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Abstract
The equivalence principle, being one of the building blocks of general relativity, seems to 
be crucial for analysis of quantum effects in gravity. In this paper we consider the relation 
between the equivalence principle and the consistency of quantum information processing 
in gravitational field. We propose an analysis with a looped evolution consisting of steps 
both in the gravitational field and in the accelerated reference frame. We show that with-
out the equivalence principle the looped quantum evolution cannot be unitary and looses 
its consistency. For this reasoning the equivalence principle is formulated in terms of the 
gauge transformations and is analyzed for particles acquiring an appropriate phase associ-
ated with the action over the looped path. In consequence, to keep consistency of quantum 
operations in gravitational field, it is required to keep a quantum variant of the equivalence 
principle. This proves importance of the quantized version of this fundamental gravita-
tional principle for quantum information processing.

Keywords Quantum gravity · Quantum information · The equivalence principle

The equivalence principle is one of the foundations of general relativity. Although its roots 
are classical, the long-standing research is focused on inclusion of this principle (Aharonov 
& Carmi, 1973, 1974; Marletto, 2020; Bose, 2017; Marletto & Vedral, 2017a, b; Hardy, 
2019; Zych & Brukner, 2018) into the future quantized version of gravity which is based 
on the assumption that it should be also a foundation of quantum gravity. There has been 
also a long-standing debate if gravity itself is quantum but recent research (Bose, 2017; 
Margalit et al., 2020) shed some light on the quantumness of gravity proposing interfer-
ometric experiments testing its quantum nature with discussion of generalization of the 
equivalance principle with superposition of gravitational fields and definition of quantum 
reference frames (Giacomini et al., 2019; Giacomini & Brukner, 2020). In this context, it is 
an objective of this paper to consider the issue of consistency of distributed quantum infor-
mation processing in a background of a weak gravitational field (Feynman, 1948).
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Our proposal is based on the model of a looped system (Fig. 1) with quantum evolution 
connecting two different regions of space-time, from which one is in gravitational field 
and the another accelerated one being a gravity-free region. Those two regions linked by 
the loop are a background for a thought experiment of distributed quantum information 
processing. For this consideration we engage a standard understanding of the equivalence 
principle assuming that the state of motion of a point particle at rest in a local uniform 
gravitational field gis indistinguishable from the state of motion of a point particle in an 
accelerated reference frame (with a = −g ) in a gravity-free region. Alternatively, it can be 
formulated in terms of local reference frames stating that there is no way, by experiments 
confined to infinitesimally small regions of space-time, to distinguish one local Lorentz 
frame in one region of space-time from any other local Lorentz frame in the same or any 
other region (Misner et  al., 2017). This formulation is a basis for recent (Hardy, 2019) 
quantum proposal of the equivalence principle with quantum coordinate systems and is 
naturally connected with the problem of defining a quantum reference frame (Giacomini 
et al., 2019; Aharonov & Kaufherr, 1984) and relativity of quantum superpositions (Zych 
et al., 2018).

In the context of this paper, it is fundamental to note that gauge transformations govern 
the way of transforming a system from a region with gravitational field g to the accelerated 
reference frame with a = -g . In quantum mechanics the Schrodinger equation is invariant 
when both potentials and the wave-function are subject of these transformations. For the 
vector potential, gauge transformations are:

Then the quantum state is transformed as: �Ψ�⟩ = U�Ψ⟩ = ei��Ψ⟩ with the gauge parameter 
U being a phase factor which is actually an element of the unitary group U(1) for Maxwell 
theory. It is also worth mentioning that this element is space-time dependant which is vital 

A�
�
= A� + ��X

Fig. 1  A looped quantum-gravitational interferometer with space-time region A in gravitational field g and 
space-time region B with acceleration a=−g. The looped particle traverses the loop abcda 
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for further reasoning. For a series of gauge transformations U1 → U2 … → Un of the state 
�Ψ⟩ the composition law holds:

For our example of the closed quantum-gravitational loop we get effectively a version of 
the Wilson loop (being also gauge invariant) for the closed space-time path. The gauge 
parameter for this case is periodic ( U(� + 2�) = U for some � parametrizing the path) on 
the loop which physically is in line with the equivalence principle and with the conserva-
tion of energy as presented in this paper.

