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Abstract  Nematodes Caenorhabditis elegans (C. elegans) have
been used as model organisms in a wide variety of biological
studies, especially those intended to obtain a better understand-
ing of aging and age-associated diseases. This paper focuses on
automating the analysis of C. elegans imagery to classify the mus-
cle age of nematodes based on the known and well established
IICBU dataset. Unlike many modern classification methods, the
proposed approach relies on deep learning techniques, specif-
ically on convolutional neural networks (CNNs), to solve the
problem and achieve high classification accuracy by focusing on
non-handcrafted self-learned features. Various networks known
from the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) have been investigated and adapted for the purpos-
es of the C. elegans muscle aging dataset by applying transfer
learning and data augmentation techniques. The proposed ap-
proach of unfreezing different numbers of convolutional layers
at the feature extraction stage and introducing different struc-
tures of newly trained fully connected layers at the classification
stage, enable to better fine-tune the selected networks. The ad-
justed CNNs, as featured in this paper, have been compared
with other state-of-art methods. In anti-aging drug research,
the proposed CNNs would serve as a very fast and effective age
determination method, thus leading to reductions in time and
costs of laboratory research.

Keywords  biomedical imaging, C. elegans muscle aging, convo-
lutional neural networks, deep learning, machine learning

1. Introduction

Aging is a complex process in which many changes take place
simultaneously at every level of a biological organization -
from organelles, cells, tissues, to the entire systemic environ-
ment. Naturally, aging and age-related diseases are studied
primarily with human health and longevity in mind, but mod-
el organisms, e.g. Caenorhabditis elegans (C. elegans), may
be successfully employed for those purposes as well [1]–[5].
C. elegans, as used in this study, is a free-living, 1 mm long
nematode that feeds on bacteria. Its clear, age-dependent phys-
iological changes, short lifespan of approx. 17–20 days, ease
of maintenance in a laboratory setting and high genetic ho-

mology with humans make the worm a widely acknowledged
system for aging research [6], [7].
C. elegans exhibits many age-associated changes [8], however
deterioration of its muscle tissue draws particular attention.
Since the nematode’s body-wall muscle is analogous to human
skeletal muscle, some disorders, especially those of particular
concern to the public health, can be effectively studied with
the use of this model. For example, due to its progressive loss
of muscle mass, C. elegans, just like some elderly humans,
suffers from sarcopenia. This condition has dire consequences
for many activities, such as locomotion and ingestion, but
surprisingly little is known regarding its cures and actual
causes [9]–[11].
Extensive research has been performed on anti-aging drugs
based on measuring the age of C. elegans and determining
the effects that medication has at early stages of the aging
process. The weakness of such studies has always been that
the age of C. elegans was determined by human experts and,
thus, the results were subjective and strongly dependent on
the expert’s experience. Gaining new insights in this domain
is therefore potentially of great value, although succeeding
advances might require increasingly sophisticated, state-of-
the-art tools, such as convolutional neural networks (CNNs)
[12]–[14]. This machine learning technique has recently
shown some remarkable achievements and great potential in
solving problems related to image classification, visual signal
processing, biological and medical imaging, computer vision,
and image recognition years [15]–[19]. In addition to being
capable of outperforming medical diagnosis experts, machine
learning-based tools, such as CNNs, may also significantly
reduce the time and costs of such an evaluation. Hence, further
explorations in this field are essential.
This paper shows an innovative solution to the problem
of classifying C. elegans muscle aging using CNNs. The
contributions of this paper are as follows.
– An innovative approach consisting in using a convolutional

neural network for the purpose of C. elegans muscle aging
classification was presented. New CNN models were ob-
tained through fine-tuning at the feature selection stage,
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and the introduction of new structures at the classification
stage;

– A fully CNN-based solution was proposed which achieved
the highest level of classification accuracy. The proposed
solution relies solely on non-handcrafted, self-learned
features, in contrast to the existing literature;

– The ability to use various networks known from the Ima-
geNet Large Scale Visual Recognition Challenge (ILSVRC)
was investigated. New and different transfer learning strate-
gies were applied. The effect that unfreezing of different
numbers of convolutional layers during the transfer learn-
ing phase has on the overall classification accuracy was
investigated. This step is usually ignored in other publi-
cations. The effect of different classifier structures was
investigated and the fully connected layers were modified
accordingly;

– Comparison of the proposed method with other methods
used in tackling the same problem was conducted using
the same or similar datasets.

The article is structured as follows. Related works are present-
ed in Section 2. The proposed methodology is explained in
Section 3. Section 4 describes experimental results, including
the CNN structures, learning parameters, classification accu-
racy level obtained, and a comparison with other methods.
Conclusions are given in Section 5.

