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Summary

Weakly nonlinear dynamics of chemically reacting gas is under study. Nonlinear in-
teraction of acoustic and non-acoustic types of motion are considered. Decomposing of
equations bases on links of gasdynamic perturbations specific for every type of motion.
The governing equation for mass fraction of reagent influenced by dominative sound, is
derived and discussed. Conclusions concern equilibrium and non-equilibrium regimes of
chemical reactions.

1 Introduction. Basic equations and starting points

The hydrodynamics of the non-equilibrium fluids is one of the new fields of modern hydrody-
namics. The studies in this field began in sixties of the 20th century. They initially started
in connection with the advances in laser engineering and plasma aerodynamics. Being a new
field of hydrodynamics, involving advances in thermodynamics and chemistry, the theory of
non-equilibrium fluids is passing through the stage of formulating the fundamental equations
and for revealing new physical effects.

Attention to the non-equilibrium phenomena in hydrodynamics was firstly originated by ex-
perimental studies of anomalous dispersion and absorption of ultrasonics waves in a gas having
non-equilibrium internal degrees of freedom. A reason for these anomalies is the mechanism
of retarded energy exchange between the internal and translational degrees of freedom of the
molecules [1,2]. The dispersion of sound in the chemically reacting gases is well-understood
[2,3]. Like it takes place in gases with excited internal degrees of freedom, the equilibrium
velocity of sound in a medium with reversible chemical reaction is always smaller than the
”frozen” one. The situation becomes opposite during non-equilibrium chemical reactions. Be-
sides anomalous dispersion, there observed anomalous amplification of sound, and such fluid
becomes acoustically active. The similar inverse behavior was observed in media with several
relaxation processes and in nonisothermic plasma.
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Only recently, acoustics of gases where non-equilibrium processes take place, in particular a
chemical reactions occur, became the subject of serious theoretical studies [2,4-6]. The adequate
dispersion relation was firstly derived, and the basic peculiarities of sound propagation were
drawn out as regard to variations in heat produced during chemical reaction [6].

The important problem to be solved is interaction of acoustic and non-acoustic motions in
the chemically reacting fluids, and, in particular, controlling of mass fractions of the reagents
by sound. The theoretical study is complex in view of nonlinearity of governing equations
describing mass, energy and momentum balance. This study is devoted to the deriving and
brief discussion of dynamic equation for the reagent mass fraction affected by dominative sound.
Weakly nonlinear dynamics is considered. The nonlinear governing equation for mass fraction
is obtained by means of decomposing from the general system using the links of gasdynamic
perturbations specific for every type of motion, or mode. This method was worked out and
applied by the author in studies of some problems of nonlinear hydrodynamics concerning
acoustic heating and streaming [7,8]. We start from the linear determination of modes as
specific types of gas motion in a gas where a chemical reaction takes place (Sec.2), going to the
correct decomposition of equations governing acoustic and non-acoustic motions accounting for
the interactions of modes (Sec.3).

The present study considers the simplest model of a gas where equilibrium or non-equilibrium
chemical reaction takes place of the A → B type. This model applies also to reacting media
with complex, branching reactions [9]. There are three conservation equations, continuity,
momentum and energy ones:

ρ
d~v

dt
= −~∇P,

CV,∞
R

dT

dt
− T

ρ

dρ

dt
= Q, (1)

dρ

dt
+ ρ~∇~v = 0.

In the equations above, ~v denotes particles velocity of a gas, ρ,P denote its density and pressure,
T is temperature of a gas measured in Joules per molecule (actually the ordinary temperature
multiplied by the Boltsmann constant kB), CV,∞, CP,∞ are the ”frozen” molar heat capacities
at constant volume and constant pressure, respectively (correspondent processes takes place at
infinitely high frequencies), R = CP,∞−CV,∞ is the universal gas constant, Q = HmW/ρ is the
heat produced in the medium per one molecule due to a chemical reaction (W is the volume
rate of formation of the reaction product B), H denotes the reaction enthalpy per unit mass of
reagent A, and m denotes the averaged molecular mass. Dynamic equation of the mass fraction
Y of reagent A, and the equation of state complete the system (1):

dY

dt
= −W

ρ
, P =

ρT

m
. (2)

