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Abstract—In this contribution, we present the Crank-Nicolson
finite-difference time-domain (CN-FDTD) method, implemented
for simulations of wave propagation in media described by time-
fractional (TF) constitutive relations. That is, the considered con-
stitutive relations involve fractional-order (FO) derivatives based
on the Grünwald-Letnikov definition, allowing for description of
hereditary properties and memory effects of media and processes.
Therefore, the TF constitutive relations make it possible to
include, in a dielectric response, diffusion processes which are
modelled mathematically by the diffusion-wave equation.

We formulate fundamental equations of the proposed CN-
FDTD method, and then we execute simulations which confirm its
accuracy and applicability. Additionally, we perform numerical
tests of stability, which confirm unconditional stability of the
method. The proposed method is useful for researchers investigat-
ing numerical techniques in media described by FO derivatives.

Index Terms—finite-difference time-domain, Crank-Nicolson
method, fractional calculus, Grünwald-Letnikov derivative, com-
putational electromagnetics.

I. INTRODUCTION

The finite-difference time-domain (FDTD) method [1] is
one of the flagship computational tools, whose accuracy and
usefulness are proven in solving real-world electromagnetics
problems. It belongs to the class of grid-based differential
methods, which discretize time-dependent Maxwell’s equa-
tions in partial-differential form with the use of central-
difference approximations to partial derivatives. Then the
obtained equations are solved with the use of an explicit
time stepping scheme, i.e., the so-called leapfrog integration
scheme. Unfortunately, the efficiency of FDTD is limited due
to the Courant-Friedrich-Lewy (CFL) stability constraint [2],
which limits the maximum stable time-step size applicable in
this method. In order to avoid this issue, various implicit inte-
gration schemes were proposed, including the Crank-Nicolson
(CN) method. Its fundamental application to the FDTD scheme
is presented in [3], [4], whilst its application to dispersive
materials is formulated in [5]. Afterwards, the analysis of
microwave circuits with the use of CN-FDTD is demonstrated
in [6].

In this contribution, we demonstrate the application of the
CN-FDTD method to analyse wave propagation in media
described by time-fractional (TF) constitutive relations. That
is, the media are described by fractional-order (FO) derivatives

in the time domain allowing for description of hereditary
properties and memory effects of media and processes [7], [8],
[9]. Therefore, the TF constitutive relations allow for inclusion
of diffusion processes, which are modelled mathematically
by the diffusion-wave equation, in a dielectric response. This
equation interpolates between the diffusion equation and the
wave equation, which behave quite differently concerning their
response to a localized disturbance.

We start with a short introduction of the mathematical
notation used throughout the paper. In Section III, the TF con-
stitutive relations are introduced. The CN-FDTD method for
TF constitutive relations is presented in Section IV, whereas
numerical results obtained for this method are presented in
Sections V. Finally, we draw a conclusion in Section VI.
We believe that the proposed CN-FDTD method is useful for
researchers interested in numerical techniques applicable to
the media described by FO derivatives.

II. PRELIMINARIES

In this research, the fractional derivative of the order α > 0
is defined based on the Grünwald-Letnikov definition [10, Sec.
20.1-20.4]

Dαf(t) = lim
h→0+

∆α
hf(t)

hα
(1)

where

∆α
hf(t) =

∞∑
j=0

Pj(α)f(t− jh) (2)

Pj(α) = (−1)j
(
α

j

)
. (3)

For a sufficiently small step size h, it may be considered as
a good approximation of the FO derivative. The Grünwald-
Letnikov derivative coincides, for a very broad class of func-
tions, with the Marchaud definition [10, Sec. 5.4-5.5], usually
applied by us in previous investigations of TF electrodynamics
[7], [8], [9]. That is, both definitions satisfy the linearity
and semigroup conditions; they are also representable in the
phasor domain [11], [12]. Using (2), we define the fractional
difference which allows for approximation of FO models
(FOMs)

∆αfn =

n∑
j=0

Pj(α)q
−jfn (4)
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where fn denotes the discrete-time function (i.e., fn = f(nT ),
T is the sampling period), q−1 denotes the backward-shift
operator, and n ∈ N∪{0} is the time index. In this research we
assume that time-domain functions are causal (i.e., f(t) = 0
for t < 0). Therefore we set the upper summation limit in (4)
to n. For an integer order of the derivative (1), it reduces to
the standard form of a derivative definition [13].