For the linearized gravitational fields (Misner et al., 2017) the Riemann tensor is gauge 
invariant with the same property inherited by the stress-energy tensor and Einstein tensor. 
Thus, we can formally further consider quantum-gravitational systems having this prop-
erty. However, it is an open question if the following reasoning is also fully applicable to 
gravity with non-linear gravitational field equations.

We shall analyze now the model of the looped evolution and show that if the quantum 
version of the equivalence principle, associating quantum phase with each path in different 
background fields, does not hold, then the looped evolution cannot be unitary. We con-
sider further a closed loop (Fig. 1) with part of the loop (space-time region A) being in the 
gravitational field g and part in the accelerated system with a = −g (space-time region B). 
We follow the Feynman path methods assuming that each sub-path contributes to the final 
probability amplitude of a quantum process adding actions for paths in regions A and B. 
By the very property of associating a quantum phase with a path traversed by a quantum 
system in gravitational field, we assume quantumness of the interaction which is actually 
a hidden assumption in this type of analysis and we assume consistency of the single path 
traversing both regions. The consistency of the single path traversing both regions A and B 
is understood as possibility of associating one binding quantum history (a quantum action) 
with the path.

Whenever we consider a n-loop process, we assume that the particle traverses n times 
the loop ′abcda′ . The probability amplitude for the history branch of the 1-loop process is:

For simplification we can consider only two paths of this loop: a → c (including b) and 
c → a (including d) putting the actions Sac and Scd . Thus, a quantum particle traversing this 
loop acquires phase ei�ac associated with existence of the gravitational field g on the sub-
path a → b and ei�ca with traversing the accelerated (by a) sub-path c → d . Following one 
gets:

where 𝜙ca = Sca∕ℏ and 𝜙ac = Sac∕ℏ (we omit in the calculation the acquired phases of 
paths b → c and d → a which is dependant on a particular implementation of the system).

Further for the n-loop process its probability amplitude is:

which is in agreement with the composition law for the gauge transformations 
U = [U2U1]

n = [ei�ca ei�ac ]n.
Even not assuming correctness of the gauge transformation on the closed loop (closed his-

tory associated with the evolution of the particle), one would be forced to introduce a relation 

(1)�Ψ⟩ → U1�Ψ⟩ → U2U1�Ψ⟩ → … → Un …U2U1�Ψ⟩

(2)A1 = ⟨Ψ1�e
i

ℏ
Sdae

i

ℏ
Scd e

i

ℏ
Sbce

i

ℏ
Sab �Ψ1⟩

(3)A1 = ⟨Ψ1�ei�ca ei�ac �Ψ1⟩

(4)An = ⟨Ψ1�[ei�ca ei�ac ]n�Ψ1⟩
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between systems A and B (the relation actually is created due to existence of the connec-
tion created by the history of a particle traversing both ’regions’ A and B) which is related 
to changes in the state of the system. As an implication of this reasoning the change of state 
(associated with the acquired phase) within A has to be related to the change on B, which is 
imposed by the consistency of the traversing particle’s history. The binding evolution of the 
traversing particle is unitary which is postulated by quantum mechanics and is a necessary 
condition of consistency of quantum information processing. If that does not hold, then many 
paradoxes would arise like those related to contradiction of the quantum no-cloning principle.

There are two important principles necessary for ensuring unitarity of a quantum evolution 
with gravitational field interaction for our model:

1. Firstly, we assume that laws of physics apply in the same way to each quantum history 
branch which has its formulation in the 1-loop, 2-loop up to n-loop processes where we 
apply the quantum superposition rule up to the n-loop processes imposing its application 
to gravitational fields.

