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1. Introduction

In [15], Conley introduced the theory of a homotopy index for invariant sets of a dynamical system in a locally compact
metric space. This invariant, subsequently called the Conley index, proved to be a useful tool in studies concerning the be-
havior of various dynamical systems. In [31], Mrozek considered a cohomological version of the Conley index for multivalued
flows defined on locally compact spaces. However, in many problems of nonlinear analysis one has to consider dynamical
systems in infinite dimensional spaces. In [20], the authors constructed a version of the Conley index for flows determined
by completely continuous perturbations of the special linear operators in infinite dimensional Hilbert spaces. Their method,
resembling the construction of the Leray–Schauder degree, may be applied to existence and multiplicity results in problems
having variational structure and involving strongly indefinite potentials.

In the present paper we introduce an infinite dimensional counterpart of the Mrozek index by the use of methods
similar to those introduced in [20] (see [17] and also [22,23]) and apply it to the study of the existence of periodic orbits of
Hamiltonian systems involving nonsmooth hamiltonians.

After this introduction the paper is organized as follows. First we introduce notation and establish some auxiliary results.
In the second section we shall briefly discuss results concerning applications. In the third section we study multivalued
flows and provide a construction of the cohomological Conley index for flows determined by the so-called L-vector fields.
The final section is devoted to the proof of the main result from Section 2.

Given a metric space (X,d), a set A ⊂ X and ε > 0, let Bε(A) := {x ∈ X | d(x, A) := infa∈A d(x,a) < ε}; cl A and int A stand
for the closure and the interior of A, respectively. If (E,‖ · ‖) is a (real) Banach space, then E

∗ stands for the (topological)
dual of E; by 〈·,·〉 we denote the duality pairing between E

∗ and E, i.e., if ξ ∈ E
∗ and u ∈ E, then 〈ξ, u〉 := ξ(u). If x, y ∈ R

n ,
n ∈ N, then x · y is the standard scalar product and |x| := (x · x)1/2 is the Euclidean norm in R

n .
If f : E → R is a locally Lipschitz function, x, u ∈ E, then f ◦(x; u) denotes the Clarke generalized derivative of f at x in the

direction u and ∂ f (x) ⊂ E
∗ is the generalized gradient of f at x (see e.g. [11, Chapter 2.1] or [4, Chapter 6]). For any x ∈ E,
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the set ∂ f (x) is nonempty, weak∗-compact and convex; for any u ∈ E , f ◦(x; u) = max{〈ξ, u〉 | ξ ∈ ∂ f (x)}; the function
f ◦(x; ·) : E → R is Lipschitz continuous, positively homogeneous and subadditive and, for any u ∈ E , f ◦(·; u) : E → R is
usc (upper semicontinuous); consequently f ◦ : E × E → R is usc. Hence the set-valued map E 
 x �→ ∂ f (x) ⊂ E

∗ is upper
hemicontinuous (see [6, Chapter 3.2]) and upper demicontinuous, i.e., usc (in the sense of set-valued maps), provided E

∗ is
endowed with the weak∗-topology, in view of [6, Theorem 3.2.10] (see also [11, Proposition 2.1.5] and [21] for a general
terminology concerning set-valued maps).

Proposition 1.1. Given Banach spaces E1 ⊂ E2 , suppose that the imbedding j : E1 → E2 is compact. If f : E2 → R is locally Lipschitz,
then g := f |E1 : E1 → R is locally Lipschitz and the set-valued map E1 
 x �→ ∂ g(x) ⊂ E

∗
1 is completely continuous with compact

convex values, i.e., it is usc and, for any bounded set B ⊂ E1 , the set ∂ g(B) is relatively compact in E
∗
1 (in these statements E

∗
1 is

considered with the norm-topology).

Proof. It is clear that g = f ◦ j is locally Lipschitz and the values of ∂ g are closed and convex. In order to prove the upper
semicontinuity and the compactness of values of ∂ g it is sufficient to show that given sequences (xn) in E1 and (ξn) in E

∗
1

such that ξn ∈ ∂ g(xn) for all n � 1, if xn → x0 ∈ E1, then there is a subsequence (ξnk ) such that limk→∞ ξnk = ξ0 ∈ ∂ g(x0).
To this end observe that the set Y := cl{ j(xn)}∞n=1 ⊂ E2 is compact; hence the set ∂ f (Y ) is bounded in E

∗
2 in view of

[6, Proposition 3.2.4]. The adjoint j∗ : E
∗
2 → E

∗
1 is compact. Therefore the set j∗(∂ f (Y )) ⊂ E

∗
1 is relatively compact. For each

n � 1,

ξn ∈ ∂ g(xn) = ∂( f ◦ j)(xn) ⊂ j∗
(
∂ f

(
j(xn)

)) ⊂ j∗
(
∂ f (Y )

)
in view of [11, Theorem 2.3.10, Remark 2.3.11]. Hence, passing to a subsequence if necessary, we may suppose that
ξn → ξ0 ∈ E

∗
1. In particular ξn ⇀ ξ0 (weakly∗). The closeness of the graph of ∂ g (in E1 × E

∗
1 with E

∗
1 having the

weak∗-topology—see [6, Proposition 3.2.5] or [11, Proposition 2.1.5]) implies that ξ0 ∈ ∂ g(x0).
To complete the proof we have to show that, given a bounded sequence (xn) in E1, if ξn ∈ ∂ g(xn) for all n � 1, then (ξn)

has a convergent subsequence. To this end note that, by the compactness of j, Y := cl{ j(xn)}∞n=1 ⊂ E2 is compact; hence
∂ f (Y ) is bounded in E

∗
2. The same proof as above shows that, for each n � 1, ξn ∈ j∗(∂ f (Y )). The relative compactness

of j∗(∂ f (Y )) ends the proof. �
2. Hamiltonian systems

Let G : R × R
2N → R, N � 1, be 2π -periodic with respect to the first variable and locally Lipschitz with respect to the

second one. We consider the Hamiltonian differential inclusion

ż ∈ J∂G(t, z) (1)

where

J =
[

0 −IN

IN 0

]
(IN stands for the unit (N × N)-matrix) is the standard symplectic matrix and, for any t ∈ R, ∂G(t, z) denotes the Clarke
generalized gradient of G(t, ·) at z ∈ R

2N . We shall look for nontrivial 2π -periodic solutions to (1), i.e., 2π -periodic abso-
lutely continuous functions z : R → R

2N such that, for a.a. (almost all) t ∈ R, ż(t) ∈ J∂G(t, z(t)) and z ≡ 0. This and similar
problems has attracted a lot of attention, see the series of paper by Clarke, e.g. [12] and [18] where the principle of the
least and dual action has been employed.

In order to apply an indirect variational attitude to (1), which is going to be considered here, it is customary to study
the corresponding action functional on the fractional Sobolev space H1/2(S1,R

2N ) (here S1 := R/2πZ is the circle param-
eterized over [0,2π ]) and to study its critical points. We briefly recall the setting (see [1, Chapter 3.2] or [33, Chapter 6]).
For any a ∈ R, let ea J := cos a · I2N + sin a · J : R

2N → R
2N . We set

H = H1/2(S1,R
2N) :=

{
u ∈ L2(S1,R

2N) ∣∣∣ ∑
k∈Z

|k||uk|2 < ∞
}

where (uk) ⊂ R
2N is the sequence of the Fourier coefficients of u:

u(t) =
∑
k∈Z

ekt J uk.

It is clear that H is a real Hilbert space with the inner product

〈u, v〉 := 2πu0 · v0 + 2π
∑
k∈Z∗

|k|uk · vk, u, v ∈ H

(where Z
∗ := Z \ {0}) and the norm ‖ · ‖H = √〈·,·〉H .

http://mostwiedzy.pl
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Remark 2.1. It is well known (see e.g. [1, Theorem 3.1.1]) that smooth functions form a dense subset in H and the embedding
H ↪→ L p(S1,R

2N) is compact for any p � 1; in particular there is C p > 0 such that, for u ∈ H, ‖u‖p � C p‖u‖H where ‖ · ‖p

stands for the standard norm in L p . Moreover the embedding H1(S1,R
2N) ↪→ H is dense and compact.

Consider a map L : H → H given by

Lu(t) :=
∑
k∈Z

(sgn k)ekt J uk, u ∈ H, (2)

i.e., (Lu)k = (sgn k)uk for all k ∈ Z (where sgn 0 := 0). For each u ∈ H,

‖Lu‖2
H

= 2π
∑
k∈Z

|k||uk|2 � ‖u‖2
H
;

hence L is well defined, linear and bounded and 〈Lu, v〉H = 2π
∑

k∈Z
kuk · vk for u, v ∈ H. Therefore L is self-adjoint. Observe

that if u, v ∈ H1(S1,R
2N ) ⊂ H, then

〈− J u̇, v〉L2 =
2π∫
0

− J u̇(t) · v(t)dt = 2π
∑
k∈Z

kuk · vk = 〈Lu, v〉H

since − J u̇(t) = ∑
k∈Z

kekt J uk and, for any a,b ∈ R
2N , 〈ekt J a, emt J b〉L2 = 2πδkma · b.

In what follows, for k ∈ Z, let

H(k) := {
u ∈ H

∣∣ u(t) = ekt J x, t ∈ S1; x ∈ R
2N}

.

The spaces H(k), k ∈ Z, are mutually orthogonal; so are the spaces

Hk := H(−k) ⊕ H(k), k = 0,1,2, . . . . (3)

Finally let

H
− :=

⊕
k�1

H(−k), H
+ :=

⊕
k�1

H(k) and H
n :=

n⊕
k=0

Hk, n = 0,1,2, . . . .

Then H = H
− ⊕ H0 ⊕ H

+ , H = cl
⋃∞

n=1 H
n and dimR H

n = (2n + 1)2N.

Observe that H0 = ker L and Lu = ±u for u ∈ H(±k) for k > 0. Hence L(Hk) = Hk if k > 0 and if u = u− + u0 + u+
according to the above decomposition, then Lu = u+ − u− . Note that L is a Fredholm operator of index 0.

