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Abstract

Surrogate models are becoming popular tools of choice in mitigating issues related to the 

excessive cost of electromagnetic (EM)-driven design of high-frequency structures. Among 

available techniques, approximation modeling is by far the most popular due to its versatility. 

In particular, the surrogates are exclusively based on the sampled simulation data with no need 

to involve engineering insight or problem-specific knowledge. Notwithstanding, a typically 

high nonlinearity of system outputs and the curse of dimensionality limit the applicability of 

conventional methods to relatively simple structures described by a few parameters within 

narrow ranges thereof. A recently reported nested kriging alleviates these difficulties from the 

perspective of an appropriate definition of the model domain. By focusing the modeling 

process on the region containing design that are optimized for the selected performance figures, 

it enables the construction of reliable surrogates over wide ranges of geometry/material 

parameters and operating conditions, both at a practically acceptable computational cost. The 

relative model domain thickness (i.e., its lateral-to-tangential size), determines the trade-off 

between the surrogate region of coverage and its predictive power, the former being essential 

for practical applications of the model, especially design optimization. This paper proposes a 

simple and computationally efficient procedure for automatic selection of the thickness 

parameter, which, in the original version of the method, was to be selected by the user. The 

importance of this aspect of the modeling process and the benefits of the proposed approach 

are demonstrated using a dual-band dipole antenna and miniaturized microstrip coupler.
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1. Introduction

The design of modern high-frequency structures, including microwave, antenna, and 

integrated photonic components, heavily relies on full-wave electromagnetic (EM) simulation 

tools. The employment of EM analysis is imperative to account for the effects and phenomena 

that cannot be reliably quantified using simpler means such as analytical or equivalent network 

models. Examples include EM cross-coupling in tightly arranged layouts of miniaturized 

microstrip circuits (filters [1], couplers [2]), mutual coupling in antenna arrays [3], the effects 

of connectors on electrical characteristics [4], distortion of antenna radiation patterns due to 

housing or radomes [5], characterization of wearable antennas under bending [6], as well as 

multi-physics evaluation (e.g., variations of high-power filter dimensions due to heating and 

the effects on return loss and transmission responses [7]). Unfortunately, full-wave analysis 

often incurs considerable computational expenditures. Typically, this is not an issue for design 

verification; however, repetitive simulations required by routinely executed tasks such as 

parameter tuning may turn prohibitive.

Several classes of methods are available to mitigate the aforementioned cost. One 

posadjoint senistivitysibility is the development of numerically efficient algorithms, both 

intrusive (e.g., adjoint sensitivities [8], [9] and their application to speed up gradient-based 

search procedures [10]) and non-intrusive (e.g., gradient search algorithms with sparse 

sensitivity updates [11], [12]). Another option is the utilization of fast surrogate models. In the 

context of local design optimization, the surrogates are normally constructed in the vicinity of 

the optimization path and can be either data-driven (polynomial regression [13], kriging [14], 

neural networks [15], polynomial chaos expansion [16]) or physics-based [17]. The latter is 

obtained from the underlying low-fidelity models, e.g., equivalent networks in the case of 

microstrip circuits [17], or coarse-mesh EM simulations in the case of antennas [18]. 

Representative optimization techniques include space mapping [19], feature-based 
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optimization [20], and various response correction methods [21]. In the context of global 

optimization, machine learning techniques are often employed [22], [23], as well as data-driven 

surrogates in combination with sequential sampling methods [24]. Other types of simulation-

driven design tasks can be accelerated using dedicated types of surrogates, with the 

representative example of polynomial chaos expansion models used for statistical analysis and 

robust design [25], [26].

The overall replacement of expensive EM simulations by fast surrogates is a 

conceptually attractive option. It potentially enables low-cost execution of various simulation-

based procedures, including parametric optimization. For this purpose, data-driven models 

seem to be especially suitable due to their versatility and easy access through various toolboxes, 

often Matlab based (e.g., [27], [28]). Popular approximation techniques include radial basis 

functions [29], kriging [30], Gaussian process regression [31], support vector regression [32], 

or neural networks [33]. Notwithstanding, modeling of high-frequency structures is a 

challenging endeavor due to several reasons: (i) considerable nonlinearity of the system 

responses, typically being the functions of frequency (e.g., return loss, transmission coefficient, 

gain, axial ratio, etc.), (ii) the need for constructing the models over wide ranges of the system 

parameters and its operating conditions, (iii) the curse of dimensionality, i.e., a rapid increase 

of the number of training data samples required to build a reliable model as a function of the 

number of system parameters. The second reason is dictated by the design utility of the 

surrogate, whereas the last one is a common problem for all sorts of data-driven models. 

