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The game of Cops and ∞-fast Robber is played by two players, one controlling c cops, the 
other one robber. The players alternate in turns: all the cops move at once to distance at 
most one each, the robber moves along any cop-free path. Cops win by sharing a vertex 
with the robber, the robber by avoiding capture indefinitely.
The game was proposed with bounded robber speed by Fomin et al. in “Pursuing a fast 
robber on a graph”, generalizing a well-known game of Cops and Robber which has robber 
speed 1. We answer their open question about the computational complexity of the game 
on interval graphs with ∞-fast robber, showing it to be polynomially decidable.
We also generalize the concept of k-defensive domination introduced by Farley and 
Proskurowski in “Defensive Domination” to A-defensive domination and use it as a main 
tool in our proof. The generalization allows specifying arbitrary attacks and limiting the 
number of defenders of each vertex. While this problem is NP-complete even for split 
graphs, we show that A-defensive domination is decidable in polynomial time on interval 
graphs.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In this article, we explore and extend two independent topics on the class of interval graphs, namely a version of Cops 
and Robber game with ∞-fast robber and the concept of defensive domination, extending it to arbitrary attack vectors. 
While we introduce the defensive domination algorithms as a tool to solve the game in polynomial time, we believe that the 
problem and algorithm are of independent interest. For that reason, the domination is treated independently in Section 3. 
This is a significantly revised and extended version of a paper presented at TAMC 2011 [12].

The recent development in the area of combinatorial “Cops and Robber” games (also called pursuit-evasion games) 
includes results on games with various characteristics of the players. The characteristics include, e.g., visibility [7,8,13], speed 
[6,10] or radius of capture [4]. See also the recent book by Bonato and Nowakowski [5]. In this work we are interested in 
the Cops and s-fast Robber game that is a generalization of the original Cops and Robber game introduced by Nowakowski 
and Winkler [20] and by Quilliot [21], allowing the Robber to make up to s steps instead of 1 in one turn.

✩ This is a significantly revised and extended version of a paper presented at TAMC 2011 [12].
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The concept of k-defensive domination has been introduced by Farley and Proskurowski [9] as a generalization of the 
well-known dominating set problem. They see the dominating set as a “defense unit” placement scheme where every single 
unit may actively defend an attack on one vertex in distance at most 1. The k-defensive domination asks for defense unit 
placement that can counter any k-vertex attack. A formal definition is given below. We take a slightly different approach 
and propose the problem with the possible attack sets as a part of the input.

1.1. Cops and s-fast Robber game

We start with a formal definition of the game:
The Cops and s-fast Robber game, where s ≥ 1 and possibly s = ∞, is defined as follows: The game is played by k cops 

controlled by one player and one robber controlled by the second player on a given simple undirected graph G . The cops 
and the robber are positioned on vertices of G at all times; several cops may share a vertex. Both players have a complete 
information about G and the game state. At the start of the game, the cops choose starting vertices, then the robber chooses 
a starting vertex. If there is no vertex for the robber, the cops win immediately.

A step is a move of a cop to distance at most one (staying on the same vertex is allowed). One turn then consists of a 
cop-move, where every cop makes a step, followed by a robber-move, where the robber moves along any cop-free path of 
length at most s. The robber may never pass through a vertex occupied by a cop. In the case s = ∞ the robber may move 
to an arbitrary vertex of his present component of G \ C where C is the (multi)set of cops’ position.

Should a cop be at or move to robber’s vertex, we say that the robber is captured and the cops immediately win. The 
robber wins by avoiding the capture indefinitely. The minimum number of cops sufficient to capture the robber in a graph 
G is denoted by cs(G). This game is equivalent to the original Cops and Robber game when s = 1.

In their paper “Pursuing a fast robber on a graph” [10], Fomin et al. propose the complexity of the Cops and ∞-fast 
Robber game on interval graphs as an open question. We show that the problem is polynomially decidable in interval 
graphs. The proof is constructive and shows how to decompose cops’ moves of a general winning strategy into certain basic 
move sequences, thus getting a simpler equivalent game that can be decided polynomially.

Fomin et al. examine several complexity aspects of Cops and s-fast Robber games and show that, for each s ≥ 2, the 
problem of computing cs(G) is NP-hard (and even W[2]-hard in the version parametrized by cs) even if G is a chordal 
graph, or even a split graph. On the other hand, cs(G) can be computed in polynomial time for an interval graph and every 
fixed s < ∞. The hardness results of Fomin et al. easily extend to the game of ∞-fast robber, but the polynomiality proof 
for interval graphs does not and our proof takes a different approach.

This game has been further studied by Mehrabian [15,18] who gave a 3-approximation polynomial-time algorithm for 
interval graphs, but the complexity status of the exact problem remained open. In [17], a characterization of graphs with 
c∞(G) = 1 is given. For some bounds on cs(G) see [2,11,16]. For other works on the version of the game with different 
speeds see, e.g., [6,19]

Our first result is summarized in the following theorem:

Theorem 1. There exists a polynomial-time algorithm that, given an n-vertex interval graph G, computes c∞(G) and also a winning 
strategy for the cops that captures the robber in O (n3) turns.

1.2. A-defensive domination

As a main tool in our analysis we introduce the problem of A-defensive domination which we believe to be of in-
dependent interest from the game and its analysis. The complexity of the problem is closely examined in Section 3, here 
introduce the problem and our results, and compare it to the original problem of Farley and Proskurowski.

The notion of defensive domination has been introduced by Farley and Proskurowski [9] in the following way: The input 
is a graph G and an integer k. A simple set D ⊆ V G is said to be k-defensive dominating if for each set {a1, . . . , ak} ⊆ V G of 
k distinct vertices of G (called a k-attack) there exists a set {d1, . . . , dk} ⊆ D of k distinct vertices of D (called an assignment 
of defenders) such that for each i ∈ {1, . . . , k} we have di ∈ N[ai]. The goal is to find a k-defensive dominating set D of 
minimum size.

Farley and Proskurowski examine the problem and show that while the problem is generally N P -hard (as it generalizes 
the problem of smallest dominating set even for k = 1), there is a polynomial-time algorithm for any k on trees.