Remark 2.2. Observe that the quadratic forms ±〈Lu, u〉H , u ∈ H, are strongly indefinite, i.e., unbounded from below and
from above on any subspace of finite codimension; hence their Morse indices must be infinite.

Let us now specify the assumptions concerning G : R × R
2N → R. Let p � 1 and let q = p

p−1 (q = ∞ if p = 1). We
suppose that:

(G1) for all u ∈ R
2N , G(·, u) : R → R is measurable and 2π -periodic; G(·,0) ≡ 0;

(G2) there exists 	 > 0 such that, for a.a. t ∈ [0,2π ] and all x, x′ ∈ R
2N ,∣∣G(t, x) − G(t, x′)

∣∣ � 	|x − x′|,

or

(G2)
′ for a.a. t ∈ R, G(t, ·) : R

2N → R is locally Lipschitz and there is α > 0 such that, for a.a. t ∈ [0,2π ] and all x ∈ R
2N ,

sup
y∈∂G(t,x)

|y| � α
(
1 + |x|p−1).

By (G1), for any x, v ∈ R
2N , G◦(·, x; v) is measurable (see [11, Lemma on p. 78]). Since, for any t ∈ R and v ∈ R

2N ,
G◦(t, ·; v) is usc, we see that if u : R → R

2N is measurable, then so is G◦(·, u(·); v). Therefore, in view of [5, Theorem 8.2.14],
the map ∂G(·, u(·)) is measurable and, by the Kuratowski, Ryll–Nardzewski theorem, the set N(u) of all measurable selec-
tions of ∂G(·, u(·)) is nonempty. In view of (G2) or (G2)

′ , if u ∈ L p(S1;R
2N ) and w ∈ N(u), then w ∈ Lq(S1;R

2N ) and
‖w‖q � c(1 + ‖u‖p−1

p ) for some constant c > 0.
Moreover, by [11, Theorem 2.7.5], the functional ψ̃ : L p(S1,R

2N ) → R given by

ψ̃(u) := −
2π∫

G
(
t, u(t)

)
dt, u ∈ L p(

S1,R
2N)

,

0

http://mostwiedzy.pl
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is well defined, locally Lipschitz and, for u ∈ L p(S1,R
2N ), ∂ψ̃(u) ⊂ N(u), i.e., if ξ ∈ ∂ψ̃(u) ⊂ [L p]∗ , then there is w ∈

Lq(S1;R
2N ) such that w(t) ∈ ∂G(t, u(t)) for a.a. t ∈ S1 and, for v ∈ L p(S1,R

2N ),

〈ξ, v〉 = −
2π∫
0

w(t) · v(t)dt.

Therefore, in view of Proposition 1.1, (G1) and (G2) or (G2)
′ we have the following

Proposition 2.3. Let ψ := ψ̃ |H . Then, for u ∈ H,

ψ(u) = −
2π∫
0

G
(
t, u(t)

)
dt, (4)

ψ is locally Lipschitz, the map H 
 u �→ ∂ψ(u) is completely continuous with compact convex values in H (we identify H
∗ with H via

the Riesz theorem) and, given u ∈ H and ξ ∈ ∂ψ(u), there is an Lq-selection w : S1 → R
2N of ∂G(·, u(·)) such that

〈ξ, v〉H = −
2π∫
0

w(t) · v(t)dt

for any v ∈ H. Moreover, there is a constant c > 0 such that, for any u ∈ H and ξ ∈ ∂ψ(u),

‖ξ‖H � c
(
1 + ‖u‖p−1

H

)
. (5)

In order to obtain the existence of solutions to (1) we shall study a functional Φ : H → R given by

Φ(u) := 1

2
〈Lu, u〉H + ψ(u), u ∈ H. (6)

It is evident that Φ is locally Lipschitz and the quadratic part of Φ is smooth. Hence, by [11, Theorem 2.3.3], for each u ∈ H,

∂Φ(u) = Lu + ∂ψ(u). (7)

We shall look for equilibria of ∂Φ , i.e., the critical points of Φ . This is justified by the following result.

Proposition 2.4. Suppose that z ∈ H is a critical point of Φ , i.e., 0 ∈ ∂Φ(z), then z ∈ H1(S1,R
2N ) and z is a solution to (1).

Proof. Clearly z ∈ H ↪→ L p(S1,R
2N ). By Proposition 2.3, there is w ∈ Lq(S1,R

2N ) such that w(t) ∈ ∂G(t, z(t)) for a.a.
t ∈ [0,2π ] and, for each h ∈ H,

〈Lz,h〉H =
2π∫
0

w(t) · h(t)dt.

In particular this holds for any constant function h ∈ H. Hence
∫ 2π

0 J w(t)dt = 0. For t ∈ [0,2π ], let u1(t) := ∫ t
0 J w(s)ds and

c := 1
2π

∫ 2π
0 (z(t) − u1(t))dt . Finally let

u(t) := c + u1(t), t ∈ [0,2π ].
Then u(0) = u(2π) (hence we may treat u as being defined by periodicity on the whole R and on S1),

∫ 2π
0 u(t)dt =∫ 2π

0 z(t)dt and u̇(t) = J w(t) for a.a. t ∈ [0,2π ]. It is clear that w ∈ L2 and, therefore, u ∈ H1(S1,R
2N). For any v ∈ H1,

〈Lu, v〉H = 〈− J u̇, v〉L2 = 〈w, v〉L2 = 〈Lz, v〉H.

Hence Lu = Lz and u − z ∈ ker L = H0, i.e., u − z is a constant function. However
∫ 2π

0 (u − z)dt = 0; thus u = z and ż = J w
a.e. �

In what follows we shall study a Hamiltonian system of the form (1) where G is assumed to have an asymptotically linear
generalized gradient, that is—apart from (G1), (G2) or (G2)

′—we assume that there are symmetric (2N × 2N)-matrices A0
and A∞ such that:

http://mostwiedzy.pl
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(G3) supy∈∂G(t,u) |y − A0u| = o(|u|) as u → 0 uniformly with respect to t ∈ [0,2π ];
(G4) supy∈∂G(t,u) |y − A∞u| = o(|u|) as |u| → ∞ uniformly with respect to t ∈ [0,2π ].3

In view of Remark 2.2, even if G is smooth and Φ is twice differentiable, the Morse indices of ±Φ ′′(z) must be infinite.
However, it is possible to define a certain relative index which will always be finite. In order to proceed we need some
auxiliary concepts.

Given a symmetric (2N × 2N)-matrix A with real (constant) coefficients, consider the following Hamiltonian system

ż = J Az. (8)

The gradient of the energy functional ΦA on H, whose critical points correspond to solutions of (8), has the form

∇ΦA(u) = Lu −A(u), u ∈ H, (9)

where, for any w ∈ H, 〈A(u), w〉H = ∫ 2π
0 Au(t) · w(t)dt. In order to find an explicit formula for A on Hk , k � 0, observe

first that on H0 ∼= R
2N the map A may be identified with A; for k � 1, let us identify (u, v) ∈ Hk , where u(t) = e−kt J x,

v(t) = ekt J y, x, y ∈ R
2N , with (x, y) ∈ R

4N and consider the following change of variables R
4N 
 (x, y) �→ (a,b) ∈ R

4N where
a = x + y and b = J (y − x), i.e., u + v corresponds to the function cos kt · a + sin kt · b. Under these identifications L(x, u) =
(−x, y) and L(a,b) = (− Jb, Ja). Moreover A(a,b) = 1

k (Aa, Ab). Therefore the restriction of ∇ΦA to Hk , k � 1, may be
identified with a linear map given by the (4N × 4N)-matrix

Tk(A) =
[− 1

k A − J

J − 1
k A

]
.

Let M±(B) and M0(B) denote the number (with multiplicity) of positive (respectively negative) eigenvalues of a symmetric
(real) matrix B and the dimension of its kernel, respectively. Observe that the generalized Morse indices

i±(A) := M±(−A) +
∞∑

k=1

(
M±(

Tk(A)
) − 2N

)
,

and the generalized nullity

i0(A) := M0(−A) +
∞∑

k=1

M0(Tk(A)
)
,

introduced by Amann and Zehnder (see [2,3] and e.g. [36]), are well-defined and finite. Indeed, a simple computation shows
that the matrix

[ 0 − J
J 0

]
has the eigenvalue ±1 with multiplicity 2N , so by a simple perturbation argument M±(Tk(A)) =

2N for all sufficiently large k � 1. Similarly M0(Tk(A)) = 0 for all large k. Clearly, i−(A) + i0(A) + i+(A) = 2N , i0(A) =
dim Ker∇ΦA � 2N and it is easy to see that i0(A) = 0 if and only if σ( J A) ∩ iR = ∅ (see [8, p. 105]).

We have the following main result of this section.

Theorem 2.5. Consider the Hamiltonian system (1) with asymptotically linear G, i.e., satisfying assumptions (G1)–(G4). Assume
that i0(A0) = i0(A∞) = 0 and i+(A0) = i+(A∞) or i−(A0) = i−(A∞). Then Φ has a critical point z = 0, i.e., the system (1) has a
nontrivial solution (in addition to the trivial one z ≡ 0).

The proof, based on a variant of the Conley index theory presented below, will be given in the last section. The following
example illustrates the easy use of Theorem 2.5.