Methods such as high dimensional model representation (HDMR) [34], orthogonal matching 

pursuit (OMP) [35], least-angle regression [36], or variable-fidelity approaches (co-kriging 

[37], Bayesian model fusion [38]) can be used to alleviate some of the mentioned issues under 

certain circumstances (e.g., the existence of small subsets of dominant basis functions for OMP, 

or availability of well-correlated low-fidelity models for co-kriging [37]).
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Recently, performance-driven (or constrained) modeling has been fostered as a way of 

constructing reliable surrogates at practically acceptable computational costs [39]-[41]. The 

major concept is a confinement of the model domain to a region containing designs that are 

nearly optimum with respect to the figures of interest relevant to the design problem at hand 

(operating frequencies, bandwidth, power split ratio, etc.). The domain is defined using a set 

of reference designs pre-optimized for selected performance figure vectors [39]; the details of 

analytical formulation vary between the methods. 

Among the reported techniques, the nested kriging framework [41] seems to be the most 

attractive because it permits handling several performance figures, allows for the arbitrary 

allocation of the reference designs, and incorporates straightforward mechanisms for uniform 

training data sampling and model optimization [41]. The technique employs two kriging 

interpolation metamodels, the first-level one to establish the domain, and the second-level 

model being the actual surrogate. However, the critical control parameter determining the 

domain thickness (i.e., the ratio between the lateral and tangential size of it) remains to be 

selected by the user. This parameter determines the domain volume, therefore directly affects 

(given the training data set) the predictive power of the surrogate [41]. At the same time, it also 

determines whether the surrogate accounts for all (or part) of the designs being optimum with 

respect to the selected figures of interest. The latter is necessary to make the model suitable for 

design purposes. Unfortunately, the nested kriging formalism does not provide any indication 

concerning the recommended value of the thickness parameter. This paper proposes a simple 

and computationally efficient method for setting it up in an automated manner. Our approach 

is based on estimating the domain thickness required for the surrogate to find the optimum 

design throughout the objective space. The estimation is carried out at the locations 

corresponding to the lowest accuracy of the first-level surrogate (i.e., worst-case scenarios), 

and then averaged over the entire space. The relevance of our methodology is validated through 
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consistency comparisons with the actual nested-kriging surrogates constructed for a range of 

thickness values. The verification experiments carried out for a dual-band dipole antenna, and 

a miniaturize rat-race coupler corroborate the reliability of the recommendations provided by 

the proposed approach.

2. Surrogate Modeling by Nested Kriging

This section outlines the concept and formulation of the nested kriging modelling 

framework. The proposed automated adjustment of the domain thickness parameter being the 

main topic of this work will be discussed in Section 3.

2.1.  Reference Designs and First-Level Surrogate

A conventional way of defining the surrogate model domain is through the lower and 

upper bounds for design variables. Interval domains are convenient to handle especially from 

the point of view of the design of experiments (training data sample allocation) and model 

optimization. Notwithstanding, the vast majority of the domain contains designs that are of 

poor quality. This is due to correlations between the optimum or nearly optimum parameter 

sets, corresponding to, e.g., the structure re-designed for various operating frequencies or 

bandwidths [41]. Performance-driven (or constrained) modeling [39] restricts the surrogate 

construction process to the region that contains high-quality designs with respect to relevant 

performance figures. The volume of such a region is dramatically smaller than the box-

constrained original domain. This translates into computational savings in terms of training 

data acquisition [40]. The nested kriging framework is a recent methodology following this 

approach [41]. The model domain is defined using the set of reference designs and the first-

level model as outlined below.

Let x = [x1 … xn]T be the vector of parameters of the high-frequency structure of interest. 

The (original) parameter space X is defined by the lower and upper bounds l = [l1 …, ln]T and 
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u = [u1 …, un]T, so that lk  xk  uk for k = 1, …, n. Let fk, k = 1, …, N, denote the figures of 

interest pertinent to the design task (e.g., operating frequencies for a multi-band antenna or 

power split ratio for a coupler). The objective space F is defined by the ranges fk.min  fk
(j)  

fk.max, k = 1, …, N. This is the intended region of validity for the surrogate. 

Given the objective vector f  F, the optimum design corresponding to f is understood 

as the solution to the problem

                                                 (1)* ( ) arg min ( , )FU U 
x

x f x f

where U is the scalar merit function quantifying the design utility. UF(F) represents all designs 

that are optimum in the sense of (1) for all f  F. The surrogate model domain is to be 

established in the vicinity of this set.