We use an equivalent definition of defensive domination. An attack is a (usually given) multiset A of vertices. We say 
that a vertex multiset D (called defender placement) defends A when there is a map f : A → D which is injective (as a 
multiset map) and when f (a) = d, then d ∈ N[a]. Such f is called a defense or a defending mapping.

We consider multisets to provide a natural but strong generalization of the problem as well as to address a situation 
with multiple cops on a vertex in the game analysis. See section Preliminaries for notes on multisets and maps.

A-defensive domination

Input: Graph G , a family of vertex multisets A (the attacks) and vertex multisets Dmin ⊆ Dmax .
Output: A smallest multiset of vertices D defending every attack A ∈ A such that Dmin ⊆ D ⊆ Dmax , or information that 

no such D exists.
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Here Dmin specifies pre-placed defenders, Dmax of the defender capacity of a vertex. The parameters Dmin and Dmax can 
be considered optional with default values Dmin = ∅ and Dmax = t ∗ V (t copies of V ) where t = max A ∈A|A|. Note that 
setting Dmax = V would force the defender multiset to be a simple set.

Our statement of the problem differs from the one in [9] in two ways. First, we may allow more defenders per vertex. 
This can be forbidden by setting Dmax = V as above. However, in this article we only show an algorithm for unbounded 
capacities Dmax . Note that only considering unbounded capacities does not interfere with use in the game part of the 
paper and allows us use simpler the algorithm and technical arguments. See Conclusion for a discussion of possible exten-
sions.

Second, and more importantly, in our case the collection A is a part of the input and may contain multisets of any size, 
as opposed containing all the subsets of the vertices of G of given size k. Specifying A brings more flexibility but having all 
the sets 

(V
k

)
as part of the input may blow it up substantially even for medium values of k.

Our main result on A-defensive domination is the following:

Theorem 2. There is an algorithm that solves A-defensive domination on interval graphs in time polynomial in the input size for 
any Dmin and unbounded capacities Dmax.

2. Preliminaries

In this paper, we use standard graph- and game-theoretic notation. For introduction to these areas, we recommend the 
books “Modern Graph Theory” [3] and “Lessons in Play: An Introduction to Combinatorial Game Theory” [1].

Throughout the paper G denotes the input graph, V its vertex set and E its undirected edge set. We use NG [v] and 
NG [X] to denote the closed neighborhood of a vertex v or a subset of vertices X (including v , resp. X), and NG (v) to denote 
the open neighborhood of v (not containing v). We say that a set A of vertices dominates a vertex set B when every v ∈ B
belongs to A or has a neighbor in A, that is, B ⊆ NG [A]. We drop the subscript when the graph is clear from the context. 
For any set A of vertices of G , we denote by G[A] the subgraph of G induced by A, that is, the subgraph with the vertex set 
A and with an edge between each pair of vertices of A that are adjacent in G .

In the problem of A-defensive domination it is natural to consider multiple attackers on a single vertex as well as 
multiple defenders, and this is also the case with multiple cops per vertex in the game. Therefore in our treatment all the 
attacker, defender and cop sets are multisets, and we point out this where it is most important. Namely, a function (map) 
from a multiset maps every element x to a multiset with the size same as the multiplicity of x. Similarly, for a map to be 
injective means | f −1(x)| is at most the multiplicity of x. Also, X ⊆ Y takes multiplicity into account and we naturally talk 
about partial multiset functions, bijections e.t.c.

We briefly mention some of the less well-known graph classes and their properties:
A graph G is chordal (also triangulated) if there are no induced cycles of length at least 4 in G . A graph is a split graph

if its vertices can be partitioned into two sets I and K such that I is an independent set and G[K ] is a complete subgraph. 
Every split graph is also chordal.

A graph is an interval graph if it can be realized as the intersection graph of a family of intervals on a real line. For a 
family of intervals I , the associated intersection graph G(I) has one vertex for each of the intervals and an edge between 
the vertices corresponding to intervals I1 and I2 from I if and only if I1 ∩ I2 
= ∅. Note that every interval graph is chordal. 
In the following, we may assume without loss of generality that the intervals are open and their endpoints are distinct 
integers {1 . . . 2|V |}, fixing a representation for every graph. Note that such an interval representation can be reconstructed 
from G in linear time, as shown by Korte and Möhring [14].

For each vertex v of G , let v be the interval representing v . For any subset X of vertices of an interval graph G , denote 
by X the union of intervals representing the vertices in X , X = ⋃

v∈X v . Note that for a connected interval graph G and any 
X ⊆ V G the subgraph G[X] is connected if and only if X is an interval.

For any integer i, let V [i] be the set of vertices v of G such that i ∈ v . Let (i, j) denote the open interval from i to j, 
(i, j) = ∅ if i ≥ j. Then let V (i, j) = {v ∈ V

∣∣ v ⊆ (i, j)}. Note that V (i, j) ∩ V [i] = ∅ for every i and j. If I = (i, j) is an 
interval, then we also write for brevity V (I) in place of V (i, j).

Given an interval I , denote by L(I) and R(I) the left and right endpoints of I , respectively, i.e., L(I) = inf(I) and R(I) =
sup(I).

The intervals of a representation are naturally ordered in two ways – by their left and right endpoints. We use these to 
define two orders on V G . Let u <R v if and only if R(u) < R(v). Similarly, u <L v if and only if L(u) < L(v). Note that these 
orders are linear thanks to the assumption that all endpoints are different.

In the algorithmic sections, <R is the commonly and sometimes implicitly used interval order while <L usually plays an 
auxiliary role. This is due to our choice of sweeping the graph representation left-to-right. In particular we use the following 
properties:

Lemma 3. If we have a <R b <R c and ac ∈ E, then also bc ∈ E. Similarly, if a <L b <L c and ac ∈ E, then also ab ∈ E.

Proof. Since ac ∈ E we have L(c) < R(a) and therefore R(b) ∈ c. The proof of the second statement is symmetric. �
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The integers 1, . . . , 2|V | are also called cutpoints, as every V (i) is a vertex cut in the interval graph between the vertex 
sets V (−∞, i) and V (i, ∞). Unlike the usual definition of a cut, here either may be empty.