2 Motions of infinitely small amplitude in one dimension

and their decomposing

Studies of planar motion of infinitely small amplitude along axis OX use to begin with repre-
senting of every quantity ε as a sum of unperturbed value ε0 and its variation ε′, (|ε′| << |ε0|).
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Following [6], we assume that the ambient stationary quantities Y0, T0, P0, ρ0 are maintained
by a transverse pumping, so that in the longitudinal direction pointed by axis OX, the ambi-
ent medium is homogeneous. The equations of momentum, energy, mass fraction balance and
continuity read:

∂v′

∂t
+

1

ρ0

∂P ′

∂x
≡ ∂v′

∂t
+

T0

mρ0

∂ρ′

∂x
+

1

m

∂T ′

∂x
= 0,

∂T ′

∂t
+ (γ∞ − 1)

(
T0
∂v′

∂x
−QT

Q0

T0

T ′ −Qρ
Q0

ρ0

ρ′ −QY
Q0

Y0

Y ′
)

= 0, (3)

∂Y ′

∂t
+

1

Hm

(
QT

Q0

T0

T ′ +Qρ
Q0

ρ0

ρ′ +QY
Q0

Y0

Y ′
)

= 0,

∂ρ′

∂t
+ ρ0

∂v′

∂x
= 0,

where γ∞ = CP,∞/CV,∞ denotes the frozen adiabatic exponent. The dimensionless quantities
QT , Qρ, QY are as follows:

QT =

(
∂ lnQ

∂ lnT

)
ρ0,T0,Y0

=
T0

Q0

(
∂Q

∂T

)
ρ0,T0,Y0

, Qρ =

(
∂ lnQ

∂ ln ρ

)
ρ0,T0,Y0

, QY =

(
∂ lnQ

∂ lnY

)
ρ0,T0,Y0

.

(4)
An excess pressure in the first equation from (3) is expressed in terms of excess density and
temperature in accordance with equation of state (the second one from (2)).

Studies of dispersion relations determining possible types of motion, start with representing
of all perturbations as planar waves:

ε′(x, t) = ε̃ exp i(ωt− kx). (5)

Some intermediate steps are necessary to establish roots of dispersion relation, ω(k). From the
third equation from the system (3) the equalities below follow:(

∂Y

∂T

)
V

= − QT

QY (1 + iωτc)

Y0

T0

,

(
∂Y

∂ρ

)
T

= − 1

ρ2
0

(
∂Y

∂V

)
T

= − Qρ

QY (1 + iωτc)

Y0

ρ0

, (6)

where V = 1/ρ is the specific gas volume,

τc =
HmY0

Q0QY

(7)

is the characteristic time of chemical reaction. The equation of state (the second from Eq.(2))
along with the thermodynamic equality(

∂Y

∂T

)
P

=

(
∂Y

∂T

)
V

+

(
∂Y

∂V

)
T

(
∂V

∂T

)
P

, (8)

and Eq.(6), result in expression (
∂Y

∂T

)
P

=
(Qρ −QT )

QY (1 + iωτc)

Y0

T0

. (9)
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Heat capacities under constant volume CV and pressure CP depend on frequency ω:

CP = CP,∞ +mHR

(
∂Y

∂T

)
P

= CP,∞ +
mHR(Qρ −QT )

QY (1 + iωτc)

Y0

T0

, (10)

CV = CV,∞ +mHR

(
∂Y

∂T

)
V

= CV,∞ −
mHRQT

QY (1 + iωτc)

Y0

T0

.