According to [41], UF(F) can be approximated using the reference designs x(j) 

= [x1
(j) … xn

(j)]T j = 1, …, p, optimized w.r.t. the performance vectors f(j) = [f1
(j) … fN

(j)] 

uniformly distributed within F;  x(j) may be available from the previous design work on the 

same structure or obtained specifically for surrogate model construction. The data set {f(j),x(j)} 

is used to identify the first-level surrogate model sI(f) that maps F into the parameter space X. 

It is implemented using kriging interpolation [30]. The image of the objective space through sI, 

sI(F)  X, is the approximation of UF(F). A graphical illustration of the concepts introduced in 

this section can be found in Fig. 1.

2.2.  Model Domain. Second-Level Surrogate

As illustrated in Fig. 1, the manifolds UF(F) and sI(F) coincide at all reference designs 

x(j). However, the number of such designs is normally small so the accuracy of sI(F) is limited. 

To ensure that the model domain contains the entire UF(F), an enlargement of sI(F) is 

necessary. Within the nested kriging framework, it is realized through an orthogonal extension 

of sI(F) towards its normal vectors.
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f2

f1

f2.max

f2.min

f1.maxf1.min

F

f (j)

x1

x3

x2

UF(F)

X
x(j)

(a)                                                                       (b)
Fig. 1. Graphical illustration of the concepts considered in Section 2.1: (a) objective space F (here, 
shown for two performance figures), (b) parameter space X (here, three-dimensional), the reference 
designs, the optimum design manifold UF(F), and the first-level surrogate image sI(F). Because the 
reference designs x(j) are optimal in the sense of (1), the manifolds UF(F) and sI(F) coincide at all x(j).

The following notation is utilized:

 {vn
(k)(f)}, k = 1, …, n – N - an orthonormal basis of vectors normal to sI(F) at f, 

 xmax = max{x(k), k = 1, …, p}, 

 xmin = min{x(k), k = 1, …, p}, 

 xd = xmax – xmin (parameter variations within sI(F))

Using these, the extension coefficients can be defined as

                (2)(1) ( )
1( ) [ ( ) ... ( )] 0.5 | ( ) | ... | ( ) |

TT n N
n N d n d nT  

     α f f f x v f x v f

where T is a user-defined thickness parameter. The coefficients k determine the boundaries of 

the surrogate model domain XS, which is located between the two manifolds: 

                                    (3)  ( )
1

: ( ) ( )n N k
I k nk

M X 

 
    x x s f f v f

The formal definition of XS takes the form of

                                    (4)
( )

1
( ) ( ) ( ) : ,

1 1, 1,...,

n N
k

I k k n
kS

k

F
X

k n N

 







      
      

x s f f v f f

Figure 2 provides a graphical illustration of the manifolds M+ and M–, as well as the 

domain XS. The second-level (i.e., the actual) surrogate is also a kriging interpolation model 
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rendered in XS, using {xB
(k),R(xB

(k))}k = 1, …, NB, as the training set, where xB
(k) are the training 

samples uniformly allocated in the domain, whereas R is the EM-simulation model of the high-

frequency structure of interest. The details concerning the sampling procedure can be found 

in [41]. 

The major computational benefit of the nested kriging technique is that the volume of 

the domain XS is significantly smaller than that of the original parameter space X. This directly 

translates into a considerably smaller number of training data samples required to establish a 

reliable model (or, equivalently, the improved predictive power of the surrogate given the same 

training data set size). Furthermore, the surrogate can be constructed over wide ranges of the 

system parameters and its operating conditions. The advantages of the technique are especially 

pronounced in higher-dimensional spaces where conventional approach (i.e., modeling within 

the box-constrained domain X) is computationally infeasible.

3. Automated Adjustment of Domain Thickness

This section describes the proposed procedure for automated a priori determination of 

the thickness parameter T, which results in a possibly small volume of the surrogate model 

domain while ensuring that the majority of the optimum design manifold UF(F) is contained 

therein. A numerical verification of the method will be discussed in Section 4.

x1

x3

x2

UF(F) sI(F)

XS

M+

M-sI(f (k))

v1
(k)

Fig. 2. The image sI(F) of the first-level surrogate model and the normal vector v1
(k) at f(k); the manifolds 

M– and M+ and the surrogate model domain XS defined as the orthogonal extension of sI(F).
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3.1. Domain Thickness: Importance and Selection Criteria.

As explained in Section 2, the nested kriging framework formulation only includes one 

control parameter, which is the domain thickness coefficient T. The modeling procedure does 

not give any indication about a suitable value of this parameter, which is otherwise critical 

from the point of view of the model accuracy, the cost of training data acquisition, and the 

model design utility [41]. On the one hand, decreasing T results in a significant reduction of 

the domain volume, by a factor (T1/T2)n – N, where T1 and T2 are previous and the new thickness 

parameter values, respectively. For example, diminishing T by 50 percent when operating in 

10-dimensional parameter space (n = 10) and two-dimensional objective space (N = 2), reduces 

the model domain volume by almost three orders of magnitude, which has a profound effect 

on the model accuracy. On the other hand, reducing T may lead to leaving a certain part (or 

even a majority) of the optimum design manifold UF(F) out of XS. The consequence is reduced 

design usefulness of the surrogate because the exact optimum is unreachable for some regions 

of the objective space. Figure 3 provides a graphical illustration.