3. A-defensive domination on interval graphs

In this section we closely examine the problem of A-defensive domination and prove the results stated in Section 1.2. 
Note that the entire section and all the proofs are completely independent from the game and Section 4.

We build on the notation from Section 1.2. Additionally, with D a multiset of defenders let a partial defense (against an 
attack A) be a function from A′ ⊆ A to D mapping every vertex to distance at most 1, similarly to defense defined above. 
Two partial defenses f1 and f2 agree on a set X ⊆ A if f (x) = f ′(x) for each x ∈ X .

Before the algorithm, we introduce a property of a defense we use through the algorithm. For a given attack A and 
defenders D , order the attackers a1 <R . . . <R ak . A (partial) defense f is called leftmost (partial) defense if the defender 
f (ai) assigned to attacker ai is <R -leftmost among the neighbors of ai from D \ { f (a1), . . . f (ai−1)}. Such (partial) defense 
is called maximal if f assigns a defender to ai whenever N(ai) ∩ (D \ { f (a1), . . . f (ai−1)}) 
= ∅.

Note that for given attack and defense, a unique maximal leftmost (partial) defense is computed by the following 
straightforward greedy algorithm which closely follows the definition of a leftmost (partial) defense:

procedure LeftmostDefense(G , A, D)
Input: Represented interval (multi)graph G
Input: Multisets A ⊆ V G , D ⊆ V G

Output: Maximal leftmost (partial) defense f : A′ → D , A′ ⊆ A
A′ ← ∅
Order vertices of A as a1 ≤R a2 ≤R . . . ≤R ak
for all i ∈ {1, . . .k} do

Di ← N(ai) ∩ (D \ f [A′])
if Di 
= ∅ then

A′ ← A′ ∪ {ai}
f (ai) ← min<R Di

end if
end for
return f

end procedure

The procedure obviously returns a valid partial defense map, runs in polynomial time and is easily implementable in 
time O (k|V |).

Whenever there is no full defense for A and D , the <R -leftmost undefended attacker is called the leftmost greedily 
undefended attacker. Note that f is injective (w.r.t. D) and so the partial function f −1 : D → A is well-defined and injective 
whenever f is a full map. We can also additionally assume that f −1 is monotoneR on every group of assigned defenders 
on a single vertex.

This computed defense also has the following useful properties.

Lemma 4. The partial function f returned by LeftmostDefense satisfies: Whenever ai <R a j and f (a j) ∈ N[ai], then f (ai) ≤R f (a j).

Proof. Assume f (ai) >R f (a j). But in that case, ai would get assigned f (a j) as a left-most available defender, which is a 
contradiction. �
Lemma 5. Whenever there is a defensive map f from A to D on an interval graph G, LeftmostDefense returns a valid full defense 
map.

Proof. Let falg be as returned by LeftmostDefense(G, A, D) and among all defense maps, take f : A → D such that f and 
falg agree on the longest prefix {a1 . . .ai−1}. Now either falg = f and we are done, or we have either falg(ai) undefined or 
f (ai) 
= falg(ai).

Note that we have f (ai) ∈ Di (with Di as in the algorithm) since f and falg agree on {a1 . . .ai−1}. This immediately rules 
out the possibility of undefined falg(ai). Additionally, this shows that falg(ai) ≤R f (ai), since falg(ai) is minimal from Di .

The last possibility to examine is falg(ai) <R f (ai). In this case we show that there is a full defense map f ′ : A → D that 
agrees with falg on a longer prefix, a contradiction with the choice of f . Let dalg

i = falg(ai) and di = f (ai). Moreover let 
a j = f −1(dalg

i ) if defined, in which case also note that necessarily j > i. See Fig. 1 for an illustration.
We now construct the new full defense map: Set f ′ to be f except for f ′(ai) = dalg

i , and f ′(a j) = di when a j is defined. 
In case a j is undefined, validity of f ′ is straightforward. When a j is defined, we only need to show a j ∈ N[di]: when 
ai <R a j ≤R di observe that ai ∈ N[di], when dalg

i <R di ≤R a j observe that a j ∈ N[dalg

i ]. Therefore f ′ is a full defense 
map. �
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Fig. 1. Illustration of the update step and map preservation in Lemma 5.

Additionally, when two defenses differ at some point, the algorithm finds defenses that agree up to that point:

Lemma 6. Let D = {d1 ≤R . . . } and D ′ = {d′
1 ≤R . . . } be defenses against an attack A = {a1 ≤R . . . } and let f and f ′ be the defense 

maps computed by LeftmostDefense. Assume D and D ′ agree on {d1 = d′
1, . . . , di−1 = d′

i−1}, di <R d′
i . Then f −1 and f ′ −1 agree on 

{d1 . . .di−1} (being either equal or both undefined).

Proof. Assume that f −1 and f ′ −1 do not agree on a left-most d j , j < i. Let al = minR{ f −1(d j), f ′ −1(d j)} (note that at least 
one is defined). Now if f (al) = di , then di was a left-most candidate defender for a in LeftmostDefense not only for f but 
also for f ′ since by assumption we have

f [{a1 . . .al−1}] ∩ {d1 . . .d j−1} = f ′[{a1 . . .al−1}] ∩ {d1 . . .d j−1}
which is a contradiction with existence of such d j . �

Now let us state and analyze the main algorithm. Informally, the algorithm incrementally builds a defense by adding a 
defender for a left-most currently undefendable vertex.

procedure A-DefensiveDomination(G , A, Dmin)
Input: Represented interval (multi)graph G
Input: Multiset family A ⊆ 2V G (attack)
Input: Multiset Dmin ⊆ V G

Output: Smallest defender placement Dmin ⊆ D ⊆ V G

D ← Dmin
loop

for all A ∈A do
f A ←LeftmostDefense(G, A, D)

end for
if all attackers defended in every f A then

return D
end if
u ← left-mostR vertex undefended in some f A .
d′ ← right-mostR vertex of N[u].
D ← D ∪ {d′} � A and u are referred to as reason for this d′ .

end loop
end procedure

We show that this algorithm optimally solves the problem of A-defensive domination on interval graphs.

Proof of Theorem 2. The algorithm always returns a solution, and any returned solution is a valid defense against all attacks, 
as certified by the computed maps f A . Additionally, all the intervals of D \ Dmin are always inclusion-maximal. We only need 
to show size-optimality.