III. MEDIA DESCRIBED BY FOMS

Our aim is to implement the CN-FDTD method with the
following constitutive relations:

ϵβE = D1−β
t D, 0 < β ≤ 1 (5)

µγH = D1−γ
t B, 0 < γ ≤ 1. (6)

For β = 1 and γ = 1, one obtains ordinary constitutive
relations with the permittivity ϵ = ϵ1 and the permeability
µ = µ1:

D = ϵE (7)

B = µH. (8)

Therefore, to some extent, (5)–(6) are extensions of the classi-
cal macroscopic models of electromagnetic media. However,
in order to avoid inconsistency of the units, one assumes the
following SI units for the parameters in (5)–(6): [ϵβ ] = F

s1−βm
,

[µγ ] = H
s1−γm . The constitutive relations (5)–(6) allow for

describing hereditary properties and memory effects of media
and processes [14]. In [15], Westerlund and Ekstam demon-
strate, experimentally, that purely empiric Curie’s law [16]
is satisfied by all the dielectrics and insulators. That is, the
excitation of a dielectric material between electrodes of a
capacitor with a constant DC voltage U0 at the time t = 0
results in the current

i(t) =
U0

h1tβ
(9)

where t > 0, β ∈ (0, 1) denotes the parameter stemming from
energy losses, and h1 describes geometrical and dielectric pa-
rameters of such a capacitor. This formula can be generalized
towards FOM of a capacitor

i(t) = CβD
β
t v(t) (10)

where Dβ
t denotes the FO derivative in the time domain,

Cβ = Γ(1−β)
h1

, v(t) = U01(t) and 1(t) denotes the Heaviside-
step function. In [17], it is demonstrated that the constitutive
relation (5) between D and E provides the experimentally
observed formula (10) for a capacitor when circuit-theory
models are formulated for FO RLC lumped elements. In
[14], the need for FO derivatives to mathematically model
the real-life systems is postulated. The author claims that
all the systems include an infinite memory of earlier events.
Therefore, one has to include this record of earlier events when
using FO derivatives, in order to model mathematically the
behaviour of devices and systems. Based on that, as in (5),
the classical relation between B and H is generalized towards
(6).
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Fig. 1. Yee’s grid.

IV. PROPOSED CN-FDTD METHOD

A. Spatial Discretization

Using TF derivatives, one can include energy losses in
Maxwell’s equations. It leads to the following curl equations
with FO time derivatives:

∇×E = −µγD
γ
t H−Ms (11)

∇×H = ϵβD
β
t E+ Js (12)

where Js and Ms denote, respectively, the electric- and
magnetic-current density of sources. These equations can be
formulated in the matrix form of state-space equation[

Dβ
t 0
0 Dγ

t

] [
E
H

]
=

[
0 ϵ−1

β [∇×]

−µ−1
γ [∇×] 0

] [
E
H

]
+

[
−ϵ−1

β 0

0 −µ−1
γ

] [
Js

Ms

]
.

(13)

In order to implement CN-FDTD, (13) has to be discretized
spatially with the use of Yee’s grid [18] (see Fig. 1). For this
purpose, the computational domain V (i.e., 3-D cuboid in the
Cartesian space) is decomposed into smaller cuboid cells Vi,j,k

in the following way:

V = {Vi,j,k ∈ R3 : [xi, xi+1]× [yj , yj+1]× [zk, zk+1]} (14)

where i = 0, ..., Nx − 1, j = 0, ..., Ny − 1, k = 0, ..., Nz − 1.
The volume of the cell Vi,j,k is equal to ∆xi∆yj∆zk, where
∆xi = xi+1−xi, ∆yj = yj+1−yj , ∆zk = zk+1−zk. Hence,
the total number of cells in the considered domain is equal to
NxNyNz . Practically, boundary field values are fixed owing to
boundary conditions. Hence we assume that the components
Ex, Ey , Ez , Hx, Hy , Hz are sampled in Nex, Ney , Nez ,
Nhx, Nhy , Nhz points, respectively. With such a grid, the
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spatial-domain discretization of (13) can be performed. Then
one obtains the following state-space equation:

Dx = Ax+Bu (15)

where

D =

[
Dβ

t 0
0 Dγ

t

]
A =

[
0 ϵ−1

β [∇×]HD
−µ−1

γ [∇×]ED 0

]
(16)

B =

[
−ϵ−1

β INe
0

0 −µ−1
γ INh

]
(17)

x = [(Ex)1, ..., (Ex)Nex
, (Ey)1, ..., (Ey)Ney

,

(Ez)1, ..., (Ez)Nez
, (Hx)1, ..., (Hx)Nhx

,

(Hy)1, ..., (Hy)Nhy
, (Hz)1, ..., (Hz)Nhz

]T

u = [(Jsx)1, ..., (Jsx)Nex
, (Jsy)1, ..., (Jsy)Ney

,

(Jsz)1, ..., (Jsz)Nez
, (Msx)1, ..., (Msx)Nhx

,

(Msy)1, ..., (Msy)Nhy
, (Msz)1, ..., (Msz)Nhz

]T

where Ne = Nex + Ney + Nez , Nh = Nhx + Nhy + Nhz ,
IN is the square identity matrix of the size N × N , whilst
[∇×]ED and [∇×]HD are discrete equivalents of the curl operator
for the electric- and magnetic-fields, respectively. The matrix
operators [∇×]ED and [∇×]HD of size Nh ×Ne and Ne ×Nh,
respectively, approximate the curl operator by the difference
quotients of the field values in the considered cell Vi,j,k, and
in the neighbouring cells. The spatial discretization has to be
sufficiently dense to accurately represent (13) with the use of
(15) formulated in the discrete spatial domain.