For demonstration examples reported in the literature [41], [42], T was selected in the 

range between 0.05 and 0.15 with no further justification. Available numerical studies confirm 

the clear dependence of the model predictive power on the value of T.

Here, our objective is to develop a methodology for a priori estimation of the suitable 

value of the thickness parameter. The procedure should meet the following criteria being a 

combination of practical utility and computational efficiency:

 The estimation process should not entail excessive computational expenses; 

consequently, the employment of already available information (specifically, the 

reference designs) is preferred;

 The obtained T-value should ensure that the model domain XS contains a majority of 

the optimum design manifold UF(F);
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x1

x2

sI(F)

UF(F)

v1
(k)

x(k)

M+ (increasing T)

M- (increasing T)

Trade-off value of 
domain thickness T:
minimum volume 
while encompassing
majority of UF(F)XS

Fig. 3. Graphical illustration of the meaning of the thickness parameter T, for clarity, explained using 
two-dimensional parameter space. Increasing T enlarges the model domain which allows for 
encapsulating the optimum design manifold UF(F). At the same time, a larger domain requires more 
training samples to render reliable surrogate. The desired trade-off is to find the minimum value of T 
that still permits the incorporation of the majority of UF(F).

 While retaining the property above, the thickness parameter should be of possibly 

minimum value.

3.2. Automated Determination of Thickness Parameter 

The proposed estimation procedure is based on emulating surrogate model 

optimization; specifically, the behavior of the objective function value U for the optimization 

runs executed over a range of thickness parameter values. Reaching saturation of U indicates 

that the model domain contains the manifold UF(F). 

At this stage of the process, the second-level surrogate does not exist: finding a proper 

value of the thickness parameter is a prerequisite for further allocation of the training data and 

model identification. Therefore, the optimization as mentioned above is carried out using the 

linear (first-order Taylor) model of the system responses of the form

                                                    (5)( ) ( ) ( )( )R  L z R x J x z x

set up at x  sI(F). The model (5) requires the Jacobian matrix JR, here, estimated using finite 

differentiation. Because this entails n additional EM simulations, the number of points x 

involved in the procedure is necessarily small. Consequently, their locations are of importance 
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and should correspond to those regions of the objective space where the discrepancy between 

sI(F) and UF(F) is the largest. Although UF(F) is not known, it is expected that ||sI(F) – UF(F)|| 

is maximized between the reference designs (cf. Fig. 3). Having this in mind, the points xT
(j) 

for thickness parameter determination are selected as the centers of the simplexes S(j) obtained 

by the triangulation of the reference designs. In this work, to avoid degenerated simplexes, 

Delaunay triangulation is employed [43]. Figure 4 shows a graphical illustration for two-

dimensional objective space and three-dimensional parameter space.

Let b = [b1 ... bn–N]T be a vector of coefficients such that –1  bk  1, k = 1, ..., n – N, and let 

f  F. For a given the thickness parameter T and vector xT
(j) = sI(fT

(j)), j = 1, …, NS (here, NS is 

the number of simplexes S(j)) the extension coefficients ak(fT
(j)) are defined using (2). Consider 

the following minimization problem

                         (6)  ( ) ( ) ( ) ( ) ( )
1,

( ) min ( ) ( ) ( ) ,n Nj j k j j
j R I k k T n T Tk

E T U b a


  b f

L s f f v f f

with the starting point being b = [0 … 0]T and f = fT
(j), and UR being the merit function 

equivalent to U but with explicit dependence on the system response R, i.e., UR(R(x),f) = 

U(x,f). Note that  represents a deviation from the ( ) ( ) ( ) ( )
1

( ) ( ) ( ) ( )n N j k j j
I k k T n T I Tk

b a


   s f f v f s f

starting point xT
(j) = sI(fT

(j)), with sI(f) – sI(fT
(j)) and  being tangential ( ) ( ) ( )

1
( ) ( )n N j k j

k k T n Tk
b a

 f v f

shift (i.e., along the manifold sI(F)) and orthogonal shift (i.e., towards the normal vectors vn
(k)), 

respectively. The linear model L(j) is of the form (5), established at xT
(j).