Example 2.6. Suppose α : R+ → [0,1] is such that α|[0,1] ≡ 0, α|[2,+∞) ≡ 1 and α(t) = t − 1 for 1 � t � 2. Let η ∈ C1(R2,R)

be bounded with the bounded ∇η, η(0) = 0 and |∇η(x)| = o(|x|) as |x| → 0. Suppose that g : R × R
2 → R is bounded,

measurable and 2π -periodic with respect to t ∈ R and Lipschitz with respect to x ∈ R
2. Finally suppose that g(·,0) ≡ 0. Let

G : R × R
2 → R be given by

G(t, x) := 1 + α(|x|)
3

|x|2 + η(x)g(t, x), t ∈ R, x ∈ R
2. (10)

Then, for |x| � 1, G(t, x) = 1
2 A0x · x + η(x)g(t, x) and, for |x| � 2, G(t, x) = 1

2 A∞x · x + η(x)g(t, x) where A0 := 2
3 I2 and

A∞ := 4
3 I2. It is clear that G satisfies (G1) and (G2) and, for any t ∈ R,

∂G(t, x) =
{

A0x + g(t, x)∇η(x) + η(x)∂ g(t, x) for |x| < 1;
A∞x + g(t, x)∇η(x) + η(x)∂ g(t, x) for |x| > 2.

3 It is clear that if, for any u ∈ R
2N , G(·, u) is 2π -periodic and continuous, for any t ∈ R, G(t, ·) is locally Lipschitz and G satisfies (G4), then (G2)′ holds

with p = 2.
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Hence conditions (G3) and (G4) are satisfied, too. One easily verifies that i0(A0) = i0(A∞) = 0, i−(A0) = 2 and i−(A∞) = 4;
therefore Theorem 2.5 provides a nontrivial periodic solution to (1) with G given by (10). Instead of factors 1

3 and 2
3 in

definitions of A0 and A∞ one can take any positive numbers c1, c2 such that ci/2 /∈ Z and c1 − c2 is sufficiently large.

Theorem 2.5 was proved by Amann and Zehnder in [2, Theorem 12.11], see also [3, Theorem 2], under the assumption
that G is C2 with respect to the z-variable, by means of a saddle point reduction and the minimax arguments based on the
generalized Morse theory (comp. [36, Theorem 7.2] and [13, Theorem IV.1.3]). For some other results in this direction (and
the extensive bibliography on the subject)—see [8,14,38].

3. Multivalued flows and the Conley index

In this section we present the construction of the Conley-type index for multivalued flows defined on non-necessarily
locally compact metric spaces.

Let X, Y be metric spaces. After [21] (see also [26]) we say that a set-valued map ϕ : X � Y is admissible if there exist
a metric space Γ , a proper surjection p : Γ → X (i.e., p is continuous and, for any compact K ⊂ X , p−1(K ) is compact) and
a continuous map q : Γ → Y such that, for every x ∈ X , the fiber p−1(x) is acyclic (i.e., H∗(p−1(x)) = H∗(P ) where P is a
one-point space and H∗ stands for the Alexander–Spanier cohomology with integer coefficients) and ϕ(x) = q(p−1(x)).

It is clear that an admissible map is usc with nonempty compact values. The class of admissible maps is rich, e.g. any
usc map ϕ : X � Y with compact acyclic (and, in particular, contractible or convex) values is admissible. Moreover the class
of admissible maps is closed under superposition. For more details concerning admissible maps—see [21] or [26].

Definition 3.1. Let X be a metric space. By a multivalued flow on X we mean an usc mapping ϕ : X × R � X with nonempty
and compact values such that, for every s, t ∈ R and x, y ∈ X ,

(i) ϕ(x,0) = {x};
(ii) if st � 0, then ϕ(x, t + s) = ϕ(ϕ(x, t) × {s});

(iii) y ∈ ϕ(x, t) if and only if x ∈ ϕ(y,−t);
(iv) the map ϕ(x, ·) : R � X is continuous.

The flow ϕ is said to be admissible, if there exists T > 0 such that the restriction of ϕ to X ×[0, T ] is an admissible mapping.
Let Λ be a metric space. By a parameterized family of (respectively admissible) multivalued flows we mean an usc map

η : X × R × Λ � X such that, for any λ ∈ Λ, ηλ := η(·,·, λ) is a multivalued (respectively admissible) flow.

Remark 3.2.

(a) Condition (iv) is formally absent in [31], but all relevant examples considered further on satisfy this hypothesis.
(b) Sometimes it is useful to admit the empty set as a value of ϕ; in this case we speak about a partial multivalued flow.
(c) Observe that, in view of (ii) if ϕ is admissible, then, for any T � 0, the restriction of ϕ to X × [0, T ] is admissible; in

fact, it is not difficult to prove that a flow ϕ is admissible if and only if the map ϕ is admissible.

Example and Definition 3.3. Let L : E → E be a bounded linear operator on a Banach space E. A set-valued map f :
U � E, U ⊂ E, of the form f (u) = Lu + F (u) for u ∈ E, where F : U � E is a completely continuous set-valued map with
compact convex values having sublinear growth, i.e., there is a constant C > 0 such that, for each u ∈ E and y ∈ F (u),
‖y‖ � C(1 + ‖u‖), is called an L-vector field.

Given an L-vector field f := L + F : E → E, the standard fixed point argument (see e.g. [24, Theorem 5.2.2]) implies that,
for each x ∈ E, there is a mild solution to the Cauchy problem{

u′ ∈ f (u) a.e. on R;
u(0) = x,

(11)

i.e., a continuous function u : R → E and a locally (Bochner) integrable function w : R → E such that w(t) ∈ F (u(t)) and
u(t) = etL x + ∫ t

0 e(t−s)L w(s)ds for all t ∈ R. Since L generates the uniformly continuous C0-group of operators, u is a mild

solution to (11) if and only if u is a strong solution, i.e., u(t) = x + ∫ t
0 (Lu(s) + w(s))ds on R (see [24, Proposition 5.2.1]

and [32]).
Let S(x) ⊂ C(R,E)4 be the set of all solutions to (11), x ∈ E. In view of results from [27] (see also [24, Theorem 5.3.1]

and [7]), for any x ∈ E, S(x) is an Rδ-set (i.e., the intersection of a decreasing sequence of compact contractible sets);
in particular S(x) is acyclic.

4 Where C(R,E) stands for the Fréchet space (i.e., locally convex metrizable and complete) of all continuous maps R → E with the topology of the
almost uniform convergence.

http://mostwiedzy.pl


102 Z. Dzedzej, W. Kryszewski / J. Math. Anal. Appl. 347 (2008) 96–112

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

Consider a map ϕ : E × R � E given by the formula

ϕ(x, t) := {
u(t)

∣∣ u ∈ S(x)
}
, x ∈ E, t ∈ R. (12)

We claim that ϕ is an admissible multivalued flow on E (we say that ϕ is generated by f ).
It is easy to see that conditions (i)–(iv) from Definition 3.1 are satisfied; so it remains to show that ϕ is an admissible

map. Let Γ := {(x, u, t) ∈ E × C(R,E) × R | u ∈ S(x)} and let p : Γ → E × R, q : Γ → E be given by p(x, u, t) := (x, t) and
q(x, u, t) = u(t) for (x, u, t) ∈ Γ . For any (x, t) ∈ E × R, p−1(x, t) = S(x) × {t}; hence p has acyclic fibers. Clearly maps p,q
are continuous and p is a surjection. Moreover, for any (x, t) ∈ E × R, q(p−1(x, t)) = ϕ(x, t). In order to show that p is
proper let (xn, tn) be a sequence in E × R, xn → x0 ∈ E, tn → t0 ∈ R and let un ∈ S(xn), i.e., (un, tn) ∈ p−1(xn, tn). We are
going to show that, up to a subsequence, un → u0 ∈ S(x0) almost uniformly (a.u). For any n ∈ N, there is a locally (Bochner)
integrable selection wn of F (un(·)) such that un(t) = etL xn +∫ t

0 e(t−s)L wn(s)ds, t ∈ R. Since the sequence zn(t) := etL xn , t ∈ R,

a.u. converges to z0(t) := etL x0, t ∈ R, we have to show that (yn), where yn(t) = ∫ t
0 e(t−s)L wn(s)ds, t ∈ R, has a subsequence

converging a.u. to some y0(t) := ∫ t
0 e(t−s)L w0(s)ds, t ∈ R, where w0(t) ∈ F (u0(t)) and u0(t) := z0(t) + y0(t) for all t ∈ R.

The Gronwall inequality and the sublinear growth imply that (un) is bounded in C(R,E); thus the sequence (wn) is
(locally) integrably bounded, i.e., there is a locally integrable c ∈ L1

loc(R,R) such that ‖wn(t)‖ � c(t) for a.a. t ∈ R and
all n ∈ N. Hence the sequence (yn) is equicontinuous. The complete continuity of F implies that fibers {yn(t)}, t ∈ R,
are relatively compact. Hence, by the Ascoli–Arzela theorem, the sequence (yn) has an a.u. convergent subsequence. On
the other hand, again by the complete continuity of F , the sequence (wn) has relatively compact fibers; thus—being (lo-
cally) integrably bounded—it has a subsequence weakly convergent in L1

loc(R,E) in view of the Diestel theorem (see [16,
Corollary 3]). Passing to subsequences if necessary, we may assume that yn → y0 in C(R,E) and wn ⇀ w0 (weakly) in
L1

loc(R,E). Therefore, for all t ∈ R, y0(t) = ∫ t
0 e(t−s)L w0(s)ds. For each n ∈ N, yn is differentiable a.e. and, for a.a. t ∈ R,

y′
n(t) = Lyn(t) + wn(t) ∈ Lyn(t) + F (un(t)). Hence y′

n converges weakly in L1
loc to Ly0 + w0; moreover un = zn + yn a.u.

converges to u0 := z0 + y0. By the so-called Convergence Theorem (see [6, Theorem 3.2.6]), we see that, for a.a. t ∈ R,
Ly0(t) + w0(t) ∈ Ly0(t) + F (z0(t) + y0(t)), i.e., w(t) ∈ F (z0(t) + y0(t)) a.e. on R; this completes the proof of the claim.5

Observe that the constructed above map ϕ is an L-flow, i.e., it is an admissible flow of the form:

ϕ(x, t) = etL x + U (x, t), x ∈ E, t ∈ R, (13)

where U : E × R � E is completely continuous and admissible. Indeed, in our case

U (x, t) =
{

y =
t∫

0

e(t−s)L w(s)ds ∈ E

∣∣∣ w ∈ L1
loc(R,H), w(·) ∈ F

(
u(·))

a.e. on R where u(t) = etL x +
t∫

0

e(t−s)L w(s)ds

}
. (14)

By a parameterized family of L-flows we mean a family of flows η : E × R × Λ � E (Λ is a metric space) of the form
η(x, t, λ) = etL x + U (x, t, λ), x ∈ E, t ∈ R and λ ∈ Λ, where U : E × R × Λ � E is an admissible completely continuous
set-valued map.

