate probabilities

pðtxnþK;xn
; txn;yn

Þ.
The practical advantage of using the transcript dimensional

reduction of an ATE becomes more evident if the data belong

to a small group. This is the case of symbolic representations,

in particular, with ordinal patterns of small or moderate lengths.

Thus, if G ¼ S4, the computation of ATY!XðKÞ requires the

estimation of, in general, ð4!Þ3 ¼ 13824 3-variate probabilities,

while for TIY!XðKÞ only ð4!Þ2 ¼ 576 2-variate probability

estimations will do. Actually, these numbers are, in general,

upper bounds because a deterministic dynamics, whether one-

dimensional or higher dimensional, has always forbidden ordi-

nal patterns for sufficiently long pattern lengths.30 Numerical

simulations show that the same thing happens with scalar

observations (e.g., projections from an attractor30), even if non-

uniformly sampled.31 Ordinal patterns are becoming increas-

ingly popular for discretizing R-valued signals.

According to Corollaries 1 and 2, the equality

ATY!XðKÞ ¼ TIY!XðKÞ holds under the general condition

(20) and, of course, under any particularization thereof such

as (23). The practical implementation of these conditions in

the case of ordinal representations was investigated in Refs.

16 and 17. The results can be summarized as follows.

• The coupling complexity coefficients (along with the

entropies involved in their definition) depend, in general,

on the time delay T used. It turns out that sometimes T can

be chosen so that the conditions (20) or (23) are satisfied.

But both possibilities seem to depend on the nature of the

data being analyzed.
• First, it is generally observed that the 2- and 3-variate cou-

pling complexity coefficients decrease monotonically with

increasing T. For random and (noiseless) chaotic signals,

their limits lie below the 10% of the maximal amplitude of

the signal. Thus, in this case, one can take T sufficiently

large so that the complexity coefficients in (23) may be

considered “small” for practical purposes. For real-world

data, though, the 3-variate limit remains above the 10%

threshold. See Refs. 17 (Fig. 1) and 16 (Fig. 1).
• The same difference happens also with respect to the gen-

eral condition (20). Indeed, one can often find small T’s

for which (20) holds in case of random and chaotic sig-

nals, while this is generally not possible for real-world

data. See Ref. 17 (Fig. 1).

VI. DIRECTIONALITY WITH TRANSCRIPT MUTUAL
INFORMATION

As mentioned above, the conditions for the equality

DATY!XðKÞ ¼ DTIY!XðKÞ are difficult to meet when deal-

ing with real-world data. This empirical observation raises

the question of how good DTIY!XðKÞ (actually, its sign) per-

forms as a directionality indicator regardless of those condi-

tions. This question was first tackled in the study32 of the

spontaneous information flow within the visual corticothalo-

mocortical circuit (comprising the six layers of the visual

cortex and the lateral geniculate nucleus of the thalamus).

DTIY!XðKÞ has been used as well, together with other two

directionality indicators based on time-delay coordinates, to

analyze climatological and EEG data.33 In the first case,

DTIY!XðKÞ performed as DATY!XðKÞ both with the actual

data and ordinal patterns of length 4. In the second case, the

performance of DTIY!XðKÞ was comparable to one of the

other two indicators. In the following two sections we pursue

this intriguing issue with both synthetic (hence, noiseless)
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data and real world data using ordinal patterns of lengths 4

and 3, respectively. All numerical results are given in bits.

A. Numerical simulations

To compare the performances of DATY!XðKÞ and

DTIY!XðKÞ as directionality indicators, we consider two bidi-

rectionally delayed-coupled logistic maps f : ½0; 1� ! ½0; 1�;
f ðtÞ ¼ 4tð1� tÞ defined by the equations34

xðtÞ ¼ f ðgyxðtÞmod 1Þ;
yðtÞ ¼ f ðgxyðtÞmod 1Þ;

(36)

where

gyxðtÞ ¼ 0:5yðt� 1Þ þ 0:5xðt� 1Þ;
gxyðtÞ ¼ 0:5xðt� 6Þ þ 0:5yðt� 1Þ:

For the numerical simulation, N points xn :¼ xðnÞ and

yn :¼ yðnÞ of each time series were generated and a symbolic

representation of the time series with ordinal patterns of

length L¼ 4 was used. To be more specific, let x̂n ¼ ðn0;
n1; n2; n3Þ 2 S4 be the ordinal 4-pattern of the time delay

vector vðxnÞ ¼ ðxn; xnþT ; xnþ2T ; xnþ3TÞ (i.e., xnþn0T < xnþn1T

< xnþn2T < xnþn4T , with ni 2 {0, 1, 2, 3}), where 1� n�N
– 3 T and T� 1, and similarly with (yn). Then, the data ana-

lyzed were the S4-valued time series ðx̂nÞ, and ðŷnÞ.
In view of the number of probabilities needed to esti-

mate DATŶ!X̂ðKÞ (see Sec. V), we consider next time series

of lengths N¼ 215 and 211. In the first case, the number of

data is sufficient for an unbiased estimate of DATŶ!X̂ðKÞ
(this can be checked by taking N larger). On the contrary,