Finally, the dispersion relations for three non-entropy modes and the entropy (or thermal) one
read [6]:

ω2 = k2T0

m

CP
CV

= k2T0

m

(
CP,∞ + (Qρ−QT )τc

1+iωτc

Q0

T0
R

CV,∞ − QT τc
1+iωτc

Q0

T0
R

)
, ω = 0. (11)

Actually, the first equation from (11) determines, besides acoustic branches, one non-wave root
responsible for rate of increase in mass fraction of reagent. The quantities below indexed by
1 relate to the sound progressive in the positive direction of axis OX, those indexed by 2 and
3 - to the leftwards progressive sound, and the remaining non-zero root, correspondingly. The
fourth root corresponding to the entropy, or thermal, mode equals zero.

The explicit formulae linking ω and k for non-entropy modes (Eq. (11)) are fairly complex.
As for both branches of sound, the dispersion relations depend on a ratio of sound period and
characteristic time of chemical reaction τc. It is reasonable to consider acoustic frequency large
compared to the reverse duration of a chemical reaction: |ω1,2τc| ≈ |ku∞τc| >> 1. Under this
condition, approximate acoustic roots of dispersion relation are following:

ω1 = u∞k − i
Q0(γ∞ − 1)(Qρ + (γ∞ − 1)QT )

2γ∞T0

, (12)

ω2 = −u∞k − i
Q0(γ∞ − 1)(Qρ + (γ∞ − 1)QT )

2γ∞T0

,

where γ∞ =
CP,∞
CV,∞

denotes the frozen adiabatic exponent, u∞ =
√
γ∞

T0

m
is the frozen sound

velocity. The approximate roots of dispersion relations for both acoustic branches are derived
in [6]. Under assumption of slow variations of heat release with temperature and density,
|QT | << 1, |Qρ| << 1, the third non-wave root gets a form:

ω3 = i

(
Q0(Qρ −QT )(γ∞ − 1)

γ∞T0

+
1

τc

)
. (13)

Basing on approximate roots of dispersion relation, it is easy to establish links connecting
perturbations of density, temperature, mass fraction and velocity, specific for every type of
motion. For the progressive in the positive direction of axis OX sound, the links are following:

v′1 =

(
u∞
ρ0

− Q0(γ∞ − 1)(Qρ + (γ∞ − 1)QT )

2γ∞ρ0T0

∫
dx

)
ρ′1,

T ′1 =

(
T0(γ∞ − 1)

ρ0

− Q0(γ∞ − 1)(Qρ + (γ∞ − 1)QT )

u∞ρ0

∫
dx

)
ρ′1, (14)

Y ′1 =

(
Q0(Qρ + (γ∞ − 1)QT )

Hmu∞ρ0

∫
dx

)
ρ′1,
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for the progressive in the negative direction of axis OX sound they are

v′2 =

(
−u∞
ρ0

− Q0(γ∞ − 1)(Qρ + (γ∞ − 1)QT )

2γ∞ρ0T0

∫
dx

)
ρ′2,

T ′2 =

(
T0(γ∞ − 1)

ρ0

+
Q0(γ∞ − 1)(Qρ + (γ∞ − 1)QT )

u∞ρ0

∫
dx

)
ρ′2, (15)

Y ′2 = −
(
Q0(Qρ + (γ∞ − 1)QT )

Hmu∞ρ0

∫
dx

)
ρ′2.

The third type of motion, originating from chemical reaction in a gas, possesses links:

v′3 =

(
1

ρ0τc

∫
dx+

Q0(γ∞ − 1)(Qρ −QT )

γ∞T0ρ0

∫
dx

)
ρ′3,

T ′3 = −
(
T0

ρ0

)
ρ′3, Y ′3 =

(
u2
∞

Hρ0(γ∞ − 1)

)
ρ′3. (16)

The last series represent the entropy mode:

v′4 = 0, T ′4 = −
(
T0

ρ0

)
ρ′4, Y ′4 =

(
Q0τc(Qρ −QT )

Hmρ0

)
ρ′4. (17)

These links do not depend on time and keep constant at every moment of gas evolution. They
are in general integral, reflecting the dispersive properties of chemically reacting fluid. A
perturbation of every dynamic variable may be expressed in terms of one from specific excess
densities, ρ′1, ρ