Remark 3.4.

(i) It is easy to see that if f : E×[0,1]�E is a family of L-vector fields, i.e., is given by f (u, s) = Lu+ F (u, s), u ∈ E, s ∈ [0,1],
where F : E × [0,1] � E is completely continuous with compact convex values and sublinear growth (independent
of s ∈ [0,1]), then f generates the family η of L-flows defined, for x ∈ H, t ∈ R and s ∈ [0,1], by y ∈ η(x, t, s) if and
only if y = us(t) where us is a solution to the problem u′ = f (u, s), u(0) = x.

(ii) If f = L + F : E � E, where F is completely continuous with convex compact values but does not have the sublinear
growth, then there is an open set D ⊂ E × R such that E × {0} ⊂ D and, for any x ∈ E, there is a solution u : J x → E to
(11) where 0 ∈ J x := {t ∈ R | (x, t) ∈ D}. The formula (12) defines thus a local L-flow ϕ : D � E.

Let ϕ : X × R � X be a multivalued flow.

Definition 3.5. Let Δ ⊂ R. A map σ : Δ → X is a Δ-trajectory of ϕ if, for every t, s ∈ Δ, σ(t) ∈ ϕ(σ (s), t − s). If x ∈ N ⊂ X
and 0 ∈ Δ, then the set of all Δ-trajectories in N originating in x (i.e., such that σ(0) = x and σ(t) ∈ N for t ∈ Δ) is denoted
by TrN (ϕ;Δ, x).

It is an easy exercise to show the following (see [9,34]).

5 The same argument works also in case L is assumed merely to be the generator of a strongly continuous C0-semigroup of operators; in this case S(x)
stands for the set of mild solutions to (11).
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Lemma 3.6.

(i) Every trajectory of ϕ is a continuous mapping.
(ii) Let σ1 : Δ1 → X, σ2 : Δ2 → X be trajectories of ϕ which coincide on Δ1 ∩ Δ2 . Then the mapping σ : Δ1 ∪ Δ2 → X defined by

σ(t) =
{

σ1(t) for t ∈ Δ1,

σ2(t) for t ∈ Δ2,

is a trajectory of ϕ .

Remark 3.7. Recall Example 3.3 and assume that ϕ : E × R � E is an L-flow defined by (12) or (13) and (14). It is easy to
see that if x ∈ E, u ∈ S(x), 0 ∈ Δ ⊂ R and u(t) ∈ N ⊂ E for t ∈ Δ, then u ∈ TrN (ϕ;Δ, x).

We shall show that the converse statement is also true: if N is closed and σ ∈ TrN (ϕ;R, x), then σ ∈ S(x). To this end it
is enough to show that the restriction σ |I : I → E of σ to any compact interval I ⊂ R, 0 ∈ I , is a solution to (11) on I , i.e.,
there is a (Bochner) integrable function w : I → E such that w(·) ∈ F (σ (t)) and σ(t) = x + ∫ t

0 (Lu(ξ) + w(ξ))dξ for t ∈ I .
For simplicity, let I := [0,1]. Fix n ∈ N and, for 0 � k � 2n , let tk := k2−n . Since σ(t1) ∈ ϕ(x, t1), there is v1 ∈ S(x)

such that σ(t1) = v1(t1). Let un(t) := v1(t) for t ∈ [0, t1]. Suppose that, for some 0 < k < 2n , the function un is defined on
[0, tk] and un(tk) = σ(tk). Since σ(tk+1) ∈ ϕ(σ (tk), tk+1 − tk), there is vk+1 ∈ S(σ (tk)) such that σ(tk+1) = vk+1(tk+1). Let
un(t) := vk+1(t − tk) for t ∈ [tk, tk+1]. In this way we have defined inductively a function un on I for any positive integer n.
It is easy to see that, for all n ∈ N, un is a solution to (11) on I , i.e., belongs to the compact subset in C(I,H) of all solution
to (11) on I . Therefore the sequence (un) has a convergent subsequence; without loss of generality we may suppose that
un → u where u is a solution to (11) on I . Since, for any n ∈ N and 0 � k � 2n , un(k2−n) = σ(k2−n), we gather that σ ≡ u
on I .

Definition 3.8. Let N ⊂ X . We set

Inv(N,ϕ) := {
x ∈ N

∣∣ TrN (ϕ;R, x) = ∅}
, Inv±(N,ϕ) := {

x ∈ N
∣∣ TrN (ϕ;R±, x) = ∅}

.

A set K ⊂ X is invariant (respectively positively (negatively) invariant) with respect to ϕ if

Inv(K ,ϕ) = K
(
respectively Inv±(K ,ϕ) = K

)
.

There is also a stronger version of invariance (being equivalent to the above one in the singlevalued case). Namely
we say that K ⊂ X is strongly (positively, negatively) invariant if, for every x ∈ K , ϕ(x,R) ⊂ K (respectively ϕ(x,R

+) ⊂ K ,
ϕ(x,R

−) ⊂ K ).
Note that given N ⊂ X , the set K := Inv(N,ϕ) is the maximal invariant with respect to ϕ subset of N .
The following result is a version of the generalized Barbashin theorem (comp. [10, Proposition 16]).

Proposition 3.9. Let N ⊂ X be closed and η : X × R × Λ � X be a parameterized family of multivalued flows. Then the graph of the
set-valued map Λ 
 λ �→ Inv(N, ηλ) ⊂ N is closed.

Proof. Take a sequence (λn, xn) ∈ Λ × N such that xn ∈ Inv(N, ηλn ) and (λn, xn) → (λ0, x0). We shall show that x0 ∈
Inv(N, ηλ0 ).

In view of Lemma 3.6(ii) it is enough to construct a trajectory σ0 : [0,1] → N of ηλ0 such that σ0(0) = x0. For each n ∈ N,
choose a trajectory σn : R → N of ηλn such that σn(0) = xn and consider a sequence yn := σn(1) ∈ ηλn (xn,1). Since η is usc
and has compact values, there exists a subsequence ynk convergent to a point y ∈ ηλ0 (x0,1). Set σ0(1) := y.

Repeating this procedure for the interval [0, 1
2 ] we obtain a subsequence of the sequence (σnk (

1
2 )) converging to a point

σ0(
1
2 ) ∈ ηλ0 (x0,

1
2 ). The upper semicontinuity of η implies that σ0(1) ∈ ηλ0 (σ0(

1
2 ), 1

2 ). Therefore we can define σ0(t) for all
dyadic numbers t ∈ ⋃∞

q=0{ p
2q | 0 � p � 2q} using the above procedure as an inductive step. Moreover, for all dyadic numbers

s � t , σ0(s) ∈ ηλ0 (σ0(t), s − t) and σ0(s) ∈ N as the limit of points from N .
Now let t ∈ [0,1] be arbitrary. Define a set

K (t) =
⋂

t′<t<t′′
η
(
σ0(t

′), t − t′, λ0
) ∩ η

(
σ0(t

′′), t − t′′, λ0
)
,

where t′, t′′ are dyadic numbers. The set K (t) is nonempty being an intersection of a family of closed sets with finite
intersection property in a compact set ηλ0 ({x} × [0,1]). Actually, in view of conditions (i) and (iv) from Definition 3.1, this
set is a singleton. Let σ0(t) be the unique member of K (t). One easily verifies that [0,1] 
 t �→ σ0(t) is a [0,1]-trajectory
of ηλ0 (comp. [34]). �

We are going now to describe briefly the Conley index due to Mrozek [31]. Suppose that ϕ : X × R � X is a multivalued
flow on a locally compact space X .
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Definition 3.10. (See [31].) A compact set N ⊂ X is an isolating neighborhood for ϕ if Inv(N,ϕ) ⊂ int N . We say that a set K
invariant with respect to ϕ is isolated if there is an isolating neighborhood N such that K = Inv(N,ϕ).

Observe that, in view of Proposition 3.9, isolated invariant sets are compact.
Let N be an isolating neighborhood for ϕ and let x, y ∈ N . For any t ∈ R, by a t-connection from x to y in N we mean a

[0, t]-trajectory (or a [t,0]-trajectory in case t � 0) σ of ϕ in N such that σ(0) = x and σ(t) = y. The set of all t-connections
from x to y, t ∈ R, is denoted by ConnN (ϕ; t, x, y). In view of [34, Theorem 6.1], if y ∈ ϕ(x, t), then ConnX (ϕ; t, x, y) = ∅.

We define a map ϕN : N × R � N by the formula

ϕN (x, t) = {
y ∈ X

∣∣ ConnN (ϕ; t, x, y) = ∅}
, x ∈ X, t ∈ R.

It is easy to see that, for all x ∈ X and t ∈ R, ϕN (x, t) ⊂ N ∩ ϕ(x, t) and ϕN is a partial multivalued flow on N (see [31,
Proposition 4.7]).

Definition 3.11. A pair (P1, P2) of subsets of N ⊂ X is an index pair for ϕ in N provided:

(i) P1, P2 are compact and strongly positively invariant with respect to ϕN ;
(ii) Inv−(N,ϕ) ⊂ intN P1, Inv+(N,ϕ) ⊂ N \ P2;

(iii) cl(P1 \ P2) ⊂ int N .

The following two results are crucial for the construction of the Conley index (see [31, Theorems 4.1, 5.2]).

Theorem 3.12.

(i) If K is an isolated invariant set for the flow ϕ with an isolating neighborhood N, then for every neighborhood W of K , there exists
an index pair for ϕ in N such that cl(P1 \ P2) ⊂ W .