DATŶ!X̂ðKÞ is undersampled if N¼ 211, so we expect a bet-

ter performance of DTIŶ!X̂ðKÞ in this case. To avoid direct

information leaks due to overlaps of the ordinal 4-patterns,

we chose 1�K�T – 1. This means that T� 2.

Fig. 1 shows DATŶ!X̂ðKÞ (solid line) and DTIŶ!X̂ðKÞ
(dashed line) vs K for N¼ 215 and time delays T¼ 5, 7, 12;

the values have been linearly interpolated for a better visuali-

zation. Here, X̂ (resp. Ŷ) is the S4-valued random process

which outputs ðx̂nÞ (resp. ðŷnÞ). Needless to say, since the

plots of DATŶ!X̂ðKÞ and DTIŶ!X̂ðKÞ are different, the con-

ditions on coupling complexity coefficients stated in

Theorems 2(c) or 3(c) cannot hold in this case. Nevertheless,

according to Fig. 1, DTIŶ!X̂ðKÞ performs as good as, if not

better than, DATŶ!X̂ðKÞ as far as the direction of the net

information is concerned. In particular, both indicators sig-

nalize a change of direction around K¼ 4, and the coupling

delays of the system (36) at K¼ 1 (for T¼ 5, 7, 12) and

K¼ 6 (for T¼ 12). However, DTIŶ!X̂ðKÞ has sharp peaks

both at K¼ 1 and 6, while DATŶ!X̂ðKÞ displays an inverted

hump around K¼ 6, taking actually a misleading, more neg-

ative value at K¼ 5. Similar performances are also observed

with other choices of the coupling constants and delays.

As N decreases, the performance of DATŶ!X̂ðKÞ deteri-

orates but much slower than one would expect based on the

hypothetical number of 3-variate probabilities to be esti-

mated. The reason for this is the existence of forbidden pat-

terns, which lowers that count in noiseless, nonlinear time

series analysis. For a short series of length N¼ 211 (Fig. 2),

DATŶ!X̂ðKÞ still marks (with a smaller amplitude) the cou-

pling delay K¼ 1 but misses K¼ 6. Indeed, the curve

DATŶ!X̂ðKÞ is much flatter now for K� 3 than in Fig. 1,

which makes difficult the location of, e.g., direction changes

even in this noiseless simulation. On the contrary, the curves

DTIŶ!X̂ðKÞ on the four panels of Fig. 2 look the same as in

Fig. 1, which confirms that the probability estimates for

DTIŶ!X̂ðKÞ are not undersampled for N¼ 211.

To complete the picture, we have calculated DATŶ!X̂ðKÞ
and DTIŶ!X̂ðKÞ for K¼ 1, 6 (the two coupling delays of the

system (36)), T¼ 12, and N ¼ 2k; 11 � k � 17. Fig. 3 (lower

panel) shows that DATŶ!X̂ð6Þ performs poorly over the

whole range, being only marginally negative for k� 12 and

negligible for k¼ 11; furthermore, DATŶ!X̂ð5Þ �
DATŶ!X̂ð6Þ for 13� k � 17 (not shown). As for DATŶ!X̂ð1Þ
(upper panel), its performance improves with N. At variance

with these results, DTIŶ!X̂ðKÞ has always a positive sharp

peak at K¼ 1, and a negative sharp peak at K¼ 6, with

DTIŶ!X̂ð1Þ > DATŶ!X̂ð1Þ > 0 and DTIŶ!X̂ð6Þ <

FIG. 1. Plots of DATŶ!X̂ ðKÞ (solid line) and DTIŶ!X̂ ðKÞ (dashed line) in bits vs K for N¼ 215 and T¼ 5 (left), T¼ 7 (center), T¼ 12 (right), with 0 � K � T
�1 (DATŶ!X̂ ð0Þ ¼ DTIŶ!X̂ ð0Þ ¼ 0 plotted for a better visualization).
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DATŶ!X̂ð1Þ � 0 over the whole range of k. Furthermore,

both DTIŶ!X̂ð1Þ and DTIŶ!X̂ð6Þ exhibit a stable, almost con-

stant behavior with N. In conclusion, DTIŶ!X̂ðKÞ proves once

again to be a reliable directionality indicator.