Let us call the computed defense Dalg = {dalg

1 ≤R . . . } and take an optimum-size defense Dopt = {dopt

1 ≤R . . . } such 
that it agrees with Dalg on a longest possible prefix {dalg

1 = dopt

1 , . . . , dalg

i−1 = dopt

i−1}. We additionally assume that all the 
intervals of Dopt \ Dmin are inclusion-maximal (as are those of Dalg \ Dmin). Let { falg,A}A∈A and { fopt,A}A∈A be the de-
fense maps computed by LeftmostDefense for Dalg and Dopt respectively. Note that fopt,A are well-defined thanks to 
Lemma 5.

If Dalg = Dopt we are done. Otherwise, let dalg

i 
= dopt

i be the first difference in the solutions. Note that thanks to 
Lemma 6 the maps f −1

alg,A and f −1
opt,A agree on {dalg

1 , . . . , dalg

i−1}. Consider the two possibilities:
1. dalg

i <R dopt

i . Let A′ and u′ be the reason for including dalg

i in Dalg . Now opt can not defend u′ in A′: We have 
dopt /∈ N[u′] since dopt >R dalg and dalg is the right-most neighbor of u′ . At the same time, all the vertices of Dopt before 
i i i i
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dopt

i are either already used in fopt,A′ (as they are in falg,A′ ) or too far (otherwise u′ would not be chosen as a reason for 
d′ ∈ Dalg at that point).

2. dalg

i >R dopt

i . Take as dalg

j the left-endpoint left-mostL with j ≥ i and then set D ′
opt

= Dopt − dopt

i + dalg

j . We show that 
D ′

opt
is a valid defense: take any attack A ∈ A and let a = f −1

opt,A(dopt

i ). If such a is undefined, let f ′
opt,A = fopt,A and this 

map trivially defends A using D ′
opt

as well.
If such a exists, let dalg

l = falg,A(a) and note that l ≥ i thanks to Lemma 6. Now in both cases, a <R dopt

i and a >R dopt

i , 
we straightforwardly obtain dalg

j ∈ N[a]. The map f ′
opt,A derived from fopt,A by replacing f ′

opt,A(a j) = dalg

j is then a valid 
defense map. In either case we get a contradiction with the choice of Dopt . �
4. Cops and robber on interval graphs

In this section we focus on the game at hand on interval graphs. First we examine some properties of the game and 
introduce more terminology specific to the game on interval graphs, and then we introduce the restricted game and sketch 
the equivalence with the original game.

4.1. Closer look at the original game

Observe that in a disconnected graph the cops have to decide at the beginning of the game on a distribution among the 
components before the robber chooses a component to play in and after that only the cops placed in that component are 
relevant. In this light we get the following:

Proposition 7. For every s including ∞, cs(G) = ∑
i cs(Gi) where Gi are the connected components of G.

In the rest of the paper we assume that G is connected.
To avoid special treatment of the game-states at the start of the game, we work with a game with modified starting 

state, which is equivalent to the unmodified game on connected graphs:

Proposition 8. A connected interval graph G is k-cop-win if and only if k cops win starting all positioned at the leftmost vertex a of G
(w.r. to <R ) with the robber starting on the rightmost vertex b (w.r. to <L ) such that dist(a, b) ≥ 2. If there is no such b, then the graph 
is 1-cop-win.

Proof. To show this, assume that k cops have a wining strategy in the unmodified game starting at a configuration C . In 
the modified game, the cops can first use several moves to get to C ignoring the robber (or even capturing him on the way 
accidentally) and then play out the winning strategy according to the position of the robber at that point.

If the robber has a wining strategy in the unmodified game for any starting position of the cops, then let C be the cop’s 
positions after their first move from a and let w be the desired robber’s starting position for C . The cases w = a or w ∈ C
can happen only if the radius of the graph is ≤ 1 and therefore G can not be robber-win. Also, we can assume w /∈ N[C]
as such strategy would lose immediately. Otherwise w and b belong to the same component of G \ C , since every such 
component is either contained in N[C] (and therefore not containing w) or contains b as the right-most vertex. In that case, 
the robber can move to w and play out his winning strategy. �

Formally, we denote the game state before cops’ move (also cop-state) by C(C, w), where C is a multiset of vertices 
occupied by the cops and w is the vertex occupied by the robber. Note that we normally do not distinguish the cops on one 
vertex. The game state before robber’s move (also robber-state) is R(C, A) with C as above and A is the set of all vertices 
the robber may reach in his following move (thus, A is the vertex set of the connected component of G − C containing the 
robber).

Note that before any robber’s move, two states with the robber in the same component of G − C offer the same moves to 
the robber and this notation already slightly reduces the complexity of the examined states. Also note that A is by definition 
always connected which gives us the following:

Proposition 9. For any game state R(C, A), A is an interval.

For a state R(C, A) we call the interval A the playground of the state. The left and right endpoints of the playground 
(which is an open interval) are cutpoints called specifically the left and right barrier, usually denoted by l and r, respectively.

Note that all vertices containing the barriers, i.e., V [l] ∪ V [r], are occupied by the cops (otherwise the playground would 
be bigger). The vertices of V [l] and in V [r] are called the barriers’ support. Note that the support of either barrier may be 
empty and in such case, due to the connectedness of G , we may assume that such a barrier is at either 1 or 2|V |. The 
vertices in V (l, r) are called the playground support. Note that by definition, the support of a playground is always disjoint 
from the supports of the barriers.
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Among the cops occupying a barrier’s support, we choose and fix one cop per vertex. Let us call these cops the cops 
holding the barrier. Note that a cop may hold both barriers at once, but as we see below, that this may happen only just 
before capturing the robber.

A playground (l, r) is feasible, if |V (l) ∪ V (r)| ≤ k, that is, if the cops are able to hold both barriers at once. A playground 
(l, r) is nontrivial if V (l, r) is nonempty and it does not contain all vertices of G .

For every feasible and nontrivial playground (l, r), we fix a canonical game state

§(l, r) = R(V [l] ∪ V [r], V (l, r))

in which the cops occupy all vertices in V [l] ∪ V [r] and the extra cops, if any, are positioned on an arbitrary (but fixed) 
vertex in V [l] ∪ V [r]. A game state won by the cops, canonical to every playground with V (l, r) = ∅ is denoted by WIN .