(ii) If the flow ϕ is admissible and K is an isolated invariant set, then the Alexander–Spanier cohomology (graded) group H∗(P1, P2)

does not depend on the choice of an isolating neighborhood N and an index pair (P1, P2) of ϕ in N.

Theorem 3.12(ii) justifies the following concept (see [31, Definition 5.1]).

Definition 3.13. By the cohomological Conley index of an isolated invariant set K ⊂ X of an admissible flow ϕ we mean the
(graded) group

C H∗(K ,ϕ) := H∗(P1, P2),

where (P1, P2) is an index pair for ϕ in an isolating neighborhood N of K .

This index has the following properties:

Theorem 3.14.

(i) If C H∗(K ,ϕ) is nontrivial, then K = ∅.
(ii) (Continuation). Assume that η : X × R × [0,1] � X is a family of admissible flows and let N ⊂ X be an isolating neighborhood

for all flows ηt , t ∈ [0,1].6 Then

C H∗(Inv(N, η0), η0
) = C H∗(Inv(N, η1), η1

)
.

(iii) (Additivity). Let K1, K2 be disjoint isolated invariant sets for an admissible flow ϕ . Then C H∗(K1 ∪ K2,ϕ) = C H∗(K1,ϕ) ⊕
C H∗(K2,ϕ).

Proof. Part (i) is obvious. The property (ii) is exactly Corollary 6.2 in [31]. Part (iii) follows from the fact that K1, K2
are compact, thus we can find disjoint isolating neighborhoods N1, N2 and N = N1 ∪ N2 is an isolating neighborhood
of K1 ∪ K2. �

Let us finally mention that multivalued flows generated by differential inclusions in finite-dimensional spaces were also
studied from a viewpoint of the Conley index theory in [19,29,30] by approximation techniques.

In what follows we shall construct a variant of the Conley index for L-flows defined on a (real) Hilbert space (H, 〈·,·〉).
Let L : H → H be a linear bounded operator with the spectrum denoted by σ(L). Assume that:

(L1) H = ⊕∞
k=0 Hk with all subspaces Hk being mutually orthogonal and of finite dimension;

6 One easily sees that the parameter space can be any compact path connected space instead of [0,1].
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(L2) L(H0) ⊂ H0 where H0 is the invariant subspace of L corresponding to the part of spectrum σ0(L) := iR ∩ σ(L) lying
on the imaginary axis;

(L3) L(Hk) = Hk for all k > 0;
(L4) σ0(L) is isolated in σ(L), i.e., σ0(L) ∩ cl(σ (L) \ σ0(L)) = ∅.

Let η : H × R × Λ � H be a parameterized family of L-flows, η(x, t, λ) = etL x + U (x, t, λ) for x ∈ H, t ∈ R and λ ∈ Λ, and
let X ⊂ H.

Proposition 3.15. If X ⊂ H is closed and bounded, then the set-valued map Λ 
 λ �→ Inv(X, ηλ) ⊂ X is usc and has compact (possibly
empty) values.

Proof. In view of Proposition 3.9, it is sufficient to show that, given a sequence (λn, xn) in Λ × X such that xn ∈ Inv(X, ηλn )

and λn → λ0 ∈ Λ, (xn) has a convergent subsequence, i.e., the set S := {xn}∞n=1 is relatively compact. Suppose it is not so.
Denote by H− (respectively H+) the closed L-invariant subspace corresponding to the part of the spectrum σ(L)

of L with negative (respectively positive) real part. In view of the above assumptions, H splits into the direct sum H =
H− ⊕ H0 ⊕ H+ (see [25, Theorem 6.17]). Let P± : H → H± and P0 : H → H0 be the orthogonal projections. Since σ0(L) is
isolated in σ(L), for each � > 0, there is t0 > 0 such that, for all x ∈ H+ and t � t0∥∥etL x

∥∥ � �‖x‖ (15)

and, for x ∈ H− and t � −t0,∥∥etL x
∥∥ � �‖x‖. (16)

Clearly S ⊂ cl P−(S) × cl P0(S) × cl P+(S). The set cl P0(S) is compact as a closed bounded subset of a finite-dimensional
space H0. Therefore either cl P−(S) or cl P+(S) is noncompact. Assume that P+(S) is not relatively compact. Hence there
exists an ε > 0 such that P+(S) does not admit a finite ε-net and we can choose a sequence (xni ) ⊂ S such that zi :=
P+(xni ), i � 1, satisfy ‖zi − z j‖ � ε whenever i = j. Choose δ > 0 and t0 > 0 such that X ⊂ Bδ(0) and the inequality (15)
holds for � = 3δ

ε . For i � 1, set ui := et0 L xni and take an arbitrary vi ∈ U (xni , t0, λni ); then

ui + vi ∈ et0 L xni + U (xni , t0, λni ) = η(xni , t0, λni ) ⊂ X ⊂ Bδ(0).

Thus, for i = j,

3δ � ‖ui − u j‖ � ‖ui + vi‖ + ‖vi − v j‖ + ‖u j + v j‖ < 2δ + ‖vi − v j‖
and, consequently,

‖vi − v j‖ > δ.

But, for each i � 1, vi belongs to the set
⋃∞

j=1 U (x j, t0, λ j) being relatively compact in view of the complete continuity
of U . Thus (vi) has a convergent subsequence: a contradiction. �
Definition 3.16. By an isolating neighborhood for an L-flow ϕ : H × R � H, we mean a bounded and closed set X ⊂ H such
that Inv(X,ϕ) ⊂ int X .7

Corollary 3.17. Let η : H × R × Λ � H be a family of L-flows. If, for some λ0 ∈ Λ, X is an isolating neighborhood for ηλ0 , then it is an
isolating neighborhood for all λ from an open neighborhood V of λ0 in Λ.

Proof. By definition, Inv(X, ηλ0) ⊂ int X . The upper semicontinuity of the map from Proposition 3.15 implies the existence
of a neighborhood V of λ0 in Λ such that, for λ ∈ V ,

Inv(X, ηλ) ⊂ int X . �
For the rest of this section recall Example 3.3 and suppose that f := L + F is an L-vector field that generates an L-flow

ϕ : H × R � H, i.e., for x ∈ E , t ∈ R,

y ∈ ϕ(x, t) ⇐⇒ y = u(t)

where u ∈ S(x), i.e., u is a solution to the problem

u′ = Lu + F (u), u(0) = x. (17)

In particular we have

7 Observe that the ambient space H is no longer locally compact; hence Definition 3.10 does not apply.
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Lemma 3.18. Let X ⊂ H be an isolating neighborhood for ϕ . There is ε0 > 0 such that, for 0 < ε � ε0 , X is an isolating neighborhood
for the flow generated by the L-vector field fε(x) := Lx + cl conv F (Dε(x)), x ∈ H, where Dε(x) := {y ∈ H | ‖y − x‖ � ε}.

Proof. It is obvious that, for each ε > 0, fε is an L-vector field. Consider a map h : H × [0,1] � H defined by the formula
h(x, s) = f s(x), x ∈ H, s ∈ [0,1]. It is easy to see that h is a family of L-flows. Moreover, X is an isolating neighborhood
for the flow generated by f = f0. In view of Corollary 3.17, we gather that X is an isolating neighborhood for the flow
generated by ft whenever t is small enough. �

Denote by Pn : H → H the orthogonal projection of H onto H
n := ⊕n

k=0 Hk and consider two sequences of L-vector fields
fn : H

n � H
n and hn : H

n+1 × [0,1] � H
n+1, n ∈ N, given by the formulae

fn(x) = Lx + Pn
(

F (x)
)
, x ∈ H

n,

hn(x, s) = Lx + (1 − s)Pn
(

F (x)
) + sPn+1

(
F (x)

)
, x ∈ H

n+1, s ∈ [0,1].
For each n, set-valued maps fn and hn are usc with compact convex values and have sublinear growth. Hence, for

every n, fn generates a multivalued flow ϕn : H
n × R � H

n , and hn generates a family ηn : H
n+1 × R × [0,1] � H

n+1 of
flows.

Let X be an isolating neighborhood for ϕ .

Lemma 3.19. There exists n0 ∈ N such that, for n � n0 , Xn := X ∩ H
n is an isolating neighborhood for ϕn and ηn−1(·,·, s), s ∈ [0,1],

in the sense of Definition 3.10.

Proof. Define a family of L-vector fields h : H × [0,1] � H by

h(x, s) = Lx + (1 + n)(1 − ns)Pn+1
(

F (x)
) + n

[
(n + 1)s − 1

]
Pn

(
F (x)

)
for 1

n+1 < s � 1
n and h(x,0) = f (x). In view of Remark 3.4(i), h generates a family η : H × R × [0,1] � H of L-flows. By

Proposition 3.15, the graph S of the map [0,1] 
 s �→ Inv(X, ηs) is compact in [0,1] × X and S ∩ ({0} × X) ⊂ {0} × int X .
Therefore, for some s0 > 0, we have S ∩ ([0, s0] × X) ⊂ [0, s0] × int X ; in other words, for 0 � s � s0, Inv(X, ηs) ⊂ int X . One
takes n0 > 1/s0. �

For any n � n0, where n0 is given in Lemma 3.19, let K n := Inv(Xn,ϕn); then K n is a compact invariant set with Xn

as an isolating neighborhood; by Theorem 3.12(i), Xn admits an index pair (Y n, Zn) and the Conley index C H∗(K n,ϕn) =
H∗(Y n, Zn) is well defined. Moreover, by Lemma 3.19, Xn+1 is an isolating neighborhood for the flow ηn(·,·, s), s ∈ [0,1].
Clearly, for each n � 1, fn+1 = hn(·,1) and, thus, ϕn+1 = ηn(·,·,1).

We shall show that the Conley indices C H∗(K n,ϕn) and C H∗(K n+1,ϕn+1), n � n0, are closely related. To this end, for
each n � n0, consider a family flows θn : H

n+1 × R × [0,1] � H
n+1 generated by the family of vector fields gn(x, s) :=

Lx + Pn(F (Pnx + s(x − Pnx)), x ∈ H
n+1, s ∈ [0,1].