′
2, ρ

′
3 or ρ′4. The overall velocity, pressure, density and mass fraction of reagent,

equal a sum of specific parts: v′(x, t) = v′1(x, t) + v′2(x, t) + v′3(x, t) + v′4(x, t), and so on.
In the flow of infinitely small amplitudes governed by Eqs (3), the dynamic equations for

the excess densities of every mode are independent and decompose completely from the system.
Governing equations for all four excess densities take forms:

∂ρ′1
∂t

+ u∞
∂ρ′1
∂x
− Q0(γ∞ − 1)(Qρ + (γ∞ − 1)QT )

2u2
∞m

ρ′1 = 0,

∂ρ′2
∂t
− u∞

∂ρ′2
∂x
− Q0(γ∞ − 1)(Qρ + (γ∞ − 1)QT )

2u2
∞m

ρ′2 = 0, (18)

∂ρ′3
∂t

+

(
Q0(Qρ −QT )(γ∞ − 1)

γ∞T0

+
1

τc

)
ρ′3 = 0,

∂ρ′4
∂t

= 0.

That obviously coincides to the roots od dispersion relations ω1, . . . ω4 established by Eqs (11)-
(13). Amplitudes of excess acoustic quantities increase when

Q0(Qρ + (γ∞ − 1)QT ) > 0, (19)

and decrease otherwise. Inequality (19) determines an area of irreversibility of a chemical
reaction. It is easy to verify, that it establishes also an inequality as follows:

u2
∞ − u2

0 =
T0

m

(
CP,∞
CV,∞

− CP,0
CV,0

)
=

(γ∞ − 1)Q0(Qρ + (γ∞ − 1)QT )T0τc
m(Q0QT τc(γ∞ − 1)− T0)

< 0, (20)
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if CV,0 = CV,∞(1 − Q0QT (γ∞ − 1)τc/T0) > 0 (CP,0 and CV,0 denote quantities correspondent
to infinitely slow processes following from Eqs (10) when omega = 0). The condition of a
chemically reacting gas be acoustically active in the non-equilibrium regime, inequality (19),
was firstly obtained by Molevich [6]. An adequate analysis of dispersion characteristics of sound
in the equilibrium and non-equilibrium regimes was given in the paper [6] as well.

3 Controlling of chemical reaction by sound in a weakly

nonlinear flow

3.1 Weakly nonlinear dynamics of reacting gas and decomposing of
governing equations

Since the quadratic nonlinear terms are of importance while studying of weakly nonlinear flows,
only these terms will be hold in the system of governing equations. The governing system (1)
with account for (2) within accuracy of quadratic nonlinear terms rearranges in one dimension
to the following system:

∂v′

∂t
+

T0

mρ0

∂ρ′

∂x
+

1

m

∂T ′

∂x
= −v′∂v

′

∂x
+
T0ρ

′

mρ2
0

∂ρ′

∂x
− T ′

mρ0

∂ρ′

∂x
,

∂T ′

∂t
+ (γ∞ − 1)

(
T0
∂v′

∂x
−QT

Q0

T0

T ′ −Qρ
Q0

ρ0

ρ′ −QY
Q0

Y0

Y ′
)

= −v′∂T
′

∂x
− (γ∞ − 1)T ′

∂v′

∂x
,

∂Y ′

∂t
+

1

Hm

(
QT

Q0

T0

T ′ +Qρ
Q0

ρ0

ρ′ +QY
Q0

Y0

Y ′
)

= −v′∂Y
′

∂x
, (21)

∂ρ′

∂t
+ ρ0

∂v′

∂x
= −v′∂ρ

′

∂x
− ρ′∂v

′

∂x
.

Actually, the nonlinear right-hand parts of Eqs (21) include also terms referring to the
second-order derivatives of Q: ∂2Q/∂T 2 and so on, which are not taken into account by the
present study, confining the changes in Q(ρ, T, Y ) by differential and hence restricting the
accuracy of conclusions.