Let T1 = 0 < T2 < … < TNT, be a sequence of thickness parameters such that TNT is 

sufficiently large to ensure that the entire UF(F)  XS for XS defined using TNT (in practice, 

using TNT = 0.2 or so is sufficient in most practical cases). The sequence Ej(Tk) obtained using 

(6) will be, therefore, decreasing and converging to Ej(TNT). Consider the normalized sequences

                                            (7)( )
.

( ) min{ : ( )}
max{ : ( )} min{ : ( )}

j k j kj
N k

j k j k

E T k E T
E

k E T k E T
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and their average over j = 1, …, NS

                                                            (8)( )
. .

1

1 SN
j

aver k N k
jS

E E
N 

 

The recommended value of the thickness parameter, Tth, is assigned as the one corresponding 

to the average value of the normalized objective equal to the threshold level Eth. In this work, 

we use Eth = 0.25 as a trade-off between the surrogate domain volume and the coverage of the 

manifold UF(F). Figure 5 provides a graphical illustration of the introduced concepts.

The above procedure employs several approximations; in particular, it utilizes the linear 

model of the system responses, as well as information gathered from a limited number of points 

across the parameter space. At the same time, it is computationally efficient because it only 

required NS(n + 1)  p(n + 1) EM simulations (the number of simplexes S(i) is normally close 

to the number p of the reference designs).

F

f (j)

x1

x3

x2

fT
(j)

S(j)

sI(F)

xT
(j)

x (j)

sI(.)

Fig. 4. Triangulation of the reference designs performed in the objective space. The centers fT
(j) of the 

resulting simplexes S(j) are mapped into the parameter space as xT
(j) = sI(fT

(j)). The vectors xT
(j) are used 

to determine the domain thickness parameter T.

EN.k
(j)

Eaver.k

0

1

T
T1T2 TNT

...

Eth

Tth

Fig. 5. Exemplary normalized sequences EN.k
(j) of (7) and the average sequence Eaver.k of (8). The 

recommended value Tth of the thickness parameter corresponds to the threshold value Eth of the 
normalized objective function.
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4. Numerical Results

This section provides a numerical verification of the procedure for the thickness 

parameter determination presented in Section 3. Our numerical experiments are conducted for 

a dual-band dipole antenna and a miniaturized rat-race coupler. In both cases, the objective 

space is two-dimensional with the figures of interest being the operating frequencies (antenna) 

and the operating frequency and the power split ratio (coupler). The validation consists of 

comparing the recommendations obtained using the procedure of Section 3 with the 

optimization results of the nested kriging surrogates constructed for several values of the 

thickness parameter.

4.1. Case I: Uniplanar Dual-Band Dipole Antenna

The first example is a dual-band uniplanar dipole antenna shown in Fig. 6 [44], 

implemented on a Rogers RO4350 substrate (εr = 3.5, h = 0.76 mm). It is fed by a 50 Ohm 

coplanar waveguide (CPW). The structure is described by six geometry parameters x = [l1 l2 l3 

w1 w2 w3]T, whereas l0 = 30, w0 = 3, s0 = 0.15 and o = 5 are fixed (all dimensions in mm). The 

EM antenna model R (~100,000 cells; simulation time 60 s) is implemented in CST Microwave 

Studio and evaluated using its time-domain solver.

We consider two figures of interest being the operating frequencies: f1 for the lower 

band, and f2 for the upper band. The surrogate model for the antenna is supposed to be 

constructed over the objective space defined by the following ranges of the mentioned figures: 

2.0 GHz ≤  f1  ≤ 3.0 GHz (lower band), and 4.0 GHz ≤  f2 ≤ 5.5 GHz (upper band). The first-

level model is rendered using ten reference designs x(j), j = 1, …, 10, corresponding to the 

following operating frequency pairs: {f1,f2} = {2.0, 4.0}, {2.2, 5.0}, {2.0, 5.0}, {2.3, 4.5}, {2.4, 

5.5}, {2.6, 4.0}, {2.7, 5.3}, {2.8, 4.7}, {3.0, 4.0}, and {3.0, 5.5} (frequencies in GHz). The 

parameter space X is defined by the lower and upper bounds l = [29 5.0 17 0.2 1.5 0.5]T, and u 

= [42 12 25 0.6 5.2 3.5]T, derived from {x(j)}. It is worth noticing that the parameter ranges are 
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very wide for this case: the ratio between the upper and the lower bounds varies from 1.5 to 

7.0 with the average of 3.1. This makes the modeling problem a challenging one. 