Lemma 3.20. For any n � n0 , and s ∈ [0,1], Xn+1 is an isolating neighborhood for the flow θn(·,·, s) and Inv(Xn+1, θn(·,·, s)) =
K n × {0}.

Proof. Let n � n0 and s ∈ [0,1]. Recall that H
n+1 = H

n ⊕ Hn+1 and that both spaces H
n , Hn+1 are L-invariant; more-

over L : Hn+1 → Hn+1 is an isomorphism. The nonlinear part of the field gn(·, s) takes values in H
n . If x = (xn, y) ∈

Inv(Xn+1, θn(·,·, s)), where y ∈ Hn+1 and y = 0, then trajectory σ ∈ TrXn+1(θn(·,·, s);R, x) such that σ(0) = x is un-
bounded in the direction of Hn+1. However Xn+1 is bounded: a contradiction. On the other hand, for x ∈ H

n , gn(x, s) =
Lx + Pn(F (Pn(x)) = fn(x) and the second assertion follows. �

For n ∈ N, let H
±
n := Hn ∩ H

± . One can easily check that the pair (Ỹ n, Z̃n), where

Ỹ n := Y n × D+
n+1 × D−

n+1, Z̃n := Zn × D+
n+1 × D−

n+1 ∪ Y n × ∂ D+
n+1 × D−

n+1

and

D±
n := {

x ∈ H
±
n

∣∣ ‖x‖ � r
}
, ∂ D±

n := {
x ∈ H

±
n

∣∣ ‖x‖ = r
}
,

is an index pair for θn(·,·,0) in the isolating neighborhood Xn+1 provided r > 0 is small enough.
Let us identify the circle with the quotient S1 := [0,1]/{0,1} and recall that the suspension S X of a (pointed) space X is

defined by the smash product S X := S1 ∧ X ; for m ∈ N, we define Sm X := S(Sm−1 X) (comp. [37]).
Let ν(n) := dim H

+
n and note that the quotient Ỹ n/ Z̃n has the homotopy type of the suspension Sν(n)(Y n/Zn). Thus there

is a natural (graded) isomorphism

H∗(Ỹ n/ Z̃n,∗) ∼= H∗(Sν(n)
(
Y n/Zn)

,∗)
. (18)
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Proposition 3.21. There is an isomorphism

c∗ : H∗(Y n+1/Zn+1,∗) → H∗(Sν(n)
(
Y n/Zn)

,∗)
.

Proof. In view of Lemmas 3.19 and 3.20, for n � n0, the set Xn+1 is an isolating neighborhood for admissible flows θn(·,·, s)
and ηn(·,·, s), s ∈ [0,1]. Moreover θn(·,·,1) = ηn(·,·,0). Therefore, by the continuation property of the cohomological Conley
index (see Theorem 3.14(ii)), we obtain an isomorphism μ : H∗(Y n+1, Zn+1) ∼= H∗(Ỹ n, Z̃n).

It is well known (see e.g. [35]) that, for any metric pair (Y , Z), there is an isomorphism κ : H∗((Y /Z),∗) ∼= H∗(Y , Z).
Composing κ for (Y n+1, Zn+1) with μ, κ−1 for (Ỹ n, Z̃n) and (18) we get the required isomorphism c∗ . �

There is also a natural (desuspension) isomorphism H∗(Sν(n)(Y n/Zn),∗) ∼= H∗−ν(n)(Y n/Zn,∗) (see [37]). Hence, for each
n � n0 and q ∈ Z, there is an isomorphism

γn : Hq+ν(n)
(
Y n+1, Zn+1) → Hq(Y n, Zn)

.

Define ρ : N ∪ {0} → N ∪ {0} by ρ(0) = 0 and ρ(n) = ∑n−1
i=0 ν(i) for n � 1. For a fixed q ∈ Z and n � n0, consider the

sequences of isomorphisms

γn : Hq+ρ(n+1)
(
Y n+1, Zn+1) → Hq+ρ(n)

(
Y n, Zn)

as described above. It is clear that this sequence forms an inverse system of (graded) groups. Therefore the following
definition is justified.

Definition 3.22. By the cohomological L-index of the isolating neighborhood X of the L-flow ϕ we understand the graded group
C H∗(X,ϕ) = {C Hq(X,ϕ)}q∈Z where, for q ∈ Z,

C Hq(X,ϕ) := lim←−
n�n0

{
Hq+ρ(n)

(
Y n, Zn)

, γn
}
.

This definition is correct since it clearly does not depend on the choice of the sequence (Y n, Zn) and, as it was pointed
out in [22] (in a single-valued case), the group C Hq(X,ϕ) may be nontrivial both for negative and positive q ∈ Z.

Example 3.23. Recall the linear systems (8) and (9). If i0(A) = 0, then ∇ΦA is a linear isomorphism and S := {0} is an
isolated invariant set for the flow ϕ generated by ∇ΦA . Since all other orbits of (8) are unbounded, it follows that, for any
r > 0, the closed ball Dr(0) := {z ∈ H | ‖z‖ � r} is an isolating neighborhood for ϕ . We shall show that C H∗(Dr(0),ϕ) =
H∗(Si+(A),∗), i. e. the only nontrivial group C Hq(Dr(0),ϕ) = Z for q = i+(A). Let k0 be such that M±(Tk(A)) = 2N for all
k > k0. Then ∇ΦA : H

k0 → H
k0 is a linear selfadjoint isomorphism and the classical Conley index (see [15]) for the flow

generated in this subspace is the homotopy type of a sphere St , where t = M+(−A) + ∑k0
k=1 M+(Tk(A)). Now go back to

Definition 3.22. In our case, for any i � 1, ν(i) = 2N and ρ(k0) = 2Nk0. Therefore for any q ∈ Z the qth cohomology group
is C Hq(Dr(0),ϕ) = Hq+2Nk0 (St ,∗). It is equal to Z if and only if q + 2Nk0 = t . Hence q = t − 2Nk0 = i+(A).

We now formulate basic properties for C H∗(X,ϕ). They are obvious consequences of respective properties provided in
Theorem 3.14 for a finite-dimensional situation.

Proposition 3.24. Let X be an isolating neighborhood for an L-flow ϕ generated by an L-vector field f . If C H∗(X,ϕ) = {0}, then
Inv(X,ϕ) = ∅. In particular there is a bounded solution (lying in X ) to problem (17).

Proof. Let h be a family of L-vector fields defined in the proof of Lemma 3.19 and let η be the family of L-flows generated
by h. Then f = h(·,0) and ϕ = η0. Suppose that Inv(X,ϕ) = ∅. Proposition 3.15 implies that there is s0 > 0 such that, for s ∈
[0, s0], Inv(X, ηs) = ∅. Thus, for n > 1/s0 (keeping the above notation), Inv(Xn,ϕn) = ∅; by Theorem 3.14(i), H∗(Y n, Zn) = 0
for an arbitrary index pair in Xn . The inverse limit of trivial groups is also trivial: a contradiction. The last statement is a
consequence of Remark 3.7. �
Proposition 3.25. Let Λ be a compact, connected and locally contractible metric space. Assume that η : H×R×Λ� H is a family of
L-flows generated by a family of L-vector fields f : H × Λ → H. Let X be an isolating neighborhood for the flow ηλ0 for some λ0 ∈ Λ.
Then there is a compact neighborhood C ⊂ Λ of λ0 such that C H∗(X, ημ) = C H∗(X, ηλ) for all μ,λ ∈ C.

Proof. Corollary 3.17 implies the existence of a neighborhood C of λ0 such that X is an isolating neighborhood for all ηλ

for λ ∈ C . We can assume that C is compact and contractible, thus path connected. Repeating the argument from the proof
of Lemma 3.19 for the family f (·,μ), μ ∈ C , of L-vector fields we get n0 ∈ N such that, for n > n0, the set Xn is an isolating
neighborhood for the flows generated by the vector fields fn(μ) : H

n � H
n where fn(μ)(x) = Pn( f (x,μ)) for all μ ∈ C and

x ∈ Hn . Then we apply Theorem 3.14(ii). �
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Proposition 3.26. Let X, X ′ be two isolating neighborhoods for an L-flow ϕ generated by an L-vector field f . Assume that X ⊂ X ′ and
Inv(X ′,ϕ) ⊂ int X. Then C H∗(X,ϕ) = C H∗(X ′,ϕ).

Proof. We keep the notation introduced directly before and in the proof of Lemma 3.19. There is n0 such that, for
n � n0, Xn and X ′

n := X ′ ∩ H
n are isolating neighborhoods for ϕn on H

n . Suppose that C H∗(X,ϕ) = C H∗(X ′,ϕ). Then,
in view of Theorem 3.12(ii), Inv(X ′

n,ϕn) ⊂ int Xn . It is easy to see that if xn ∈ Inv(X ′
n,ϕn) ∩ (X ′

n \ int Xn), then xn ∈
Inv(X ′, η(·,·, 1

n )) ∩ (X ′ \ int X). By Theorem 3.15, (xn,1/n) has a subsequence convergent to (x,0). But then Proposition 3.9
implies that x ∈ Inv(X ′,ϕ) \ int X : a contradiction. �
4. Periodic solutions to Hamiltonian systems

In this section we are going to prove Theorem 2.5. Recall Section 2 and observe that the operator L : H → H given by (2),
where H := H1/2(S1,R

2N ), together with the family {Hk}k�0 given by (3), satisfy assumptions (L1)–(L4) from Section 3. In
what follows we shall study the flow generated by ∂Φ (see (6) and (7)), i.e., by the vector field of the form L + F where
F := ∂ψ .