The mathematical content of the method which has been worked out by the author, was
applied previously to some problems of nonlinear hydrodynamics [7,8]. It points out a way to
decompose weakly nonlinear equations basing on properties of linear modes. The main idea
is to keep linear links of modes unchanged (Eqs (14)-(17)) in investigations of weakly non-
linear dynamics. It is easy to verify, that acting at the first equation from (21) by operator

−Q0(Qρ + (γ∞ − 1)QT )

Hmu2
∞

∫
dx, multiplying the second, third and fourth ones by−Q0(Qρ −QT )τc

Hm2u2
∞

,

1− Q0(γ∞ − 1)(Qρ −QT )τc
mu2
∞

,
Q0(γ∞ − 1)(Qρ −QT )τc

Hmρ0γ∞
, correspondingly, and taking a sum of fi-

nal equations, reduces all terms including perturbations of first, second and fourth modes in
the linear part yielding in the governing equation for Y ′3 . Nonlinear right-hand part of the final
equation includes the mixed quadratic terms of all types of motion responsible for the modes
interaction. Let the progressive in the positive direction sound be dominative. That means,
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that characteristic amplitude of its excess density in the considered domain is much greater
than that of other modes:

ρA,1 � ρA,n, n = 2, 3, 4 (22)

So that, only quadratic acoustic terms in the nonlinear part may be considered. They may be
expressed in terms of ρ′1 using links (14).

The final dynamic equation takes a form:

∂Y ′3
∂t

+

(
Q0(Qρ −QT )(γ∞ − 1)

γ∞T0

+
1

τc

)
Y ′3 =

−Q0(Qρ + (γ∞ − 1)QT )

Hmγ∞ρ2
0

ρ′21 +
(γ∞ − 1)(γ∞ − 2)

γ∞

Q0(Qρ −QT )τcu∞
Hmρ2

0

ρ1
∂ρ′1
∂x

. (23)

The governing equation for the sound itself also becomes modified in a weakly nonlinear
flow. To decompose it, reducing all terms of the second, third and fourth modes, one has to

act at the first equation from (21) by
ρ0

2u∞
+
Q0ρ0(γ∞ − 1)(Qρ +QT (γ∞ − 1))

2mu4
∞

∫
dx, at the

second one by
ρ0

2mu2
∞

+
Q0ρ0(γ∞ − 1)(3Qρ +QT (γ∞ − 3))

4m2u5
∞

∫
dx, and at the third and fourth

ones by −Hρ0(γ∞ − 1)

2u3
∞τc

∫
dx and

1

2γ∞
− Q0(γ∞ − 1)(−3Qρ + 3QT + (2Qρ − 3QT )γ∞)

4γ∞mu3
∞

∫
dx,

correspondingly. Calculating a sum of resulting expressions, leads to the final governing equa-
tion:

∂ρ′1
∂t

+ u∞
∂ρ′1
∂x
− Q0(γ∞ − 1)(Qρ + (γ∞ − 1)QT )

2u2
∞m

ρ′1 = −(γ∞ + 1)u∞
2ρ0

ρ′1
∂ρ′1
∂x

. (24)

The sound is dominative, so that in the nonlinear part of Eq. (24) only acoustic terms are hold.

3.2 Variations in mass concentration of reagent caused by sound

Equations (23) and (24) govern dynamics of dominative sound excess density and mass concen-
tration of reagent, its part belonging to the third non-wave mode. In accordance to procedure
of deriving, they are valid when sound progressive in the positive direction of axis OX keeps
dominative in comparison with other modes, hence, Eqs (22) are valid. That determines the
temporal and spacial domains of formulae validity, because nonlinear distortions accumulate
with time and may make other modes to enhance due to nonlinear transfer of mass, energy or
momentum.

The further analysis needs foundation of an acoustic excess density in time and space ac-
cordingly to Eq.(24). An excess acoustic density and other acoustic quantities (Eqs (14)) may
be periodic or aperiodic. The method or linear combining of equations bases only on links of
specific perturbations valid for any type of sound and does not need any temporal averaging.