2. Related Work

Image processing technologies are commonly incorporated
into many studies to automate the measurement of age of C.
elegans. A training-based approach relying on tracking the
swimming motion of the worm was examined by Restif and
Metaxas [20]. Johnston et al. devised a pattern recognition
tool that assesses age using the pharynx pumping rate [21].
Machine learning techniques, more specifically a CNN trained
for regression, that utilized the relationship between age and
level of body bend, were proposed by Lin et al. in [22].

Many research programs described in the literature that in-
vestigate the topic rely on experiments with self-generated
datasets and, therefore, preclude comparative analysis. How-
ever, some studies (as listed below) report their results based
on data obtained from the IICBU Biological Image Reposito-
ry, including, inter alia, a dataset concerned with C. elegans
muscle aging.

An open-source utility classifier for biological image analysis
called Wndchrm was proposed by Shamir et al. in [23], [24].
The classifier extracts image content descriptors (1025 image
features including polynomial decompositions, high contrast
features, pixel statistics, and textures) from the raw image.
Feature extraction is also performed on image transforms,
such as Fourier, wavelet and Chebyshev, as well as on com-
pound transforms being different combinations of subsequent
image transforms. The most informative features are selected
and the feature vector of each image is used for classification
and similarity measurement.

A BIOimage Classification and Annotation Tool (BIOCAT)
was proposed by Zhou et al. in [25]. It allows automatic
classification and annotation of entire 2- and 3-dimensional
biological images or their specific regions of interest by
utilizing pattern recognition algorithms. BIOCAT is equipped
with approximately 20 built-in modularized algorithms of
feature extractors that can be chained in a customizable way
to form an appropriate model for image classification. The
chains may be compared via BIOCAT to determine the most
suitable model for the specific dataset.

Siji et al. enhanced the performance of a content-based bi-
ological image retrieval system by selecting discriminative
feature sets from the set of canonical features [26]. Canonical
features are extracted using Wndchrm [23] and are assigned
to 4 separate feature sets. Each set is optimized using the prin-
cipal component analysis (PCA) process and the Fisher score
for the purpose of feature selection. The selected features are
then used for training the support vector machine (SVM) and
Bayesian classifiers.

Bioimage classification utilizing the SVM classifier was pro-
posed by Song et al. [27]. In this approach, a high-dimensional
multi-modal descriptor was introduced to combine multi-
ple texture features. To enhance the discriminative power of
the descriptors, a subcategory discriminant transform (SDT)
was designed to transform the descriptors before performing
SVM classification. Similarly to linear discriminant analysis
(LDA), the descriptor transform obtained with the use of the
SDT algorithm aims to minimize the within-class variation
and maximize the between-class difference.

Sekhar and Mohan proposed another SVM approach based
on distance metric learning techniques for semi-supervised
pattern classification [28]. The authors assigned label infor-
mation to the selected group of images, creating a sparingly
labeled training set. The optimal kernel gram matrix was
determined by using pairwise similar/dissimilar constraints
derived from the available examples in the labeled training
set. Label information for the remaining unlabeled examples
in the entire dataset is determined in an iterative self-training
manner, utilizing SVM. The method uses a confidence mea-
sure in the decision-making process.

Nanni et al. proposed a method that combines a CNN with an
SVM classifier [29] to obtain a structure capable of synthe-
sizing a large number of different image classification tasks.
Features extracted from the deep layers of the CNNs are mixed
with more traditional hand-crafted features. The output of
each layer is treated as a feature vector for which a dimen-
sionality reduction method, such as PCA or discrete cosine
transform (DCT), can be applied, depending on the size of
the vector. All of the vectors are then processed by SVM to
provide the final output. This approach was further improved
in [30], where a combination of local features, dense sam-
pling features, and deep learning features was proposed. Each
descriptor was used to train a different SVM, which were then
combined with the sum rule. In 2020, Nanni and Ghidoni
proposed an alternative approach [31] that boosts the perfor-
mance of trained CNNs by composing multiple CNNs into an
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ensemble and combining scores based on the sum rule. The
method, dedicated in general for bioimage datasets, features
the combination of multiple descriptors based on different
feature types, both of the learned and handcrafted variety.
In addition to the above-mentioned approaches relied upon in
the classification of nematodes, there are also numerous novel
works that demonstrate the feasibility of incorporating deep
learning technology into radiology practice. Ahn et al. pro-
posed a mammographic density estimation [32] process based
on CNN trained with local and global statistics extracted from
the image set, whereas Li et al. showed that pretraining may
improve the effectiveness of deep learning-based tissue mi-
crostructure estimation [33]. This property is particularly ev-
ident with abundant, publicly available high-quality datasets,
as is the case with the dMRI scans used by the authors.
In this paper, we propose a novel approach to classifying
muscle aging in C. elegans with the use of a CNN. To the
best of our knowledge, this paper is the first work to achieve
classification accuracy at a level comparable with (or, in some
cases, better than) state-of-the-art methods relying solely
on different fine-tuned CNN models, without the need to
introduce additional machine learning classifiers, such as
linear a SVM (as proposed, for instance, in [29] and [30]),
additional metadata or a description of the input images based
on expert knowledge.