2. Secondly, we assume correctness of the equivalence principle imposing a direct relation 
between the gravitational field and the accelerated system. This relation is being ensured 
by the binding history of the quantum particle traversing the system A and then system 
B which also creates quantum information connection between the regions of space-time 
with different gravitational characteristics [16].

It is now crucial to show that the processes are unitary up to the n-loop processes in the 
infinite regime with convergence of the superposition series. For the 0-loop process where the 
particle is just reflected from the BS (beam-splitter), one gets:

For the 1-loop process, where a particle traverses the loop only once but acquiring the 
phases due to gravitational interaction and existence of the accelerated region B, one gets:

where �Ψ0⟩ denotes the state associated with the outgoing path from the interferometer, 
�Ψ1⟩ with the looped path and �Ψout⟩ denotes the total output state of the beam splitter (i.e. 
superposition of two output ports). Replicating this procedure up to the n-loop process we 
get a partial sum of the geometric series:

where U = ei�ca ei�ac and �2 = 1 − �2 for normalization in our model. Thus, within the 
n-looped process there is still non-zero probability of finding a particle within the loop 
which is not the case in the infinite regime, i.e. this looped interferometer is fully reflective.

For the convergence of the series for n → +∞ , it is required to put unitarity of the loop. For 
the ∞-loop process, the series converges to:

(5)�Ψin⟩ → �Ψout⟩ = �Ψin⟩

(6)�Ψin⟩ → �Ψout⟩ = ��Ψ0⟩ + �ei�ca ei�ac �Ψ1⟩

(7)�Ψ
out
⟩ = �

�
1 − �2n

1 − �2U2

� 1

2

�Ψ
0
⟩ + �nUn�Ψ

1
⟩

(8)�Ψout⟩ →
�

(1 − �2U2)
1

2

�Ψ0⟩
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since �n → 0 and as expected, this system is reflective and the reflected state can acquire 
at most some global phase. Noticeably, det(1 − �2U2) ≠ 0 which results from |𝛽| < 1 (iff 
|�| = 1 then there is effectively no history branch with the particle outgoing the loop) and 
unitarity of U (implying detU = 1 ). This condition leads to convergence of the series. Con-
versely, if the loop was not unitary and the equivalence principle did not hold, then the 
series would be divergent and would lead to inconsistency of information processing. For 
general variants of the unitary operations replacing the beam splitter and the loop, one can 
apply the methods engaged in Czachor (2019). This analysis naturally resembles Feynman 
diagram methods, however, in our case we consider a space-time loop-diagram.

For the mass particle traversing this looped interferometer we can modify the model of 
the Colella-Overhauser-Werner (COW) experiment (Collela et  al., 1975) superposing a 
state of single neutron in two different positions (heights) of the Earth’s gravitation field. 
Let us consider a particle of mass m at state �Ψ⟩ = 1√

2
(�0⟩ + �1⟩) with the branch �1⟩ getting 

into the loop of our interferometer. For calculation of the action for the mass particle tra-
versing the arm of an interferometer in the gravitational field g in region A with position � , 
the Lagrangian is straightforward:

and for the region B of the arm accelerated with the acceleration rate a one gets the term:

Assuming that acceleration of the region B happens with the same value g, one gets the 
gauge parameter G(x, t) = −mg�t −

1

6
mg2t3 and the relation between Lagrangians:

leading to the output state from the loop interferometer for n → ∞:

where the total U = ei�aei�g , 𝜙g =
1

ℏ
∫ t2
t1
Lgdt and 𝜙a =

1

ℏ
∫ t4
t3
Ladt . It is also worth mention-

ing that the gauge transformation introduces naturally a phase shift Δ� (Marletto, 2020) 
between the two regions A and B. If the proper time of traversing the region A and B is the 
same, then the difference can be formulated in terms of the gauge transformation, i.e. 
Δ𝜙 = G(𝜆, t)∕ℏ.

If the equivalence principle did not hold for the quantum systems, then firstly the looped 
evolution would be not unitary and secondly, we could violate the conservation of energy 
for the looped system increasing energy ad infinitum.