For the preliminary estimations, periodic in time solution of the linear equation (the first
one from Eqs (18)) will be considered:

ρ′1(x, t) = ρA,1 sin(ω1(t− x/u∞)) exp(αx), ρ′1(0, t) = ρA,1 sin(ω1t), (25)

where α = Q0(γ∞−1)(Qρ+(γ∞−1)QT )

2u3
∞m

.
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Substituting Eq.(25) in the right-hand part of Eq.(23), averaging the result over sound
period along with replacing of ρA,1/ρ0 by acoustic Mach number M , yield in the following
equation:

∂Y ′3
∂t

+

(
Q0(Qρ −QT )(γ∞ − 1)

γ∞T0

+
1

τc

)
Y ′3 ≈

〈∂Y
′
3

∂t
+

(
Q0(Qρ −QT )(γ∞ − 1)

γ∞T0

+
1

τc

)
Y ′3〉 = − αu3

∞
Hγ∞(γ∞ − 1)

M2 exp(2αx). (26)

Eq. (26) is written on within the leading accuracy. Square brackets denote averaging over the
sound period. Taking in mind, that characteristic period of sound is much less than charac-
teristic time of chemical reaction τc, the averaging over sound period would give only small
correction to Y ′3 , and may be omitted in the left-right side.

A solution satisfying initial condition Y ′3(t = 0) = 0, with β replacing
Q0(Qρ −QT )(γ∞ − 1)

γ∞T0

+

1

τc
, looks:

Y ′3(x, t) = − αu3
∞

Hβγ∞(γ∞ − 1)
M2 exp(2αx) (1− exp(−βt)) . (27)

An equilibrium chemical reaction presupposes α < 0. At any concrete time t, an excess mass
fraction of reagent decreases towards zero with distance from the transducer keeping positive
during equilibrium regime. The temporal behavior of |Y ′3 | depends on sign of β : if

1

τc
+
Q0(Qρ −QT )(γ∞ − 1)

γ∞T0

> 0, (28)

it does not grow with time, otherwise, it does. Note, that heat capacity at zero frequency
following from Eqs (10), is:

CP,0 = CP,∞ +
Q0(Qρ −QT )(CP,∞ − CV,∞)τc

T0

. (29)

Both inequality (28) and the temporal decrease of excess mass fraction of reagent absolute
value, follow from positiveness of CP,0. The negative values of β, though possible in strongly
non-equilibrium reactions, contradict to the frames of the present investigation: they mean
considering enough large values |QT |, |Qρ| which do not belong to the limitations accepted.
Moreover, it is necessary to take into account inhomogeneity of background temperature and
other quantities in strongly non-equilibrium regime, making the mathematic content of the
theory fairly complex.

In the non-equilibrium acoustically regime, α > 0, and excess mass fraction of reagent
decreases with distance from the transducer keeping negative in accordance to Eq. (27). This
equation presupposes infinitely large absolute values of Y ′3 , but its validity is confined by the

regard on dominative sound: |ρ′3| = |
Hρ0(γ∞ − 1)

u2
∞

Y ′3 | � |ρ′1|, which rearranges in the following

inequality: ∣∣∣∣αu∞βγ∞
M exp(2αx)(1− exp(−βt))

∣∣∣∣� 1. (30)

The next condition concerns weak nonlinearity of a flow: |Y ′3 | � Y0:∣∣∣∣ αu3
∞

Hβγ∞(γ∞ − 1)
M2 exp(2αx) (1− exp(−βt))

∣∣∣∣� Y0. (31)
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Eqs (30), (31) determine the domain of distances from transducer at any concrete time t, where
the formulae above are valid.