3. Proposed Methodology

The goal of this paper is to classify C. elegans muscle aging
based on microscope imaging, using self-learned features on-
ly. CNNs are a perfect tool for the considered classification
problem, due to their appropriable characteristics. For exam-
ple, there is no need to design an analytical feature selection
model which usually has to be based on expert knowledge.
On the other hand, however, a CNN analyzes local spatial
properties in the patches of meaningful pixels, which reflects
the human interpretation of input data.
The experiments were conducted based on the C. elegans
muscle aging dataset [34], [35] compiled by the Laboratory of
Genetics at the U.S. National Institute on Aging. The dataset
consists of images of muscles taken with a fluorescence
microscope, with the said images representing various ages of
nematodes. The individuals are genetically identical and live
in a controlled laboratory environment. The images are saved
in the TIFF format, in grayscale, with a resolution of 1600×
1200 pixels and a depth of 16 bits. The size of the dataset
is 237 observations. The images are unevenly divided into 4
classes: “day 1” (52 observations), “day 2” (48 observations),
“day 4” (95 observations), and “day 8” (42 observations).
Examples of such images are presented in Fig. 1.
In the proposed solution, the input has the form of a grayscale
image of a C. elegans muscle with resolution of 1600× 1200
pixels and a depth of 16 bits. Due to the structure of the CNNs
used for transfer learning, the pixel values from a single-color
channel are duplicated to create a 3-channel image. In general,
the image can be of any resolution, as it is scaled down to

Fig. 1. Examples from the C. elegans muscle aging dataset [34],
[35].

a fixed size corresponding to the input layer of the CNN. The
output is a decision about the age of the muscle shown in
the image, i.e. the image is classified into one of the four age
classes: “day 1”, “day 2”, “day 4”, “day 8”. The flowchart for
the proposed method is shown in Fig. 2.

Fig. 2. Flowchart of the proposed approach.

The research presented in this paper can be divided into the
following tasks. The first part consisted in selecting the best
base network for transfer learning. Designing a new CNN for
the classification problem under consideration from scratch
would be very time-consuming and ultimately unnecessary.
The literature has shown that it is possible to retrain an image
classification CNN that has already been trained to extract
powerful and informative features from natural images (usu-
ally based on ImageNet dataset) to become a classification
CNN for a specific medical problem. Based on the results
shown in the references [15], [22], three candidates for the
base (starting point) network for transfer learning were se-
lected: VGG16, InceptionV3, and InceptionResNetv2.
The second task was to select the best strategy for unfreez-
ing the layers of the base network during transfer learning.
The classical approach used in transfer learning is to freeze
the weights and biases of the convolutional layers of the
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base network, so that they are not retrained at all and only
allow the layers responsible for classification to be retrained.
During the research, it was found that this is not optimal.
Instead, unfreezing a number of layers, both of the convo-
lutional and fully connected variety, significantly increased
the classification accuracy of the learned network.
The third task was to investigate how the base network’s ar-
chitecture could be modified to achieve even better results.
Since the part of the network corresponding to feature selec-
tion should not be changed, as this would mean the rejection
of all of the benefits from transfer learning, the main focus
was on changes in the part responsible for the classification.
Several new classification stage models were considered and
the results achieved by the best of them are presented below.
The fourth part was to compare the proposed CNN with other
prominent solutions available in the literature. The accuracy
of the classification was a comparative criterion.

4. Experimental Results

4.1. Network Structures

The authors decided to rely on the transfer learning tech-
nique in their research, as it is much faster and easier than
training a network from scratch. It involves the use of an al-
ready pre-trained network for general image classification
and, relying on its ability to recognize powerful and infor-
mative features from an image, training it for a new, much
more specific classification task. For this purpose, three CNNs
were selected: VGG16 [36], InceptionV3 [37], and Incep-
tionResNetV2 [38]. In this paper, they are referred to as base
networks. All three networks had been pretrained on the Ima-
geNet dataset [39] which contains over a million images of
natural objects, and are capable of classifying the said im-
ages into one of 1000 labels, such as goldfish, coffee mug,
pencil, etc. These networks have already learned an effective
set of image features, but the goal is to fine-tune the base net-
work, so it can learn features specific to the new dataset and
the new set of labels. A comparison of the base networks is
given in Tab. 1.