The procedure of Section 3.2 has been used to estimate a suitable value of the thickness 

parameter T. Figure 7 shows the reference designs, their triangulation, as well as the location 

of the vectors fT
(j). The problem (6) is solved at xT

(j) = sI(fT
(j)) for the sequence T1 = 0.0, T2 = 

0.01, …, T26 = 0.15. Figure 8 shows the plots of the normalized objective value sequences EN.k
(j) 

as well as the average sequence Eaver.k. For the threshold level Eth = 0.25, the recommended 

value of the thickness parameter is Tth = 0.062. Here, the objective function values below have 

been rounded up to 0.03, which corresponds to around –20 dB of the reflection level at and 

around the antenna resonances. The reason is that, in practice, there is no need to go beyond 

this value, so that domain extension aimed at further improving the optimization results is not 

necessary. For this reason, some of the normalized sequences EN.k
(j) in Fig. 8 coincide with the 

horizontal axis because the mentioned objective function value is obtained even for T = 0. 

Verification of the recommended domain thickness parameter Tth has been arranged as 

follows. The second-level surrogate has been constructed for various thickness parameter 

values from 0.0 to 0.15 (with the step of 0.01). In each case, 800 training samples were allocated 

in the corresponding domain XS. Subsequently, the models were optimized for a number of 

objective vectors f, including the points fT
(j), supplemented by a certain number of random 

locations (50 points in total). Table 1 gathers the numerical data, in particular, the objective 

function values averaged over the testing set. It can be observed that the average value starts 

saturating around T = 0.06, which agrees very well with Tth. This indicates that the estimate 

provided by the procedure of Section 3.2 is indeed reliable. 

For additional validation, the models obtained for T = 0.0, 0.03, 0.06, and 0.10 have 

been investigated in more detail, especially to compare the quality (in relation to EM-simulated 

antenna characteristics) of the optimized designs produced by the respective surrogates. Figure 
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9 shows the optimized antenna responses obtained for the four considered models and two 

selected sets of design specifications. It can be observed that the predictions provided by the 

surrogate agree well with EM simulation results for the models constructed with T = 0.0 

through T = 0.06; however, noticeable discrepancies can be observed for T = 0.15. At the same 

time, as expected, the models constructed in larger domains (i.e., higher values of T) allow for 

yielding design that exhibits improved objective function levels. The recommended value of T 

= 0.06 seems to be a good compromise between the quality of surrogate prediction and the 

achievable optimum design. One can also notice that the thickness parameter, which is slightly 

smaller than the recommended value (here, T = 0.03) may still be considered the right choice. 

Although the corresponding surrogate is not capable of reducing the objective function as much 

as the model rendered for T = 0.06, the quality is still comparable, whereas smaller T enables 

clear computational benefits due to significantly reduced domain volume.

l0

w0

s0

w1

w2

w3

l1

l2

l3

o

Fig. 6. Geometry of dual-band uniplanar dipole antenna [44].

2 2.2 2.4 2.6 2.8 3
f1 [GHz]

4

4.5

5

5.5

f 2 [G
H

z]

Fig. 7. Dual-band antenna: reference designs (small circles), their triangulation, and the simplex centers 
(large circles). These points are used as fT

(j) to execute the thickness parameter determination procedure 
of Section 3.2.
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Fig. 8. Dual-band antenna: normalized objective value sequences EN.k
(j) (thin lines) and the average 

sequence Eaver.k (thick line). The recommended domain thickness corresponding to the Eth = 0.25 is 
Tth = 0.062.
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Fig. 9. Dual-band antenna: initial design (), surrogate model at the optimized design (- - -), and EM-
simulated response at the optimized design (—) for nested-kriging surrogates constructed with the 
domain thickness parameters T = 0, T = 0.03, T = 0.06 (recommended value), and T = 0.15, shown for 
two selected target operating frequency vectors ((a), and (b), respectively). The recommended value 
gives a good compromise between the surrogate model prediction and further agreement with the EM 
simulation results. The model constructed with smaller T (here, 0.03) can also be considered acceptable, 
whereas the remaining models either exhibit insufficient coverage of the optimum design manifold (T = 
0), or insufficient predictive power of the surrogate (T = 0.15).
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Table 1. Dual-band antenna: nested kriging surrogates and their optimization results

Thickness 
parameter T

Nested kriging model 
setup* Relative RMS error# Model optimization: average 

objective function value$

0.00 NB = 800 1.8 % –15.4 dB

0.01 NB = 800 1.6 % –16.9 dB

0.02 NB = 800 1.9 % –17.1 dB

0.03 NB = 800 2.2 % –17.4 dB

0.04 NB = 800 2.1 % –17.5 dB

0.05 NB = 800 2.4 % –17.6 dB

0.06 NB = 800 2.5 % –17.8 dB

0.07 NB = 800 3.1 % –18.0 dB

0.08 NB = 800 3.1 % –17.8 dB

0.09 NB = 800 3.2 % –17.9 dB

0.10 NB = 800 3.4 % –18.2 dB

0.11 NB = 800 3.5 % –17.9 dB

0.12 NB = 800 4.0 % –18.0 dB

0.13 NB = 800 4.2 % –17.8 dB

0.14 NB = 800 4.6 % –17.8 dB

0.15 NB = 800 4.8 % –18.1 dB
* NB stands for the number of training samples. The design of experiments procedure can be found in [41].
# Model accuracy estimated using the split-sample method based on 100 random samples. The table provides 
relative error ||R(x) – Rs(x)||/||R(x)|| averaged over the testing set.
$ Surrogate model optimized within the domain XS. The displayed value is the average over fifty initial 
designs including the simplex centers xT