4 Concluding remarks

The main result of study is Eq.(23) which describes dynamics of this part of mass fraction
of reagent A which is not a wave quantity, Y ′3 . An excess mass fraction of reagent, specific
for sound, Y ′1 , varies in time and space accordingly to Eq.(24) and links from Eqs (14) during
sound propagation (analogously, a quantity coming from other sound branch, Y ′2 does). As for
the part of mass fraction, correspondent to the entropy motion, it is a small quantity of order
Max(Q2

T , Q
2
ρ)M

2, if caused by dominative sound, and therefore exceeds permissible accuracy.
Being slowly varying quantity, Y ′3 changes the background mass concentration Y0,new =

Y0 + Y ′3 . The analogy of this phenomenon with acoustic heating is obvious. The acoustic
heating in fluids with standard attenuation is known as a slow process of isobaric increase in
temperature due to nonlinear loss in acoustic energy [10,11]. It itself influences sound by means
of forming a new background of sound propagation (ρ0, T0). In contrast, the new background
mass fraction Y0,new does not influence propagation of high-frequency sound (Eq.(24)) but
influences low-frequency sound (ω1,2τc � 1) which is out of frames of the present study. The
dispersion relations for low-frequency acoustic branches are following:

ω1 = u0k − i
H2k2mRY 2

0 (QTCP,0 + (Qρ −QT )CV,0)

2Q0Q2
YC

2
V,0

,

ω2 = −u0k − i
H2k2mRY 2

0 (QTCP,0 + (Qρ −QT )CV,0)

2Q0Q2
YC

2
V,0

, (32)

where u0 =

√
T0CP,0
mCV,0

=

√
T0(CP,∞T0QY +RY0Hm(Qρ −QT ))

m(CV,∞T0QY −RY0HmQT )
is the low-frequency sound

velocity. So that, the new background mass concentration Y0,new influences both low-frequency
sound velocity and attenuation (or amplification) of sound. It easy to establish, that stability
conditions for high-frequency and low-frequency sound are identical: α > 0 means unstable,
non-equilibrium regime.

This study considers dynamic equations governing different types of motions in a chemically
reacting gas without taking into account for its thermal and viscous (standard) attenuation.
The terms, reflecting these phenomena (originating from the stress tensor and energy flux
associating with thermal conductivity), should complete the momentum and energy equations
from the system (1). The equation describing sound dynamics, accounting for the standard
attenuation, takes a form

∂ρ′1
∂t

+ u∞
∂ρ′1
∂x

+
(γ∞ + 1)u∞

2ρ0

ρ′1
∂ρ′1
∂x
− αu∞ρ′1 −

b

2

∂2ρ′1
∂x2

= 0, (33)

where b = bV + bT is the diffusivity of sound, bV = (4η/3+ ξ)/ρ0, bT = κ(1/CV,∞−1/CP,∞)/ρ0.
Quantities η, ξ and κ denote shear viscosity, bulk viscosity, and thermal conductivity, re-
spectively. The standard attenuation always leads to a linear damping of sound during its
propagation. Balance of two last terms in Eq.(33)) decides about amplification or damping of
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a sound: if, for periodic sound, α− bω2
1/2u

3
∞ < 0, the amplitudes of sound quantities decrease,

otherwise, they increase during sound propagation.
The study is devoted to chemically reacting ideal gases by means of using of state equation

for an ideal gas. The results may be easily expanded at other fluids by involving of correspondent
equation of state instead of that for an ideal gas.

All equations in this study are derived within accuracy up to the terms of order M2 inclu-
sively. Accuracy of conclusions are restricted by considering of only first partial derivatives of
heat release Q(ρ, T, Y ). The conclusions are valid at confined temporal and spatial domains,
where sound keeps still dominative. An important problem to overcome is spacial inhomo-
geneity of ambient quantities of a fluid which enhance simultaneously with increase of partial
derivatives of the heat power produced in a gas with respect to density and temperature, Qρ

and QT . Spacial inhomogeneity of ambient quantities essentially complicates mathematical
analysis but may lead to new physically significant conclusions, as it was discovered relatively
to gas with excited internal degrees of freedom. Preliminary estimations revealed that spacial
inhomogeneity essentially expands an area of existence of non-equilibrium gas [12].
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