Tab. 1. Comparison of the base networks for transfer learning.

Network Depth
(layers)

No. of pa-
rameters Image size

VGG16 16 144 · 106 224×224×3
InceptionV3 48 23.9 · 106 299×299×3
InceptionResNetV2 164 55.0 · 106 299×299×3

The easiest approach to transfer learning is as follows. One
should adopt the architecture of the base network, set the ini-
tial pre-trained values of weights and biases, remove the last
layer of the classifier and replace it with a new, fully connected
layer with the number of neurons equal to the new number of
classes, freeze all convolution layers (set the learning rate fac-
tors to 0), speed up learning for the fully connected layers (set
the learning rate factors to e.g. 10), and then start retraining

using the new dataset. In this way, the deep network designer
assumes that the starting network has already acquired ad-
equate knowledge for the feature selection stage, suitable for
solving the new problem, so the learned values in the convo-
lutional layers would not be changed. A designer could make
this decision if the new dataset for the new problem is very
similar to the original dataset for which the underlying net-
work was trained. Changing the last fully connected layer at
the classification stage is the minimum condition that need to
be fulfilled to teach the network to solve a new problem. Al-
ternatively, instead of freezing the layers completely, one can
just slow down their learning process, i.e. set the learning rate
factor to 1, while setting a very low initial learning rate in
the training options (e.g. 0.0001). In this way, the developer
allows for minor changes to the feature selection stage.
Unfortunately, such an approach produces results that are not
satisfactory for the purpose of our research. This is mainly
because the dataset differs significantly from the ImageNet
dataset. Unfortunately, such a straightforward approach can
be found throughout the literature. Therefore, fine-tuning is
essential. In this research, two approaches to fine-tuning were
applied: firstly, we unfroze a number of the convolutional
layers at the feature extraction stage, and secondly, we intro-
duced different structures of newly trained, fully connected
layers at the classification stage.
When selecting layers to unfreeze, one should not select any
of the initial layers. The initial convolutional layers are used to
identify simple, general patterns in an image, e.g. edges. Even
if the new dataset used for transfer learning to solve the new
problem is significantly different from the original dataset
used for the base network, we still want the network to be able
to recognize such elementary features in the image. Moreover,
allowing the re-learning of the initial layers will render the
knowledge in the subsequent layers useless due to the alter-
nation of the output from the initial layers. On the other hand,
deeper convolutional layers are used to identify complex fea-
tures specific to a given dataset, based on previously identified
simple patterns. In the case concerned, both the images and

Tab. 2. General information concerning network structures used.

CNN#1 CNN#2 CNN#3
Depth 17 49 165

Base CNN VGG16 InceptionV3 Inception-
ResNetV2

Input size 224× 224× 3 299× 299× 3 299× 299× 3
Frozen
conv.
layers

12 89 238

Unfrozen
conv.
layers

1 9 6

Fully
connected
layers

4 2 2

No. of
parameters 150 527 244 30 211 936 60 648 676
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Tab. 3. Detailed network structures in relation to base networks.

CNN#1 CNN#2 CNN#3

Fr
oz

en
fe

at
ur

e
ex

tra
ct

io
n

pa
rt

– Convolutional layers from “conv1_1” to
“conv5_2”:
• number and sizes of filters as in VGG16,
• bias and weight learn rate factors set to 1,
• pre-trained biases and weights initialized

– ReLU activation and max pooling layers as
in VGG16

– Convolutional layers from
“conv2d_1” to “conv2d_89”:
• number and sizes of filters as

in InceptionV3,
• bias and weight learn rate

factors set to 0,
• pre-trained biases and

weights initialized
– Batch normalization, ReLU

activation and max pooling
layers as in InceptionV3

– Convolutional layers from “conv2d_1”
to “conv2d_199”, from
“block17_1_conv” to
“block17_20_conv”, from
“block35_1_conv” to
“block35_10_conv” from
“block8_1_conv” to “block8_9_conv”:
• number and sizes of filters as in

InceptionResNetV2,
• bias learn rate factor set to 0, weight

learn rate factor set to 1,
• pre-trained biases and weights

initialized
– Batch normalization, ReLU activation,

max pooling, addition, scaling, and
depth concatenation layers as in
InceptionResNetV2