Proposition 10. If V (l, r) 
= ∅, then the playground of §(l, r) is (l, r).

The cops occupying the vertices in C threaten a vertex set T if the cops can occupy all vertices of T after one cop-move. 
This is equivalent to an existence of a partial surjective mapping from the cops on C to T such that every cop is assigned to 
a vertex at distance at most one. If the cops threaten V [i] for some i ∈ {1, . . . , 2|V |}, then we also say that the cops threaten
the cut i. When considering a set of cops threatening T , we fix a matching between the threatening cops and the vertices 
in T for the moment. In the rest of this section we introduce some additional notation that allows us to formally define the 
sets T we are interested in.

We say that a cop/robber is over an interval I if it is located on a vertex v such that I ⊆ v . Then, the cops c1, . . . , cp are 
over I if ci is at vertex vi , i = 1, . . . , p, and I ⊆ v1 ∪ · · · ∪ v p . Any maximal interval B such that some cops are over B is 
called a base. Given a base B , ξ(B) = ⋃

x∩B 
=∅ x is called the cover of B .
Note that in game state R(C, A), if the robber positions himself on a vertex v such that v intersects a base, then the 

cops can catch the robber in the next move. Let A′ ⊆ A be the union intervals safe for the robber, that is A′ = V (A) \ N[C]. 
This includes vertices v such that v is entirely contained in ξ(B) \ B . Any maximal interval in A′ is called a hole in R(C, A), 
or simply a hole, if the state is clear from the context. Hence, if C(C, r) is the state that follows R(C, A), then either the 
cops can immediately catch the robber or r is contained in some hole in R(C, A).

Given a state R(C, A), a base collection B is a set of bases {B1, . . . , Bl} such that 
⋃l

i=1 ξ(Bi) is an interval. Denote the 
latter interval by ξ(B). A base collection B is maximal if B ∪ {B} is not a base collection for any base B , B /∈ B.

4.2. Maneuvers and the restricted game

The main tool of our result is to transform an arbitrary cops’ winning strategy to a restricted strategy in an equivalent 
but simpler restricted game on a smaller state space. Informally, a restricted game state only describes which cuts are held 
or threatened by the cops and the current playground of the robber or his choices of a new playground.

While a general cops’ strategy is mapping from every valid state of the game to a move valid in that state, a restricted 
cop’s strategy is a mapping from a restricted game states C(C, r) to the maneuvers valid in those states. In the following we 
fix a constant Q = 12, that is the sufficient number of following playgrounds to be considered, as we show later. A restricted 
game state is WIN or one of the following:

Restricted cop-states §(l, r) = R(V [l] ∪ V [r], (l, r)), where the cops choose the next maneuver to perform. Note that the 
general game state is a robber-state, which is more convenient as the maneuver ignores the position of the robber 
possibly except for the last turn (see below).

Restricted robber-states R{(l1, r1), . . . (lq, rq)}, q ≤ Q , where the robber chooses the next playground he will be restricted to 
after the next cop-move. This happens only before the last move in a split-maneuver, where the cops threaten multiple 
cuts and the robber has to decide where to stand before the cops actually choose which two barriers to create and there-
fore what will be the new playground. Note that the cops actually do not only present robber with the threatened cuts, 
but additionally give the robber all possible outcomes (playgrounds) to choose from. The conditions on the maneuvers 
ensure that the list of options is complete and valid.

A maneuver is a fixed finite sequence of cop-moves not depending on the robber’s movement in the meantime possibly 
except for the last move and automatically captured the robber if he ends his move adjacent to a cop. A maneuver always 
starts in a restricted cop-state and ends in a robber-state (to choose the next playground) or a cop-state (if there is only one 
choice). A maneuver is valid if k cops are enough to perform the moves of the maneuver. There are two types of maneuvers:

Endgame from §(l, r) to WIN . Starting from the state §(l, r), the cops move so that in each turn hold l and r, into position 
R(C, A) such that C contains V [l] ∪ V [r] and dominates V (l, r). In their next move the cops capture the robber. Such 
a multiset C with |C | ≤ k is a witness of the maneuver. The maneuver itself is, in this case, the sequence of the above 
moves that lead from §(l, r) to WIN .
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Split from §(l, r) to R{(l1, r1), . . . (lq, rq)}, q ≤ Q , with li ≤ li+1 for each i ∈ {1, . . . ,q − 1}.
Starting from the state §(l, r), the move (while holding l and r) into position R(C, A) such that

(i) the cops are holding l and r,
(ii) there exists a base collection B = {B1, . . . , Bq−1} such that ri, li+1 ∈ ξ(Bi) for each i = 1, . . . , q − 1,

(iii) the cops are threatening V [li] ∪ V [ri] for each i ∈ {1, . . . , q},
(iv) C dominates V (ri, li+1) for each i ∈ {1, . . . , q − 1},
(v) C dominates V (l, l1) and V (rq, r).

Such a multiset C with |C | ≤ k is called the witness of the maneuver. Note that the cops holding l and r may be used 
in the threatening mapping. Also note that the conditions on dominating V (ri, li+1) are trivially satisfied if ri > li+1.

Once the cops take the positions in C , the robber makes a move by selecting his next position w . Either w ∈ N[C] and 
the cops win immediately, or w ∈ V (li, ri) for some i ∈ {1, . . . , q}. Then, the cops make a move that results in §(li, ri). 
Note that in the restricted game the robber is given the choice of i even in the case that for his choice of w both 
w ∈ V (li, ri) and w ∈ V (l j, r j) and the cops would therefore make the choice of the next playground (out of the two) in 
the real game.

It is not trivial to check for the existence of such witnesses, but we can find a smallest witness using the algorithm for 
A-defensive domination introduced in Section 1.2:

Lemma 11. There are polynomial-time algorithms deciding the validity of maneuvers endgame and split.