It is also interesting to analyze the role of the equivalence principle in quantum algo-
rithms where parts of the algorithms are processed in different gravitational setups. As an 
example, we consider the Deutsch-Jozsa algorithm represented in terms of the binary tree 
which has a direct representation by means of Feynman paths. In the following scheme the 
equivalance principle can play a destructive role in each iteration of the binary tree. If the 
overall process is not corrected at each step of the algorithm, due to the phase shift acquired 
by the accelerated branches of the tree, then the final outcome of the algorithm is incorrect. 
The Deutsch-Jozsa algorithm is initiated with an input register of n = log2N qubits (where 

(9)Lg =
1

2
m(�̇�)2 − mg𝜆

(10)La =
1

2
m(�̇� + at)2

(11)Lg = La + �tG(�, t)

(12)�Ψout⟩ →
1

(2 − U2)
1

2

�0⟩
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N represents a binary tree level in our scheme - Fig. 2) in a state �Φin⟩ = �00… 0⟩ . Then 
each qubit is processed with a Hadamard operator leading to a superposition of all states in 
the computational basis of H = (ℂ2)⊗n . In the binary tree approach the whole input regis-
ter state can be generated by N-level tree splitting the state (e.g. by the bean-splitter in the 
interferomter) at each level of the tree. The proposal of implementation of such an evolu-
tion with the ring cavity is discussed in Perez-Garcia (2015); Goyal (2015) but it can be 
also implemented by nested interferometers as aforementioned for the COW interferometer 
above. The process of creating n-qubit paths works as follows:

thus, we consider a N-level tree for creation of the n = log2N qubit state (Fig. 2). There are 
two other fundamental steps in the Deutsch-Jozsa algorithm. The oracle Uf  implements the 
function as constant or balanced which is queried by the whole algorithm:

The second step includes again the Hadamard operation and measurement in the computa-
tional basis. If the state �00… 0⟩ is achieved (with probability 
P(�00… 0⟩) = � 1√

2n

∑
x=x1,…,xn=0,1

(−1)f (x)�2 ), then the function is constant. For the balanced 

(13)

�0⟩ → 1√
2

(�0⟩ + �1⟩) → … →

→

1√
2n

�

x=x1,…,xn=0,1

�x⟩

(14)Uf

1√
2n

�

x=x1,…,xn=0,1

�x⟩ = 1√
2n

�

x=x1,…,xn=0,1

(−1)f (x)�x⟩

Fig. 2  Any binary balanced or constant function can be encoded as a binary tree with the superposition 
state 1√

2n

∑
x=x

1
,…,x

n
=0,1(−1)

f (x)�x⟩ as a sum over all paths up to the N-level nodes. The phase shifts are 
encoded in the 1-branches. UΛ introduces additional gauge phase shift in the process disturbing flow of the 
algorithm
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function we get destructive interference and the probability of getting �00… 0⟩ tends to 
zero.

In our scheme we engage a binary tree that can encode effectively any binary balanced 
function f (⋅) by introduction of the phased paths for the �1⟩-branches (the chosen branches 
should face a �-phase shift for the oracle implementation). We can disturb the oracle imple-
mentation by introduction of a gravitational phase shift if branches 0 and 1 are localized in 
two different gravitational setups as discussed in this paper:

where the unitary operator UΛ introduces a ei�g shift (that can be the gauge phase shift due 
to the equivalence principle) to �1⟩ branches and can effectively change the final answer 
about the nature of the function f (⋅) . If one considers the scenario with regions A in the 
gravitational field and B with the corresponding acceleration, then only the difference in 
phases between the �0⟩ and �1⟩ branches influences the final result of the algorithm - the 
global phase can be omitted.

In summary, we showed that the quantum version of the equivalence principle guar-
antees unitarity of quantum information processing in the weak gravitational field and is 
necessary for keeping consistency of quantum operations, especially if the processing algo-
rithm is distributed spatially across regions with different gravitational characteristics. It 
is an open question how the presented analysis should be modified to be correct also for 
strong gravitational fields.
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