U
nf

ro
ze

n
fe

at
ur

e
ex

tra
ct

io
n

pa
rt – Convolutional layer “conv5_3”:

• number and sizes of filters as in VGG16,
• bias and weight learn rate factors set

to 10,
• biases initialized as zeros and weights

initialized randomly
– ReLU activation and max pooling layer as in

VGG16

– Convolutional layers from
“conv2d_86” to “conv2d_94”:
• number and sizes of filters as

in InceptionV3,
• bias and weight learn rate

factors set to 10,
• pre-trained biases and

weights initialized.
– Batch normalization, ReLU

activation and max pooling layer
as in InceptionV3

– Convolutional layers from
“conv2d_200” to “conv2d_203”,
“block8_10_conv”, and “conv_7b”
layers:
• number and sizes of filters as in

InceptionResNetV2,
• bias and weight learn rate factors set

to 10,
• pre-trained biases and weights

initialized.
– Batch normalization, ReLU activation

and max pooling layer as in
InceptionResNetV2

C
la

ss
ifi

ca
tio

n
pa

rt

– Fully connected layers “fc6” and “fc7”:
• 4096 neurons,
• bias and weight learn rate factors set to 1,
• pre-trained biases and weights initialized

– ReLU activation and 0.5 dropout layer
– Fully connected layers “new_fc8”:
• 4096 neurons,
• bias and weight learn rate factors set

to 10,
• biases initialized as zeros and weights

initialized randomly
– ReLU activation and 0.5 dropout layer
– Fully connected layer “new_fc9”:
• 4 neurons,
• bias and weight learn rate factors set

to 10,
• biases initialized as zeros and weights

initialized randomly
– Softmax and classification layer

– Global average pooling layer
– Fully connected layer

“new_fc1”:
• 4096 neurons,
• bias and weight learn rate

factors set to 10,
• biases initialized as zeros and

weights initialized randomly
– ReLU activation and 0.5

dropout layer
– Fully connected layer

“new_fc2”:
• 4 neurons,
• bias and weight learn rate

factors set to 10,
• biases initialized as zeros and

weights initialized randomly
– Softmax and classification layer

– Global average pooling layer
– Fully connected layer “new_fc1”:
• 4096 neurons,
• bias and weight learn rate factors set

to 10,
• biases initialized as zeros and weights

initialized randomly
– ReLU activation and 0.5 dropout layer
– Fully connected layer “new_fc2”:
• 4 neurons,
• bias and weight learn rate factors set

to 10,
• biases initialized as zeros and weights

initialized randomly
– Softmax and classification layer

their associated labels are fundamentally different from the
images and labels in ImageNet, so we expect that the network
will learn to recognize completely different complex features.
This means that many deep convolutional layers should be un-
frozen and, furthermore, they should be able to change their
values rapidly during the training process. This means that if
we want to unfreeze convolutional layers (set the learning rate
factors to 10, for instance) and allow them to be re-trained,

we have to do it from the end of the network, starting with the
layers immediately preceding the fully connected part. In this
study, the number of unfrozen convolutional layers ranged
from 1 to 9, depending on the network.
In terms of the fully connected part of the network, the starting
point was always the classification stage model established for
the considered base network. Furthermore, the CNNs were
also tested using other classification stage models, e.g. the
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five models proposed in [15] were tested. Modifications of
fully connected layers at the classification stage are motivated
by the fact that the set of labels is completely different from
that of the core network, both in meaning and in number.
However, it has been noticed that the best results are usually
obtained by extending the fully connected part with just one
new fully connected layer with a large number of neurons
immediately before the last classification layer, which has to
be also a new layer with the number of neurons corresponding
to the new number of classes.
As the last step in selecting the network structures, the influ-
ence of other network parameters was tested, e.g. activation
layers were changed from ReLU layers to clipped ReLU lay-
ers, leaky ReLU layers or tanh layers, the training parameters
were changed, etc. The impact of these changes was negligible
and is, therefore, not discussed in this paper.
For all three base networks, hundreds of training sessions were
run with various numbers of unfrozen layers as well as with
various classifier models. In Tabs. 2 and 3, and throughout
the paper, only the best obtained network structures for each
of the base networks are presented.