Proof. We observe that by the definitions, a multiset D is a smallest witness of a split maneuver from §(l, r) to one 
of §(li, ri), i ∈ {1, . . . p} if and only if D is a smallest A-defensive multiset for A = {V (li) ∪ V (ri)|i ∈ {1, . . . p}} ∪ (Y

1

)
(possible 

barriers to be taken) with Dmin = V [l] ∪ V [r] ⊆ D (pre-placed defenders/cops) and unbounded capacities Dmax , where Y =
V (l, l1) ∪ V (rp, r) ∪ ⋃p−1

i=1 V (ri, li+1) (the vertices between the playgrounds to be dominated individually, preventing robber 
from safely moving there).

Indeed, suppose first that D is a witness of size k of a split maneuver. Then D is a solution to A-defensive domination: 
For each A ∈ A generated by a playground, the injective mapping f X : X → D is given by the possible cop-move from D
to occupy A. For A ∈ A arising from Y , the mapping (of a single defender) follows from D (simply) dominating Y . On the 
other hand, it is easy to check that a solution to A-defensive domination satisfies all the witness conditions.

Similarly, a multiset D is a smallest witness of an endgame maneuver from §(l, r) if and only if D is a smallest (V (l,r)
1

)
-defensive multiset with Dmin = V [l] ∪ V [r] ⊆ D and unbounded capacities Dmax .

The algorithm deciding the problem of A-defensive domination is polynomial for interval graphs according to Theorem 2
proved in Section 3. The input size is polynomial in the size of G and number of playgrounds considered, which is bounded 
by Q . �

This then allows us to decide the existence of a cops’ restricted strategy.

Theorem 12. There exists a O (nO (1))-time algorithm that, given an interval graph G with |G| = n and an integer k, decides the 
existence of a winning restricted strategy using k cops for G.

Proof. We construct a game-state digraph D representing the restricted game. V D consists of all restricted game states 
including WIN , the initial state is the state corresponding to the initial position of the modified game. The only cop-win 
state is WIN , there are no robber-win states.

For every valid endgame maneuver from §(l, r) add an arc from §(l, r) to WIN . For every valid split from §(l, r) to one 
of the §(li, ri), i ∈ {1, . . . , q ≤ Q }, add an arc from §(l, r) to R{(l1, r1), . . . (lq, rq)}. From every R{(l1, r1), . . . (lq, rq)} add arcs 
to §(li, ri), i ∈ {1, . . . , q}.

We decide the game given by D using a general game theory state-marking algorithm, giving us either a winning 
restricted strategy for the cops or a non-losing restricted strategy for the robber.

Since Q is a fixed constant, D has polynomial size, every arc can be decided in polynomial time according to Lemma 11, 
the state-marking algorithm also runs in time polynomial in |D|. �
4.3. Equivalence of the restricted game

In this section we prove the following theorem.

Theorem 13. For an interval graph G and an integer k, k cops have a winning strategy for the Cops and ∞-fast Robber game if and 
only if k cops have a winning strategy in the restricted game on G.

With this, we may immediately prove Theorem 1. Before we prove Theorem 13, we show several lemmas which compose 
the individual steps of the equivalence.
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Fig. 2. An illustration of the playgrounds of P with q = 3. Note that the playgrounds may overlap. The intervals H j are the holes separating the groups of 
cops of C .

Proof of Theorem 1. According to Theorem 12, we can decide the existence of a winning restricted cops’ strategy in poly-
nomial time. By Theorem 13, such a strategy exists if and only if a general winning cops’ strategy exists.

Note that any play of a restricted cops’ winning strategy visits every restricted cop-state (playground) at most once. There 
are O (n2) playgrounds and every canonical robber-state is followed by a maneuver to a canonical cop-state. It is easy to 
see that playing out any single maneuver takes O (n) cop-moves when the cops follow shortest paths to their destinations. 
Therefore the game takes O (n3) turns. �

First, we need additional definitions. A strategy for the Cops and ∞-fast Robber game is called simple, if at the beginning 
of any turn in which the robber occupies a vertex p and in which the playground changes, the following holds: for each 
base B there exist at most two cuts l and r, l, r ∈ ξ(B), such that if R(p) < L(B), then the cops do not take any cuts in 
B except possibly for r, and if L(p) > R(B), then the cops do not take any cuts in B except possibly for l. We call l and r, 
respectively, to be the left and right barriers associated with B . Informally speaking, in a simple strategy if the robber positions 
himself to the left (right, respectively) of B in a turn in which the playground changes, then the cops either start to hold r
(l, respectively) or do not hold any barrier of B .

Note that in a general strategy, in a move that changes the playground many base collections can be formed and each 
of them can contain many bases (up to one collection per a cop). We prove below that it is enough to consider one base 
collection at a time. This motivates the following definition:

We say that a strategy for the Cops and ∞-fast Robber game is semi-restricted if it is simple and for each cops’ move 
that results in a change of the playground in the preceding robber’s move there exists exactly one base collection.

We follow with several lemmas and their proofs:

Lemma 14. For an interval graph G and an integer k, if k cops have a winning strategy for the Cops and ∞-fast Robber game, then k
cops have a simple winning strategy.

Proof. Let us consider a playground changing move in a winning strategy S and the two game states R(C, A) and C(C, w)

preceding the playground change. Let H1, . . . , Hq be all holes at the beginning of R(C, A) ordered so that R(H j) < L(H j+1)

for each j ∈ {1, . . . , q − 1}. Take any base B formed by the cops at the beginning of R(C, A). If R(H1) ≤ L(B), then let 
p ∈ {1, . . . , q} be the maximum index such that R(H p) ≤ L(B), and let p = 0 otherwise.

Since S is winning, for each j ∈ {1, . . . , p} there exists a barrier r j ∈ ξ(B) such that if w ∈ V (H j), then the cops take 
in C(C, w) either no barrier in ξ(B) or they take r j . Suppose that ri 
= ri′ for some i, i′ ∈ {1, . . . , p}. We argue that we can 
modify the strategy S so that ri = ri′ and the ‘worst-case’ length of the new strategy is not greater than the length of S . If 
ri is not taken by the cops when w ∈ V (Hi), then one may change ri := ri′ . By using a similar argument for ri′ , we obtain 
that both ri and ri′ become the endpoints of the playgrounds in the cases when w ∈ V (Hi) and w ∈ V (Hi′), respectively. 
Suppose without loss of generality that i < i′ . Then, however, changing the playground in case of w ∈ V (Hi′ ) to be the same 
as in case of w ∈ V (Hi) results in particular in ri = ri′ .