(j) and additional random points.

4.2. Case II: Miniaturized Rat-Race Coupler

The second example is a miniaturized rat-race coupler (RRC) [45] shown in Fig. 10. 

The geometry parameters of the structure are x = [l1 l2 l3 d w w1]T; other dimensions are d1 = d 

+ |w – w1|, d = 1.0, w0 = 1.7, and l0 = 15 fixed (all in mm). The transmission lines of the RRC 

are folded to the inside of the layout in order to reduce its footprint. The structure is 

implemented on RF-35 substrate (εr = 3.5, h = 0.762 mm, tan δ = 0.0018). Similarly as for the 

previous example, the computational model R is also implemented in CST Microwave Studio 

(here, evaluated using frequency-domain solver).

For the RRC, the figures of interest are the operating frequency f0 and the power split 

ratio K. The goal is to construct the surrogate model covering the objective space defined by the 

following ranges: 1 GHz to 2 GHz for the operating frequency, and –6 dB do 0 dB (i.e., equal 
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power split) for K. Design optimality for the coupler is understood by fulfilling the following 

criteria: (i) the transmission characteristics S21 and S31 realize |S21| – |S31| = K at f0, and (ii) the 

matching |S11| and isolation |S41| are minimized at f0. In practice, the merit function U is 

implemented to minimize |S11| and |S41| (as the primary objective) while enforcing |S21| – |S31| = 

K using the penalty function approach. The first-level surrogate is constructed using twelve 

reference designs corresponding to the following pairs of {f0,K}: {1.0,0}, {1.0,–2}, {1.0,–6}, 

{1.2,–4}, {1.3,0}, {1.5,–2}, {1.5,–5}, {1.7,0}, {1.7,–6}, {1.8,–3}, {2.0,0}, and {2.0,–6} 

(frequency in GHz, power split ratio in dB). The lower and upper bounds defining the 

parameter space X are l = [2.0 7.0 12.5 0.2 0.7 0.2]T and u = [4.5 12.5 22.0 0.65 1.5 0.9]T.

The thickness parameter has been estimated using the procedure of Section 3.2. The 

reference designs are shown in Fig. 11, along with their triangulation and location of the vectors 

fT
(j). The problem (6) is solved at xT

(j) = sI(fT
(j)) for the same sequence as in the case of the 

previous example: T1 = 0.0, T2 = 0.01, …, T26 = 0.15. Figure 12 shows the normalized objective 

sequences EN.k
(j) and Eaver.k. Here, the recommended value of the thickness parameter Tth is 

0.115 (corresponding to the threshold level Eth = 0.25). The objective function values below 

have been rounded up to –35 dB which corresponds to good practical designs.

Verification of the recommended value of Tth has been realized by constructing and 

analyzing the second-level surrogate for various thickness parameters from 0.0 to 0.15 (with 

the step of 0.01). The models were optimized for a number of objective vectors f (the points 

fT
(j) supplemented by random locations, 50 points in total). Table 2 shows the numerical data, 

in particular, the objective function values averaged over the testing set. Note that the average 

value starts saturating around T = 0.10, which agrees very well with Tth. This corroborates the 

reliability of the estimate provided by the procedure of Section 3.2.

Similarly as in Section 4.1, additional validation has been carried out. The models 

obtained for T = 0.0, 0.06, 0.11, and 0.15 have been investigated in more detail. Figure 13 
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shows the optimized coupler responses obtained for the considered models. Note that the 

predictions provided by the surrogate agree well with EM simulation results for the models 

constructed with T = 0.0 and 0.6, and it is slightly worse for T = 0.11. For T = 0.15, the 

discrepancies between the surrogate and EM simulation become quite noticeable, i.e., 

reliability of the optimization process is degraded to a certain extent.

On the other hand, as expected, the models constructed in larger domains (i.e., higher 

values of T) allow for yielding design that exhibits improved objective function levels. 