4.2. Training Options

All of the CNNs were trained via supervised learning. For
estimating performance of the trained models, the 5-fold
cross-validation procedure was used. The dataset was ran-
domly split in such a way that 60% of it was used for the
training set, 20% for the validation set, and 20% for the test
set. The training data was shuffled before each epoch, and
the validation data was shuffled before each validation. Both
shuffling and data augmentation were applied to reduce the
variance in results and ensure that the model is general and
not overfitted.
To avoid overfitting, CNNs rely heavily on the large datasets
available. Overfitting occurs when the CNN learns to model
the training data too perfectly, such that the learned model
is characterized by a high variance for the test data. In ana-
lyzing medical images, big datasets are usually not available.
With such a small dataset, the risk of overfitting is very high.
In such a case, data augmentation [40] is essential to prevent
overfitting by introducing some random geometrical transfor-
mations into the training data for each epoch. In this way, one
randomly augmented version of each image is used during
each training epoch. In the course of the research, the data
augmentation settings were based on the data augmentation
models presented in [15], which deals with a similar classifi-
cation problem. The applied data augmentation consists of the
following geometric transformations: random rotation in the
0–30 range, random uniform scaling with the 1–1.05 factor,
random horizontal and vertical translations by 0 to 10 pixels,
random horizontal and vertical reflections with a probability
of 0.5 for each direction.
The goal of shuffling is to ensure that training set and val-
idation sets are representative of the overall distribution of
the data. This is important when using the minibatch gradient
descent algorithm in which the minibatch must be represen-

tative of the overall dataset. Shuffling after each epoch helps
avoid the risk of bad batches even further. This causes each
image in the training set to have an independent impact on
the model without being biased by the previous images.
All of the training options are presented in Tab. 4. They were
chosen empirically in order to perform precise training in
a reasonable time frame.
Tab. 4. Available training options.

Training
parameter Value

Mini-batch options

Max epochs 30

Mini-batch size 10

Shuffle Every epoch

Validation options

Validation
frequency 16

Validation patience Infinity

Solver options

Solving algorithm Stochastic gradient descent with
momentum (SGDM)

Momentum 0.9

Initial learn rate 0.0001

Learn rate schedule None

Learn rate drop
factor 0.1

Learn rate drop
period 10

L2 regularization 0.0001

4.3. Classification Accuracy

The effectiveness of CNNs can be measured and compared
using the following parameters: classification accuracy (the
average accuracy in the case of k-fold cross validation), pre-
diction rates for particular pairs of classes (confusion matrix),
training time, and decision time. The most important thing
when implementing a CNN-based solution is the classifica-
tion accuracy, and more specifically, low false prediction rates
and high true prediction rates. Table 5 shows the obtained
classification accuracy. The prediction rates are stored as con-
fusion matrices in Tabs. 6, 7, and 8. The confusion matrix
for a given CNN shows the overall classification efficiency
for each class. The correct classification of each class is rep-
Tab. 5. Classification accuracy for the proposed networks.

Network Accuracy Decision
time

Training
time

CNN#1 0.8174 ∼ 0.09 s ∼ 5–7 min

CNN#2 0.9783 ∼ 0.13 s ∼ 10–12
min

CNN#3 0.9304 ∼ 0.15 s ∼ 15–17
min
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Tab. 6. Confusion matrix for CNN#1.

True class
Predicted class

True positive False negative
day 1 day 2 day 4 day 8

Day 1 0.715 0.093 0.136 0.056 0.715 0.285
Day 2 0.080 0.900 0.000 0.020 0.900 0.100
Day 4 0.046 0.000 0.874 0.080 0.874 0.126
Day 8 0.025 0.047 0.189 0.739 0.739 0.261

Tab. 7. Confusion matrix for CNN#2.

True class
Predicted class

True positive False negative
day 1 day 2 day 4 day 8

Day 1 1 0 0 0 1 0
Day 2 0 1 0 0 1 0
Day 4 0.024 0.011 0.954 0.011 0.954 0.046
Day 8 0 0.022 0 0.978 0.978 0.022

Tab. 8. Confusion matrix for CNN#3.

True class
Predicted class

True positive False negative
day 1 day 2 day 4 day 8

Day 1 0.904 0.018 0.078 0 0.904 0.096
Day 2 0.020 0.920 0.040 0.02 0.920 0.080
Day 4 0.023 0 0.965 0.012 0.965 0.035
Day 8 0.025 0.047 0.022 0.906 0.906 0.094

resented by the diagonal cells, while elements beyond the
diagonal indicate a misclassification. The last two columns
contain the true positive rate and the false negative rate for
each true class, respectively.
Figure 3 presents receiver operating characteristic (ROC)
curves, being the plots of the true positive rate against the
false positive rate for a given class. The ROC curve for the
best classifier is near the upper left corner of the graph. On
the other hand, a diagonal line across the whole plot would
represent random guessing. The classifier’s overall quality
is measured by the area under the ROC curve (AUC). The
larger the area under the plot, the better the classification
performance. It can be seen that the ROCs for CNN#2 are
close to the ROCs of the ideal classifier.
It should be noted that the training time and the number
of learnable parameters have very little significance in this
research. Furthermore, the training time depends strongly
on the hardware setup and the dataset used. In the case of
decision time, the differences for the different considered
CNN architectures are negligible. The application under
consideration is not a real-time solution, so all of the results
are very satisfactory. The training time and decision time are
shown in Tab. 5.