According to Corollary 2.3, estimate (5) holds for some p � 1. In view of Remark 3.4, if p > 2, then the flow generated
by ∂Φ , i.e., given by (12) (or by (13) and (14)) with F = ∂ψ , is defined on some open set D ⊂ H × R such that H × {0} ⊂ D
and satisfies axioms from Definition 3.1. In other words ϕ : D � H is a local L-flow. All notions introduced in Section 3
concerning global L-flows may be defined for local ones and the L-index may be defined by the following simple trick. If X
is an isolated neighborhood for the local L-flow generated by ∂Φ and X ⊂ Bρ(0), where ρ > 0, then let us define d : H → R

by

d(x) =
⎧⎨⎩

1 for ‖x‖ � ρ;
1 + ρ − ‖x‖ for rho < ‖x‖ � ρ + 1;
0 for ‖x‖ � ρ + 1.

Clearly the vector field F̃ : H → H, given by F̃ (x) := d(x)∂ψ(x), x ∈ H, is completely continuous with convex compact values
and sublinear growth. Therefore the L-vector field L + F̃ generates a global L-flow ϕ̃ which coincides with ϕ on X . Hence
X is an isolating neighborhood for ϕ̃ and we can define C H∗(X,ϕ) := C H∗(X, ϕ̃). From this viewpoint the assumption
concerning p plays only a technical role and, without loss of generality, in what follows we may assume that 1 � p � 2.
Therefore we have:

Proposition 4.1. The set-valued map ∂Φ = L + ∂ψ is an L-vector field in H and it generates an L-flow ϕ : H × R � H.

If Φ : H → R were a smooth functional, then Φ would be a Lyapunov function for the flow generated by ∂Φ = ∇Φ . How-
ever when Φ is only locally Lipschitz, it is rarely the case (except for special cases). Therefore we are going to introduce an
associated single-valued pseudo-gradient L-field of the form L + V , where V is locally Lipschitz and completely continuous,
such that Φ is a Lyapunov function for the flow generated by L + V . For this reason we need some more preparation.

For any compact convex set A ⊂ H, define

|||A||| := sup
a∈A

inf
b∈A

〈a,b〉H.

By the von Neumann mini-max equality, |||A||| = infb∈A supa∈A〈a,b〉H � infb∈A ‖b‖2 � 0; hence |||A||| = 0 if and only if 0 ∈ A.
Let us define δ : H → R by

δ(x) := inf
u∈H

(∣∣∣∣∣∣∂Φ(u)
∣∣∣∣∣∣ + ‖u − x‖H

)
, x ∈ H.

For each u ∈ H, the function H 
 x �→ δu(x) := |||∂Φ(u)||| + ‖u − x‖H is Lipschitz with constant 1; hence the lower envelope
δ = infu∈H δu is continuous. It is clear that δ(x) � δx(x) := |||∂Φ(x)||| for any x ∈ H.

Now let K (Φ) := {z ∈ H | 0 ∈ ∂Φ(z)} be the set of critical points of Φ .

Proposition 4.2. If X ⊂ H is bounded and cl X ∩ K (Φ) = ∅, then infx∈X δ(x) > 0.

Proof. Suppose that infX δ = 0, i.e., there are sequences xn ∈ X and un ∈ H such that∣∣∣∣∣∣∂Φ(un)
∣∣∣∣∣∣ + ‖un − xn‖H → 0 as n → ∞.

Hence the sequence (un) is bounded and |||∂Φ(un)||| → 0, i.e., for each n � 1, there is yn ∈ ∂ψ(un) such that Lun + yn → 0.
The complete continuity of ∂ψ implies that (up to a subsequence) yn → y ∈ H. Thus Lun → −y. Since (un) is bounded and
L is a Fredholm operator, we infer that (up to a subsequence) un → u and xn → u. The upper semicontinuity of ∂Φ implies
that u ∈ K (Φ): contradiction because u ∈ cl X . �
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Theorem 4.3. For any ε > 0, there exists a locally Lipschitz L-field W : H \ K (Φ) → H of the form W (y) = Ly + V (y) where
V : H \ K (Φ) → H is completely continuous with sublinear growth such that, for each y ∈ H and q ∈ ∂Φ(y),〈

W (y),q
〉
H

� 1

2
δ(y).

Moreover V (y) ∈ cl conv ∂ψ(Bε(y)) for every y ∈ H \ K (Φ).

Proof. For any u ∈ H \ K (Φ), |||∂Φ(u)||| � δ(u) > 0. Hence there is vu ∈ ∂ψ(u) such that

inf
q∈∂Φ(u)

〈q, Lu + vu〉H >
1

2
δ(u).

Observe now that

inf
q∈∂Φ(u)

〈q, Lu + vu〉H = −Φ◦(u;−Lu − vu).

The function

H 
 y �→ inf
q∈∂Φ(y)

〈q, Ly + vu〉H − 1

2
δ(y)

is lower semicontinuous and takes a positive value for y = u. Hence, for ε > 0, there is an open neighborhood Nu ⊂ Bε(u)

of u such that, for all y ∈ Nu ,

inf
q∈∂Φ(y)

〈q, Ly + vu〉H >
1

2
δ(y).

Consider a locally finite partition of unity {λs}s∈S consisting of locally Lipschitz functions with supports {supp λs} refining
the cover {Nu}u∈H\K (Φ) of H \ K (Φ), i.e., for any s ∈ S , there is us ∈ H such that supp λs ⊂ Nus . For each s ∈ S , let vs := vus

and define

V (y) :=
∑
s∈S

λs(y)vs, y ∈ H \ K (Φ).

It is clear that V is well defined, locally Lipschitz and maps bounded sets in H \ K (Φ) into compact ones. Moreover, V has
sublinear growth since so does ∂ψ .

Let y ∈ H\ K (Φ) and let S y := {s ∈ S | λs(y) = 0}. If s ∈ S y , then y ∈ Nus ⊂ Bε(us); hence us ∈ Bε(y) and vs ∈ ∂ψ(Bε(y)).
Therefore V (y) ∈ cl conv ∂ψ(Bε(y)) and

inf
q∈∂Φ(y)

〈q, Ly + vs〉H >
1

2
δ(y).

Hence, for any q ∈ ∂Φ(y)〈
q, Ly + V (y)

〉
H

=
∑
s∈S y

λs(y)〈q, Ly + vs〉H � 1

2
δ(y).

Putting W (y) := Ly + V (y), y ∈ H \ K (Φ) we complete the proof. �
Suppose that x ∈ H \ K (Φ) and let η(x, ·) : J x → H \ K (Φ) be the unique (local, i.e., defined on some open interval

J x := (t−(x), t+(x)), 0 ∈ J x) solution of the Cauchy problem

η̇(x, t) := ∂

∂t
η(x, t) = W

(
η(x, t)

)
, η(x,0) = x. (19)

The function Φ ◦ η(x, ·) is absolutely continuous and, for almost all t ∈ Ix ,

∂

∂t
Φ ◦ η(x, t) � inf

q∈∂Φ(η(x,t))

〈
q, η̇(x, t)

〉
H

= inf
q∈∂Φ(η(x,t))

〈
q, W

(
η(x, t)

)〉
H

� 1

2
δ
(
η(x, t)

)
> 0;

in other words Φ strictly increases along the trajectory η(x, ·).

Theorem 4.4. Suppose that y belongs to the ω-limit set ω(x) of the point x ∈ H \ K (Φ) with respect to the local dynamical system η
generated by W . Then y ∈ K (Φ).

Proof is standard. Recall that, by definition y ∈ ω(x) if and only if y = limt→t+(x) η(x, t). We show that Φ is constant
on ω(x). Indeed, let z ∈ ω(x). Hence there are sequences tn ↗ t+(x), sn ↗ t+(x) such that η(x, tn) → y and η(x, sn) → z.
We may assume that · · · < tn < sn < tn+1 < sn+1 < · · · t+(x). Hence · · · < Φ(η(x, tn)) < Φ(η(x, sn)) < Φ(η(x, tn+1)) <

Φ(η(x, sn+1)) < · · · . By continuity, Φ(y) = Φ(z).
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Suppose to the contrary that y /∈ K (Φ), i.e., δ(y) > 0, and consider the trajectory η(y, ·) : J y → H. It is easy to see that
{η(y, t) | t ∈ J y} ⊂ ω(x). But then (at least locally) Φ increases along η(y, ·): a contradiction. �

In the rest of this section we shall establish the existence of critical points of Φ via the study of invariant sets for η.

Theorem 4.5. Let ϕ be the L-flow generated by the L-vector field ∂Φ . Assume that X is an isolating neighborhood for ϕ and
C H∗(X,ϕ) = 0. Then K (Φ) ∩ X = ∅.

Proof. Suppose to the contrary that K (Φ) ∩ X = ∅ and let ε0 > 0 be as in Lemma 3.18 stated for our flow ϕ . By
Propositions 3.18 and 3.25, C H∗(X,ϕε) = C H∗(X,ϕ) = 0 for any 0 < ε � ε0, where ϕε is a flow generated by the field
fε := L + cl conv ∂ψ(Dε(·)).

Fix 0 < ε � ε0 and let λ : H → [0,1] be given by

λ(x) = d(x, K (Φ))

d(x, X) + d(x, K (Φ))
, x ∈ H.

Then λ|X ≡ 1 and λ|K (Φ) ≡ 0. Take a map V : H \ K (Φ) → H given by Proposition 4.3 and let Ṽ (x) = λ(x)V (x) for x ∈
H \ K (Φ) and Ṽ (x) = 0 for x ∈ K (Φ). Then Ṽ : H → H is locally Lipschitz, completely continuous and has sublinear growth.
Let η̃ be the L-flow generated by W̃ := L + Ṽ .

Consider a family h : H × [0,1] � H of L-vector fields given by h(x, s) := sfε(x) + (1 − s)W̃ (x), s ∈ [0,1], x ∈ H; it
generates the family of L-flows θ : H × R × [0,1] � H. It is clear that, for each s ∈ [0,1] and x ∈ X , h(x, s) ⊂ fε(x). Thus, for
all s ∈ [0,1], Inv(X, θs) ⊂ Inv(X,ϕε); thus X is an isolating neighborhood for θs . Therefore

C H∗(X, η̃ ) = C H∗(N, θ0)) = C H∗(N, θ1) = C H∗(N,ϕε) = 0.