We repeat the same argument for B and lp+1, . . . , lq , where l j is the border taken by the cops when w ∈ V (H j) for each 
j = p + 1, . . . , q. As a result, we obtain a strategy with the same bases as in S , of length not greater than that of S . By 
repeating the same transformation for each remaining base we obtain the desired simple strategy. �
Lemma 15. Let S be a winning strategy using k cops. Given any robber state R(C, A) of S , let R(Ci, Ai), i ∈ {1, . . . , q}, be the robber 
states of S reachable from R(C, A) in two moves (a robber move and a cop move). Let P = (l, r) be the playground corresponding to 
R(C, A) and Pi = (li, ri) be the playground corresponding to R(Ci, Ai) for each i ∈ {1, . . . , q}. Then, there is a semi-restricted cops’ 
strategy that uses k cops, starts in state §(l, r) and either wins or results in state §(li, ri) for some i ∈ {1, . . . , q}.

Proof. In view of Lemma 14, we may assume without loss of generality that S is simple. If C is a witness for endgame, 
then the considered turn does not violate the definition of semi-restricted strategy. Hence, assume that this is not the case 
and let H1, . . . , Hq be the holes at the beginning of R(C, A). See Fig. 2 for an illustration.

We prove the lemma by induction on the number of base collections of a strategy. If the state R(C, A) consists of one 
base collection, then the two following moves of S themselves form a is semi-restricted strategy. Thus, suppose that S has 
more than one base collection.
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Let P ′
j = (l′j, r

′
j) be the playground at the end of C(C, w) when w ∈ V (H j) for each j ∈ {1, . . . , q}. Let the corresponding 

states be R(C ′
j, B

′
j), j ∈ {1, . . . , q}. Denote by P ′

i1
, . . . , P ′

ip
all inclusion-maximal playgrounds ‘between’ the base collections, 

that is, P ′
i j
� B for any base collection B formed at the beginning of R(C, A), j ∈ {1, . . . , p}. By assumption, p > 1.

The strategy construction is algorithmic and is done by modifying S . First, the modified strategy forms the base collection 
B with minimum L(B). Suppose that the robber occupies a vertex w such that R(w) < R(B). Hence, w ⊆ (l′j, r

′
j) for some 

j < i2. The modified strategy plays the split maneuver to (l′j, r
′
j), as required.

Hence, assume that R(w) ≥ R(B). The strategy plays a split to (l′i2
, r). Denote by S ′ the strategy that performs this 

maneuver. There exists a (general) strategy that uses p − 1 base collections (all base collections, except for B, of the initial 
strategy S) and in one turn results in a playground (l′j′ , r

′
j′ ) for some j′ ∈ {i2, . . . , q}. By the induction hypothesis, there 

exists a semi restricted strategy S ′′ that either wins or results in a state §(l′j′ , r
′
j′ ) for some j′ ∈ {i2, . . . , q}. Thus, S ′ together 

with S ′′ is the strategy that satisfies the conditions of the lemma. Indeed, the number of cops that the latter strategy used 
is k because, by definition, no cop is simultaneously used in two base collections. �

The following lemma is used to show that it is sufficient to consider a bounded number of playgrounds resulting from a 
split maneuver.

Lemma 16. Let B = {B1, . . . , Bq}, q ≥ 12, be a base collection that is formed by k cops. Let li and ri be the left and right barriers 
associated with Bi , i ∈ {1, . . . , q}. If 1 ≤ j < j′ ≤ q and j′ − j ≤ 3, then endgame maneuver using k cops is possible from §(l j, r j′).

Proof. We prove the lemma by placing the cops so that they hold l j and r j′ and dominate V (l j, r j′ ). The cops in B used to 
threaten l j and r j′ are selected to occupy the vertices in V (l j) ∪ V (r j′ ). If j′ = j + 1, then two additional cops can dominate 
V (l j, r j′), which follows directly from the definition of base collection. The two cops are available, because q ≥ 9. Hence, 
assume that j′ > j + 1 and we describe how to dominate V (l j, r j′) with the remaining cops.

Place the cops initially used to form B j+1, . . . , B j′−1, except for those in Q , in the same way as in the base collection B. 
The possibly non-dominated vertices are then the ones in V (l j+1, r j+2) if j′ − j = 3, and V (l j, r j+1) ∪ X ∪ V (l j′−1, r j′) ∪ Y , 
where X (respectively, Y ) is the set of vertices initially dominated by the cops in B present on B j+1 (respectively, B j′−1). 
Let X ′ ⊆ X and Y ′ ⊆ Y be, respectively, the vertices in X and Y occupied by the cops in Q . The vertex v in X ′ such that 
R(v) ≥ R(x) for each x ∈ X ′ dominates X . Another cop can dominate V (l j, r j+1) by definition of base collection. Similarly, 
two cops can dominate V (l j′−1, r j′ ) ∪ Y .

If j′ − j < 3, then the construction is completed. Otherwise, two additional cops can be used to dominate V (l j+1, r j+2). 
Hence, in the worst case 6 additional cops are used with respect to the ones that initially form B j, . . . , B j′ . No cop from a 
base Bi , i < j − 1 (respectively, i < j′ + 1), is used to hold l j (r j′ , respectively). Since q ≥ 12, the total number of cops used 
to construct the witness of endgame does not exceed k. �
Lemma 17. Let S be a winning strategy using k cops. For a robber state R(C, A) in S let R(Ci, Ai), i ∈ {1, . . . , q}, be the robber 
states of S reachable from R(C, A) in two moves (a robber’s move and a cops’ move). Let P = (l, r) be a playground corresponding to 
R(C, A) and Pi = (li, ri) be the playgrounds corresponding to R(Ci, Ai), i ∈ {1, . . . , q}. Then, there is a restricted cops’ strategy that 
uses k cops, starts in the cop-state canonical to §(l, r) and either wins or results in a cop-state canonical to one of §(li, ri).