B. Cardiovascular data

The ordinal methodology in general biomedical applica-

tions can be found in Ref. 35. For specific applications to

cardiology, the interested reader is referred to Refs. 36–38.

Oxygen is widely used in patients as well as in aviation

or during diving activities. However, the previous studies

have shown that in some cases the impact of oxygen might

not be beneficial but harmful. The mechanism of cardiovas-

cular changes during oxygen breathing (OXB) is not fully

understood. Therefore, a clinical study was designed to

determine whether the relation between heart rate and blood

pressure differs between medical air and 100% oxygen

breathing. Since the time series recorded in this study were

rather short, they were an ideal test bed for comparing the

performances of DATY!XðKÞ, Eq. (28), and its transcript

dimensional reduction DTIY!XðKÞ, Eq. (29), with real world

data. No medical implications from the analysis below are

claimed.

Twelve healthy young volunteers (5 men; age within the

interval 33.8 6 7.4 years) participated in the study. All

patients underwent short-term electrocardiographic record-

ing (ECG) using PowerLab system with Lab Chart software

(ADInstruments, Australia). The sampling rate was 1000 Hz.

Non-invasive beat-to-beat blood pressure (BP) was recorded

by a FINOMETER device (Finapres Medical Systems). ECG

fragments of 512 inter-beat (RR) intervals were used for

FIG. 2. Plots of DATŶ!X̂ ðKÞ (solid line) and DTIŶ!X̂ ðKÞ (dashed line) in bits vs K for N¼ 211 and T¼ 5 (left), T¼ 7 (center), T¼ 12 (right), with 0 � K � T
�1 (DATŶ!X̂ ð0Þ ¼ DTIŶ!X̂ ð0Þ ¼ 0 plotted for a better visualization).

FIG. 3. Top panel: Plots of DATŶ!X̂ ð1Þ
(solid line) and DTIŶ!X̂ ð1Þ (dashed

line) in bits for N¼ 2 k, 11� k� 17.

Bottom panel: Plots of DATŶ!X̂ ð6Þ
(solid line) and DTIŶ!X̂ ð6Þ (dashed

line) in bits for N¼ 2 k, 11� k� 17. In

both panels, T¼ 12.
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further analyses. All measurements took place twice: first

during medical air breathing (MAB) and then during 100%

oxygen breathing (OXB).

Consider first the RR data in either case MAB or OXB.

The raw data consisted then of 12 time series of the form

ðeytnÞ
512
n¼1 ¼ ðfRRtnÞ

512
n¼1; (37)

where tn are the times in seconds when the heart beats, andfRRtn ¼ 1000ðtnþ1 � tnÞ, i.e., the consecutive inter-beat time

intervals in milliseconds. For notational simplicity, we do

not label each of the 12 time series nor the case (MAB,

OXB). Since the times tn were not evenly spaced, new, uni-

formly spaced time series

ðynÞ512
n¼1 ¼ ðRRnÞ512

n¼1 (38)

were constructed by cubic spline interpolation, a rather com-

mon technique that is adequate for our illustrative purposes.

Specifically, for each time series, the RRn values were calcu-

lated by spline interpolating the measured fRRtn values at

times t¼ 0.93n s, where 0.93 is the average of tnþ1� tn; 1� n
� 512 over the sample and the two cases MAB and OXB.

The same procedure was applied to the blood pressure

data

ðextnÞ
512
n¼1 ¼ ðfBPtnÞ

512
n¼1; (39)

where fBPtn is blood pressure measured in mmHg. Again, all

12 time series per case were adjusted to a uniformly spaced

time series

ðxnÞ512
n¼1 ¼ ðBPnÞ512

n¼1; (40)

via spline interpolation of the blood pressures fBPtn at times

t¼ 0.93n s, 1� n� 512. The data (37) and (39) are typical

examples of short biomedical time series.