4.4. Proposed Network

The experimental results show that CNN#2 is the best of the
presented CNNs for solving the given problem. The overall
classification accuracy of this network is equal to 0.9783. The
accuracy for the “day 1” class is 1, for the “day 2” class is 1, for

the “day 4” class is 0.954, and for the “day 8” class is 0.978.
The learning time was about 12 minutes and the decision
time was approximately 0.13 s. CNN#2 has a depth of 165,
consists of 244 convolutional layers and 2 fully connected
layers, and the number of learnable parameters is 60,648,676.
The proposed network is shown in Fig. 4.

Deep learning techniques, in particular convolutional neural
networks, are characterized by very high predictive power,
but are not easily interpretable by humans. This is sometimes
pointed out as a weakness of CNN compared to methods based
on expert knowledge. Interpreting a non-linear classifier is
important to gain trust into the prediction and to identify po-
tential data selection mistakes. In order to solve this challenge,
one can use the so-called importance maps or heatmaps.

Figure 5 shows exemplary heatmaps, calculated using the
Grad-CAM (gradient-weighted class activation mapping)
algorithm, which correspond to the sample data from the
dataset presented in Fig. 1. These importance maps visualize
the regions of the analyzed image that activated, the most,
the outputs from the last convolution layer while calculating
classification scores for specific class labels. Areas on a map
with a large value are those that impact the network score for
that class the most. There exists a direct analogy to magnetic
resonance imaging (MRI) of the human brain, in which
different regions activate for different stimulations. If the
pixels on a heatmap are red, it means that the last convolutional
layer has been strongly activated at a given location. The
network considers this feature to be important and valid for
a given class label. In this way, one can see that the network
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Fig. 3. ROC curves for the considered CNNs.

focuses on what is essential for distinguishing the age of C.
elegans. By analyzing individual heatmaps, we can see with
the naked eye what parts of the data are recognized and taken
into consideration by the CNN.
As expected, the network extensively utilizes information
from the rim of the nematode’s body. This is the very region
where the progressively deteriorating body-wall muscles are
located. However, quite interestingly, the network also ac-
commodates morphological changes in the pharynx, which
is evident in Fig. 5, day 8, but also noticeable on day 2. The
CNN appears to include even more regions (day 4). Unfortu-
nately, the organs and tissues from such regions (excluding
body-wall muscles) are difficult to determine.

4.5. Comparison of Methods

The three CNNs featured in this paper have been compared
with other state-of-the-art methods in terms of classification

performance. The methods used for the comparison were test-
ed on the same dataset as the proposed method. The results are
presented in Tab. 9. It can be seen that the proposed CNN#2
offers nearly the highest accuracy currently available in the
literature. However, when comparing the methods, one should
take into account that the proposed CNN#2 comes with all
of the advantages of a fully self-learned CNN-based solu-
tion without the handcrafted feature selection stage requiring
expert knowledge.
The only method that has achieved a similar level of accura-
cy was [27], but their direct comparison is very difficult here,
because it represents a completely different approach to solv-
ing the problem. The method applied in [27] uses separate
feature selection and classification tools. Feature selection is
based on a very sophisticated, hand-crafted, high-dimensional
descriptor set, which is then assisted by a specialized SDT al-
gorithm. Afterwards, classification is performed via SVM.
On the other hand, the methodology proposed in this paper
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Fig. 4. The proposed CNN for C. elegans muscle aging classification.

Tab. 9. Classification accuracy for different state-of-the-art methods.