Proof. By Lemma 15, there exists a semi-restricted search strategy S ′ that uses k cops and results in one of the 
§(l1, r1), . . . , §(lq, rq). The strategy S ′ performs several maneuvers and in the following we analyze two selected moves 
of S ′ after which the playground changes. Namely, let R(C ′, A′) be a state of S ′ such that at the end of the following cops’ 
move the playground changes to one of (l′1, r′

1), . . . , (l
′
q, r′

q). Let (l′, r′) be the playground in R(C ′, A′). We argue that there 
exists a restricted strategy S ′′ that starts from §(l′, r′) and arrives at one of the §(l′1, r′

1), . . . , §(l′q, r′
q). Let B = {B1, . . . , B p}

be the base collection in R(C ′, A′). If p < 12, then the two moves of S following R(C ′, A′) form a restricted strategy as 
required. Hence, let p ≥ 12 in the following.

In the remainder of this proof we assume that l′ /∈ ξ(B1) and r′ /∈ ξ(B p) as the other cases are similar with minor 
adjustments to border conditions. Namely having l′ ∈ ξ(B1) allows to use these cops to threaten V (l′1) and analogously
for r′ .

This assumption implies that l′1 = l′ , r′
q = r′ and p = q − 1. The strategy S ′′ performs the first maneuver by holding l′

and r′ and threatening V (l′1) ∪ V (r′
1) (by using the base B1). If the robber responds by occupying a vertex in V (l′, r′

1), then 
the strategy plays a split to (l′, r′

1) = (l′1, r′
1), and the lemma follows. Otherwise, the strategy plays a split to (l′1, r′). Then, 

the strategy continues by holding l′1 and r′ and threatening V (l′q) ∪ V (r′
q) (by using B p). If the robber responds by occupying 

a vertex in V (l′q, r′), then the strategy plays a split to (l′q, r′) = (l′q, rq), and the lemma follows.
Otherwise, the strategy plays a split to (l′1, r′

q) and performs iteratively the following maneuver. Let initially i = 1. The 
strategy holds l′i and r′

q and threatens V (l′i+2) ∪ V (r′
i+2) by forming the bases Bi+2 and Bi+3. Note that this is possible 

because no cop that currently holds the barrier l′i is used in those bases. If the robber decides to occupy a vertex in 
V (l′, r′ ), then the strategy splits to (l′, r′ ) and, by Lemma 16, an endgame maneuver is valid from this state. Otherwise, 
i i+2 i i+2
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i.e., if the robber occupies a vertex in (l′i+2, r
′
q), then the strategy plays a split to (l′i+2, r

′
q). If i +2 ≥ q −3, then, by Lemma 16, 

an endgame is possible from (l′i+2, r′
q). If i + 2 < q − 3, then we set i := i + 2 and repeat the above step. Thus, after a finite 

number of split maneuver, an endgame maneuver occurs as required. �
Proof of Theorem 13. The “if” part is straightforward, as the cops can play out the maneuvers of a restricted winning 
strategy. The maneuver properties and witnesses ensure that the moves are possible and that after the maneuver, the 
robber is inside the respective playground or captured. Note that the capture may occur even playing out a split maneuver.

For the other direction, let S be a shortest (i.e., with the minimum number of turns) cop’s winning strategy using k
cops. Note that if the cops play according to S , the game never revisits a game state.

Let S be the subgraph of the game state digraph representing S , in which the vertices are all the cop- and robber-states 
of the game. From each cop-vertex, there is exactly one cop-move in S , as dictated by S . From each robber-vertex, all the 
robber-moves are present in S . Note that we can assume S to be acyclic, since it is a shortest winning strategy. Also, fix any 
total ordering o of the states of S extending the partial order given by the arcs (moves).

For any robber-state in S find the maximum (with respect to o) robber-state R(C, B) in S with the same playground. 
We construct a winning restricted strategy T using k cops as follows. Let R(Ci, Ai) and (li, ri), i ∈ {1, . . . , t}, be the states in 
S and the corresponding playgrounds reachable from R(C, A) in two moves. By Lemma 17, there exists a restricted strategy 
that uses k cops, starts in state R(C, A) and leads to R(Ci, Ai) for each i ∈ {1, . . . , t}.

This leaves the game in a state canonical to one of §(li , ri) or WIN . Note that all §(li, ri) are different from §(l, r), 
because the state R(C, A) is latest such state.

Now we have that the latest occurrence of a robber-state with playground §(li, ri) is (with respect to o) larger than that 
of §(l, r). Therefore, by playing T , the latest state (with respect to o) with the same playground as the current one only 
increases. This proves that T is acyclic and therefore finite (as S is) and winning for the cops, as there is no draw or 
robber-win position in the game. �
5. Conclusions

We have shown a polynomial-time algorithm deciding the Cop and ∞-fast Robber game on interval graphs, therefore 
answering an open question of Fomin et al. posed in their paper “Pursuing a fast robber on a graph” [10].

Since the game is already NP-hard for general chordal graphs and even split graphs, it might be interesting to consider 
the complexity of the game on chordal graphs with bounded asteroidal number (or the number of leaves of the underlying 
tree for the standard intersection representation of chordal graphs) and the class of circular-arc graphs.

It seems that the notion of playgrounds of the reduced game can be extended to such graphs and they might have some 
common properties, but the analysis does not extend in a straightforward way. We propose the complexity of the game on 
such graphs as an open question. For chordal graphs, even an algorithm that is exponential in the asteroidal number would 
be of interest.

The definition of A-defensive domination generalizes k-defensive domination, but explicitly specifying A = (V
k

)
is not 

practical for even small values of k, making the complexity of the problems incomparable. One direction to take might be 
to introduce another way to specify A, perhaps inspired by matroid theory.

In this paper we only show an algorithm for A-defensive domination assuming an unbounded number of defenders al-
lowed on individual vertices. We strongly believe that specifying the number of allowed defenders for every vertex (in Dmax) 
still allows for a polynomial algorithm very similar to ours, but considering both Dmin and Dmax seems to increase the tech-
nical complexity way beyond the main scope of this paper.

It would of course be of interest to see efficient A-defensive domination algorithms for other classes, possibly specifying 
Dmin and Dmax as part of the input. Trees and, more generally, bounded tree-width graphs seem like natural candidates.
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