Next, we represented the 12þ 12 time series ðxnÞ512
n¼1 and

ðynÞ512
n¼1 by the ordinal patterns of sliding time delay vectors

of length L¼ 3 and time delay T� 1. That is, if vðxnÞ
¼ ðxn; xnþT ; xnþ2TÞ and vðynÞ ¼ ðyn; ynþT ; ynþ2TÞ are such

vectors, 1 � n � 512� 2T, and x̂n ¼ cBPn 2 S3; ŷn ¼ cRRn

2 S3 are the ordinal patterns of v(xn) and v(yn), respectively,

then the symbolic time series to be analyzed were

ðx̂nÞ512�2T
n¼1 ¼ ðcBPnÞ512�2T

n¼1 ; ðŷnÞ
512�2T
n¼1 ¼ ðcRRnÞ512�2T

n¼1 : (41)

FIG. 4. Ŷ ¼ ðŶ nÞ are the RR data and X̂ ¼ ðX̂nÞ the blood pressure data represented by ordinal 3-patterns, 1� n� 450. The top row shows DATŶ!X̂ ðKÞ in

bits vs K in the MAB case (left column) and OXB case (right column) for 1�K� 30 (T¼ 5). The bottom row shows the corresponding plots for DTIŶ!X̂ ðKÞ.
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If DATŶ!X̂ðKÞ ¼ DTIŶ!X̂ðKÞ would hold, then one

could exploit the lower dimensionality of DTIŶ!X̂ðKÞ at this

point. For this, one needs to check first whether some of the

conditions stated in Theorem 2 (a)–(c) or in Theorem 3

(a)–(c) are fulfilled. Since, for instance, HðX̂nÞ ¼ 2:5660:03

bits and HðŶ nÞ ¼ 2:5860:01 bits for the MAB data, one

might check the condition (35) of Theorem 3(c), but neither

CðX̂nþK; X̂n; Ŷ nÞ nor CðŶ nþ1; X̂n; Ŷ nÞ may be considered

small with respect to the entropies for 1�T� 30 (not

shown). Therefore, DATŶ!X̂ðKÞ 6¼ DTIŶ!X̂ðKÞ for all the

time delays considered. Actually, this is the situation we are

interested in here.

This being the case, we evaluated DATŶ!X̂ðKÞ and

DTIŶ!X̂ðKÞ with time delay T¼ 5 and 1�K� 30. The count

of probability estimations is ð3!Þ3 ¼ 216 for DATŶ!X̂ðKÞ
(clearly undersampled in view of the 512� 2T ¼ 502 points

available), and only ð3!Þ2 ¼ 36 for DTIŶ!X̂ðKÞ. The results

are represented in Fig. 4, where the error bars correspond to

standard deviations over the 12 subjects. Fig. 4, top row,

shows DATŶ!X̂ðKÞ vs K for the MAB data (left column) and

OXB data (right column). Fig. 4, bottom row, shows the cor-

responding plots for DTIŶ!X̂ðKÞ. In both cases, DTIŶ!X̂ðKÞ
detects for K¼ 1 that the process Ŷ is leading the process X̂,

which is in concordance with the previous findings. On the

contrary, the error bars of DATŶ!X̂ðKÞ do not allow any con-

clusion for 1�K� 30 (not even for K¼ 5, 10, in which case

ŷn overlaps with x̂nþK, and x̂n with ŷnþK). Let us finally men-

tion that K¼ 1 is the usual choice in applications.

VII. CONCLUSION

This paper continues the study of algebraic transfer

entropy initiated in Ref. 16 for ordinal representations and

generalized in Ref. 17 to algebraic symbolic representations

and conditional multi-information. This time we showed

(Theorem 1) that, subject to the restriction (14), the algebraic

transfer entropy AT
ðs;rÞ
Y!XðKÞ can be computed via a mutual

information of transcripts (if r¼ 1), or a conditional mutual

information of transcripts (if r> 1), with one variable less.

More practical formulations were derived in Corollaries 1

and 2, as well as in Theorems 2 and 3. As a by-product, we

generalized a previous result concerning the algebraic trans-

fer entropy of dimension 3 (see Remark 1(i)).

The role of the restriction (14) in applications was dis-

cussed in Sec. V in the particular case of the 3-dimensional

ATE, ATY!XðKÞ, and the corresponding directionality indi-

cator DATY!XðKÞ. Our experience32,33 shows that the

restrictions for ATY!XðKÞ and DATY!XðKÞ can be satisfied

in general (at least approximately) for random and chaotic

data by choosing appropriate time delays. Therefore, in such

cases, those quantities may be replaced by the transcript

mutual information TIY!XðKÞ and the corresponding direc-

tionality indicator DTIY!XðKÞ, respectively. Intriguingly,

our experience supports the suggestion that DTIY!XðKÞ is

also a good directionality indicator even when the corre-

sponding restriction is not fulfilled, such as it usually hap-

pens when analyzing real world data. This question was

tackled in Secs. VI A (numerical simulations) and VI B

(cardiovascular data) with satisfactory results. The perfor-

mance of DTIY!XðKÞ as a directionality indicator, regardless

of any condition on the coupling complexity coefficients, is a

subject that deserves further study.
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