By Proposition 3.24, the invariant part Inv(N, η̃ ) is nonempty, i.e., there is x ∈ Inv(X, η̃ ) such that η̃(x, t) ∈ X for all t ∈ R.
Thus, for each t ∈ J x , η(x, t) ⊂ X where η is given by (19). Since Inv(X, η̃ ) is compact, the ω-limit set ω(x) of x with respect
to η is nonempty and contained in X . By Theorem 4.4, y ∈ K (Φ) ∩ N: a contradiction. �

Now recall (6), (4) and assumptions (G3) and (G4).

Proposition 4.6. If G satisfies conditions (G1)–(G4), then

(i) |Φ(u) − ΦA0 (u)| = o(‖u‖2
H
) as ‖u‖H → 0, |Φ(u) − ΦA∞ (u)| = o(‖u‖2

H
) as ‖u‖H → ∞;

(ii) supy∈∂Φ(u) ‖y − ∇ΦA0 (u)‖H = o(‖u‖H) as ‖u‖H → 0 and supy∈∂Φ(u) ‖y − ∇ΦA∞ (u)‖H = o(‖u‖H) as ‖u‖H → ∞.

Proof. Since G(·,0) ≡ 0, we see that Φ(0) = ΦA0 (0) = ΦA∞ (0). Moreover ∂Φ − ∇ΦA0 = ∂ψ + A0 and ∂Φ − ∇ΦA∞ =
∂ψ +A∞ . We shall proceed for an arbitrary p � 1.

For any t ∈ [0,2π ], u ∈ R
2N and y ∈ ∂G(t, u), in view of (G2) or (G2)

′ ,

|y − A0u| � 	 + ‖A0‖|u| (
or |y − A0u| � α

(
1 + |u|p−1) + ‖A0‖|u|). (20)

Take any ε > 0 and r > max{1, p − 1}. By (G3) and (20), there is c(ε) > 0 such that, for any t ∈ [0,2π ], u ∈ R
2N and

y ∈ ∂G(t, u),

|y − A0u| � ε|u| + c(ε)|u|r . (21)

Let u ∈ H and y ∈ ∂ψ(u); then, by Corollary 2.3, there is w ∈ Lq such that w(t) ∈ ∂G(t, u(t)) on [0,2π ] and, for all v ∈ H,
〈y, v〉H = − ∫ 2π

0 w(t) · v(t)dt . By (21), for t ∈ [0,2π ], |w(t) − A0u(t)| � ε|u(t)| + c(ε)|u(t)|r . Hence, for any v ∈ H, by the
Hölder inequality and Remark 2.1,

∣∣〈y +A0(u), v
〉
H

∣∣ �
2π∫
0

∣∣w(t) − A0u(t)
∣∣∣∣v(t)

∣∣dt �
2π∫
0

(
ε
∣∣u(t)

∣∣ + c(ε)
∣∣u(t)

∣∣r)∣∣v(t)
∣∣dt

�
(
ε‖u‖2 + c(ε)‖u‖r

2r

)‖v‖2 � C2
(
C2ε‖u‖H + C2rc(ε)‖u‖r

H

)‖v‖H.

Taking the supremum over ‖v‖H � 1, we see that supy∈∂Φ(u) ‖y − ∇ΦA0 (u)‖H = o(‖u‖H) as ‖u‖H → 0.

For any u ∈ H, the function [0,1] 
 s �→ ξ(s) := Φ(su)−ΦA0 (su) = ψ(su)+ 1
2

∫ 2π
0 s2 A0u(t)·u(t)dt is absolutely continuous

and, for almost all s ∈ [0,1],
d

ds
ξ(s) � sup

〈
y + sA0(u), u

〉
H
.

y∈∂ψ(su)
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Hence

∣∣Φ(u) − ΦA0 (u)
∣∣ = ∣∣ξ(1)

∣∣ �
1∫

0

∣∣∣∣ d

ds
ξ(s)

∣∣∣∣ � sup
s∈[0,1]

sup
y∈∂Φ(su)

∥∥y − ∇ΦA0 (su)
∥∥

H
‖u‖H = o

(‖u‖2
H

)
as ‖u‖ → 0.

Analogously, for any ε > 0, there is c(ε) > 0 such that

|y − A∞u| � ε|u| + c(ε)

for any t ∈ [0,2π ], u ∈ R
2N and y ∈ ∂G(t, u). Thus, for any u ∈ H , y ∈ ∂ψ(u) and v ∈ H, by Remark 2.1,∣∣〈y +A∞(u), v

〉
H

∣∣ � Cs
(
Crε‖u‖H + c(ε)

)‖v‖H;
this shows that supy∈∂Φ(u) ‖y − ∇ΦA∞ (u)‖H = o(‖u‖H) as ‖u‖H → ∞. Similarly as above we show the last part of the
assertion. �

Now we are ready for the

Proof of Theorem 2.5. Assume that i+(A0) = i+(A∞) and observe that ∇ΦA0 and ∇ΦA∞ are selfadjoint and have trivial
null-spaces since i0(A0) = i0(A∞) = 0. Thus there is c > 0 such that ‖∇ΦA0 u‖ � c‖u‖ and ‖∇ΦA∞ u‖ � c‖u‖ for all u ∈ H.

By Proposition 4.6, there are 0 < r < R such that, for u ∈ H and y ∈ ∂Φ(u): if ‖u‖ � r, then ‖y − ∇ΦA0 (u)‖H <
c2

2‖∇ΦA0 ‖ ‖u‖ and if ‖u‖ � R , then ‖y − ∇ΦA∞ (u)‖H < c2

2‖∇ΦA∞ ‖‖u‖.

Now suppose that the only critical point of Φ is in x = 0. Applying Theorem 4.3 we define a single-valued L-vector field
W = L + V : H \ {0} → H such that for u ∈ H, u = 0, and ξ ∈ ∂Φ(u) we have 〈W (u), ξ〉H � 1

2 δ(u). Define a new L-vector
field W̃ : H → H as follows:

W̃ (u) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∇ΦA0 (u) if ‖u‖ < r
2 ;

(1 − 2‖u‖
r + 1)∇ΦA0 (u) + (

2‖u‖
r − 1)W (u) if r

2 � ‖u‖ � r;
W (u) if r < ‖u‖ < R;
(‖u‖ − R)∇ΦA∞ (u) + (1 − ‖u‖ + R)W (u) if R � ‖u‖ � R + 1;
∇ΦA∞ (u) if ‖u‖ > R + 1.

Let u ∈ H and y ∈ ∂Φ(u); if 0 < ‖u‖ � r, then〈∇ΦA0 (u), y
〉 = 〈∇ΦA0 (u),∇ΦA0 (u)

〉 + 〈∇ΦA0 (u), y − ∇ΦA0 (u)
〉
� c2‖u‖2 − ‖∇ΦA0‖ · ‖u‖ · ∥∥y − ∇ΦA0 (u)

∥∥ � 1

2
c2‖u‖

and, analogously, if ‖u‖ � R , then〈∇ΦA∞ (u), y
〉
� 1

2
c2‖u‖.

Therefore, for all u ∈ H \ {0} and q ∈ ∂Φ(u), 〈W̃ (u),q〉 � min{ 1
2 δ(u), 1

2 c2‖u‖} > 0. Hence, by remarks after Theorem 4.3,
Φ is a Lyapunov function for the flow η generated by W̃ . Thus the conclusion of Theorem 4.5 holds. On the other hand
the closed balls D r

2
(0), D R+2(0)) are isolating neighborhoods for η. Clearly by Example 3.23, C H∗(D r

2
(0), η) has the only

nontrivial group in dimension i+(A0). Similarly C H∗(D R+2(0), η) has the only nontrivial group in dimension i+(A∞), since
by a homotopy argument it is equal to the index of the flow generated by a linear L-vector field ∇ΦA∞ .

In view of Proposition 3.26, we have Inv(D R+2(0), η) ⊂ B r
2
(0). Take x ∈ Inv(D R+2(0), η) \ {0}. We have shown in Theo-

rem 4.4 that y ∈ ω(x) is a critical point of Φ . The same is clearly true for y ∈ α(x). But since Φ increases along the orbits
of η, either ω(x) = {0} or α(x) = {0}. This contradiction completes the proof.

In the case when i−(A0) = i−(A∞), a similar argument for −Φ works. �
Example 4.7. Consider G : R × R

2 → R constructed similarly as in Example 2.6 but such that G(t, x, y) = 1
2 (x2 + y2) +

(x3 − 3xy2) cos(3t) if x2 + y2 < 1 and t ∈ R; hence G is smooth in a neighborhood of 0. Here A0 := I2 and i0(A0) = 2. In
[20, Example 5.1], it is shown that {0} is an isolated invariant set and C H3(X,ϕ) = Z⊕Z for a small isolating neighborhood
X of {0}. On the other hand, the continuation argument 3.25 implies that, for sufficiently large R , the ball D R(0) is an
isolating neighborhood for ϕ and the only nontrivial group in C H∗(D R(0)) is in dimension 4. Thus, in spite of the fact that
the assumptions of Theorem 2.5 are not satisfied, the same argument as in the proof of Theorem 2.5 shows the existence
of a nontrivial periodic solution to the problem (1).

In the forthcoming paper we shall study more carefully the situation present in Example 4.7, i.e., asymptotically linear
locally Lipschitz hamiltonians under the resonance, i.e., without nondegeneracy assumption i0(A0) = 0, i0(A∞) = 0, as well
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as non-autonomous asymptotically linear hamiltonians, i.e., such that (G3) and (G4) hold for some time-dependent symmet-
ric matrices A0(t), A∞(t), t ∈ R, with 2π -periodic entries. Problems of this type for smooth hamiltonians have been studied
in e.g. [14,28,38] by means of the generalized Morse theory.
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