Similarly as for the previous example, the recommended value (here, T = 0.11) seems to be a 

reasonable compromise between the quality of surrogate prediction and the achievable 

optimum design. Also, using the thickness parameter, which is slightly smaller than the 

recommended value (here, T = 0.06) seems to be a good option. The surrogate model accuracy 

is much better for T = 0.06 than for T = 0.11 (4.0 versus 6.6 percent of the average RMS error), 

whereas the average improvement of the objective function is not significant (less than 1 dB).

1 2

3 4

l1
l2 l3

dw1 ww
d1

Fig. 10. Geometry of the compact microstrip rat-race coupler (RRC) [45].
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0

K
 [d

B
]

Fig. 11. Rat-race coupler: reference designs (small circles), their triangulation, and the simplex centers 
(large circles). These points are used as xT

(j) to execute the thickness parameter determination procedure 
of Section 3.2.
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Fig. 12. Rat-race coupler: normalized objective value sequences EN.k
(j) (thin lines) and the average 

sequence Eaver.k (thick line). The recommended domain thickness corresponding to the Eth = 0.25 is 
Tth = 0.115.
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Fig. 9. Rat-race coupler: initial design (), surrogate model at the optimized design (- - -), and EM-
simulated response at the optimized design (—) for nested-kriging surrogates constructed with the domain 
thickness parameters T = 0, T = 0.06, T = 0.11 (recommended value), and T = 0.15, shown for two selected 
target operating frequency vectors ((a), and (b), respectively). The recommended value gives a good 
compromise between the surrogate model prediction and further agreement with the EM simulation 
results. The model constructed with smaller T (here, 0.06) can also be considered acceptable. The model 
with T = 0 shows a somehow limited coverage of the optimum design manifold; however, this effect is 
here less pronounced than for the first example. The model with T = 0.5 exhibits insufficient predictive 
power of the surrogate (noticeable discrepancies between the surrogate and EM-simulated responses).

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Table 2. Rat-race coupler: nested kriging surrogates and their optimization results

Thickness 
parameter T

Nested kriging model 
setup* Relative RMS error# Model optimization: average 

objective function value$

0.00 NB = 800  0.7 % –23.8 dB

0.01 NB = 800 1.2 % –26.2 dB

0.02 NB = 800 1.7 % –26.8 dB

0.03 NB = 800 2.2 % –27.3 dB

0.04 NB = 800 2.8 % –27.7 dB

0.05 NB = 800 3.3 % –28.0 dB

0.06 NB = 800 4.0 % –28.1 dB

0.07 NB = 800 4.6 % –28.2 dB

0.08 NB = 800 5.1 % –28.4 dB

0.09 NB = 800 5.1 % –28.6 dB

0.10 NB = 800 6.1 % –28.9 dB

0.11 NB = 800 6.6 % –29.0 dB

0.12 NB = 800 7.2 % –29.0 dB

0.13 NB = 800 7.7 % –29.2 dB

0.14 NB = 800 8.3 % –29.3 dB

0.15 NB = 800 8.9 % –29.3 dB
* NB stands for the number of training samples. The design of experiments procedure can be found in [41].
# Model accuracy estimated using the split-sample method based on 100 random samples. The table provides 
relative error ||R(x) – Rs(x)||/||R(x)|| averaged over the testing set.
$ Surrogate model optimized within the domain XS. The displayed value is the average over fifty initial 
designs including the simplex centers xT

(j) and additional random points.

5. Conclusion

The paper proposed a procedure for low-cost a priori determination of the thickness 

parameter of the surrogate model domain, which is a critical component of setting up the nested 

kriging framework, the recent approach to constrained modeling of high-frequency structures. 

The value of this parameter determines the domain volume, which directly translates into a 

computational cost of training data acquisition, but also the model utility: too small domain 

hinders applicability of the surrogate in the context of design optimization. So far, the 

parameter had to be chosen arbitrarily and its relevance could only be assessed a posteriori, 

upon investigating the properties of the already constructed surrogate. Our methodology allows 

for reliable domain thickness estimation so that the model domain contains the majority of the 
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optimum designs (w.r.t. the relevant performance figures and the assumed objective space). 

The process involves a sequence of constrained optimization runs executed on analytical 

models (therefore, of negligible cost), with the models themselves constructed using the system 

responses and their numerical derivatives computed as carefully selected locations. The latter 

ensures the low cost of the entire scheme. Comprehensive numerical validation involving a 

dual-band dipole antenna and a miniaturized microstrip coupler demonstrates the relevance of 

the thickness parameter determination algorithm. The presented procedure is a fundamental 

component of rendering the nested kriging surrogates, lacking in the original formulation of 

the method. It permits an adequate establishment of the region of validity of the model and 

allows for maximizing its utility while retaining the practically acceptable cost of training data 

acquisition.
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