Method Accuracy
Song et al. [27] 0.979

CNN#2 0.9783

CNN#3 0.9304

Nanni et al. [30] 0.9375

Nanni et al. [29] 0.9292

Zhou et al. [25] 0.896

Lin et al. [22] 0.8478

CNN#1 0.8174

Mohan and Sekhar [28] 0.75

Siji et al. [26] 0.75

Shamir et al. [35] 0.53

offers the same level of effectiveness by adopting a much sim-
pler strategy. Firstly, feature extraction and classification are
implemented using one coherent tool (CNN). Secondly, the
CNN-based solution is more open should a need to add more
classes or extend the dataset arise. Thirdly, the method pre-
sented in this paper uses date augmentation to protect against
overfitting, which is ignored in [27]. Fourthly, the CNN-based
solution is free from SVM flaws, such as high algorithmic
complexity, extensive memory requirements, sensitivity to

Fig. 5. Examples of heatmaps obtained with the use of CNN#2, in
which the network accommodates not only body-wall muscles, but
also pharynx, and regions that cannot be unambiguously determined.

outliers, lack of prediction scores (classification probabili-
ties), very time-consuming training, unsuitability for large
datasets, underperformance when the dataset is noisy, and
underperformance if the number of features for each data
point exceeds the number of training data samples. Ultimate-
ly, the biggest advantage of the proposed method over the
method presented in [27] is that there is no need to develop
a hand-crafted feature selection stage.

The next two methods from [29] and [30] produce slightly
worse results. In both cases, CNNs are only used as a sup-
plement to handcrafted features. Feature selection consists
of local features, dense sampling features, and deep learning
features which are then classified using SVM. Firstly, unfor-
tunately, this still requires specialized expert knowledge to
create a set of handcrafted features. Secondly, the CNNs pre-
sented in [29] and [30] have not been used in an optimal way,
because the authors have not unfrozen (allowed re-learning)
a single convolution layer and are using the deep learning
features learned for a completely different, unrelated classifi-
cation problem, completely relying on adaptation by SVM.
As a result, the presented methodology for using CNNs, even
when boosted by handcrafted features, does not provide as
good results as the CNN#2 network presented in this pa-
per. Thirdly, these methods also deal with the drawbacks of
SVM outlined in the previous paragraph. In this context, the
SVM acts as a bottleneck that blocks the useful classification
properties of the CNN.

It should be noted that the method presented in [25], although
less accurate than CNN#2, is intended for analyzing 3D im-
ages. In order for the proposed methodology to be able to
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operate on 3D images, additional studies involving extrapola-
tion to three dimensions would be necessary.
The last compared work that requires an additional comment
is presented in [22]. It is a method that calculates C. elegans
muscle age by regression. It is very difficult to fairly compare
the regression method to the classification method, e.g. the
results of the regression method can be interpreted as classi-
fication results with a class resolution of one day (i.e. many
classes differing by one day). However, in [22], it is necessary
to add some metadata or a description to the image, which
implies additional work that needs to be supervised by a hu-
man. For the method proposed in this paper, only an image is
entered as input, with no additional metadata or description.

5. Conclusion

This paper presents the results of research on C. elegans mus-
cle age classification using CNNs with self-learned features
only. The problem under consideration is very difficult for hu-
mans to solve. Therefore, machine learning-based solutions
are being sought. In anti-aging drug research, the proposed
CNN would be a very fast and effective age determination
method, which would lead to reductions in time and costs.
The challenge in these studies was the small dataset, which
made it difficult to train the CNNs effectively and posed the
risk of overfitting. Transfer learning and data augmentation
techniques were used to solve this problem. VGG16, Incep-
tionV3, and InceptionResNetV2 networks were selected as
the base networks for transfer learning. The impact of un-
freezing successive convolutional layers on the classification
accuracy was investigated, as well as the impact of extending
the classifier model with additional fully connected layers.
The overall classification accuracy of the proposed network
is equal to 0.9783. The proposed network has a depth of 165,
consists of 244 convolutional layers and 2 fully connected
layers, and the number of learnable parameters is 60,648,676.
The proposed network was compared with other solutions
described in the literature.
The achieved results prove that CNNs can be successfully
used for the classification of C. elegans muscle aging without
handcrafted features. Moreover, given the fact that CNNs are
free from the disadvantages of analytical feature selection
and other machine learning methods, the results achieved are
improvements in the research problem under consideration
and are of great importance for anti-aging studies.
Our study shows that during the early stages of ageing, C.
elegans exhibits morphological alterations not only in the
muscle tissue but also in other parts of the nematode’s body,
e.g. its pharynx. The CNNs proposed by us are capable
of detecting such changes with a high degree of accuracy,
therefore providing reliable information regarding potentially
new sources of ageing.
Future research may include the following. Retraining the
network on an extended dataset with more classes, e.g. each
class could represent a separate day from a 2-week span. Inte-
grating the proposed CNN with region-based active contour

models for medical image segmentation [41]. Application of
the proposed CNN to solve other classification problems in
diagnostics [34], [35].
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