B. Time Discretization

State-space equations can usually be discretized in the
time domain, based on either the forward- or backward-Euler
method, as well as with the use of CN method (also called
the Tustin method in the control engineering literature) [19].
In this contribution, we focus on CN discretization in the time
domain, which is usually computationally expensive but, on
the other hand, is accurate and unconditionally stable.

Assuming that the sampling time is T , we denote xn =
x(nT ) and un+ 1

2
= 1

2 (un+1 + un). Then we approximate
the fractional derivative according to the Grünwald-Letnikov
definition (1), assuming the finite time-step size T > 0.

1) Case β = γ = ν: In this case, one obtains(
IN − T ν

2
A

)
xn+1 =

(
νIN +

T ν

2
A

)
xn + T νBun+ 1

2

for n = 0 and(
IN − T ν

2
A

)
xn+1 =

(
νIN +

T ν

2
A

)
xn + T νBun+ 1

2

−
n∑

j=1

Pj+1(ν)xn−j

(18)

for n ≥ 1.

2) Case β ̸= γ: In this case, one obtains(
IN − 1

2
T(β, γ)A

)
xn+1 =

(
IN +

1

2
T(β, γ)A

)
xn

+T(β, γ)Bun+ 1
2

for n = 0 and(
IN − 1

2
T(β, γ)A

)
xn+1 =

(
IN +

1

2
T(β, γ)A

)
xn

+T(β, γ)Bun+ 1
2
−

n+1∑
j=2

Pj(β, γ)xn+1−j

(19)

for n ≥ 1, where

Pj(β, γ) =

[
Pj(β)INe 0

0 Pj(γ)INh

]
T(β, γ) =

[
T βINe

0
0 T γINh

]
.

Usually, the matrices on the left-hand side of the above
equations are sparse, hence it is not recommended to invert
them to obtain the form resembling standard discrete-time
state-space equations, known from control engineering [20].
Otherwise, the application of inverse matrix in the iterative
solving procedure would increase the memory consumption
and computational overhead of the method.

C. Stability

For electromagnetic systems employing constitutive rela-
tions (7)–(8), the CN method is unconditionally stable [4].
In our research, stable simulations with constitutive relations
(7)–(8) are modified with FO derivatives. The formal proof
that CN discretization is also unconditionally stable for the
case with FO derivatives is presented in [21].

V. SIMULATION RESULTS

The proposed CN-FDTD method is implemented in a
code for simulations of one-way propagation of a non-
monochromatic plane wave (Ex and Hy components). It
allows us to easily refer to the results already presented in the
literature [7], in order to prove the correctness of the method.
In this simulation scenario, impinging of the plane wave on
the half-space described by the TF constitutive relations is
considered. Then the wave is transferred into the medium and
propagates towards the +z direction. Therefore, the signalling
problem is simulated where the electric field at the domain
boundary excites the wave. The waveforms at the distance
L are computed using both the proposed and the reference
methods [7]. We set the order of derivatives β = γ = ν at
the level slightly below the unit, i.e., only small perturbations
of time-derivative orders in Maxwell’s equations (11)–(12) are
considered. In our research we focus on small perturbations of
the parameter ν, in order to obtain characteristics known from
wave propagation rather than from diffusion. Let us consider
the excitation, which is the Gaussian-modulated sinusoidal
pulse as in [7]. The central frequency is set at fc = 590 THz
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Fig. 2. Propagation of Gaussian-modulated sinusoidal pulse in medium described by TF constitutive relations. Signal measured at distance L = 10 µm. (a)
Excitation signal. (b) ν = 1 (vacuum). (c) ν = 0.995. (d) ν = 0.99. (e) ν = 0.98. (f) ν = 0.97. Results are presented for developed CN-FDTD method (—
CFL = 1, — CFL = 3, — CFL = 5) and reference method (- -). All lines overlap.

(the wavelength λc = 508 nm in a vacuum) and the spectrum
covers the visible band, i.e., 430–750 THz (399–697 nm). Our
aim is to increase the time-step size above the standard FDTD
stability limit ∆tFDTD = ∆z/c (i.e., ∆t = ∆tFDTDCFL in our
simulations) and reproduce the reference results with the use
of CN-FDTD.

The simulation results are shown in Fig. 2, where the wave-
forms measured at the distance L = 10 µm from the source,
for varying values of the parameter ν, are demonstrated. The
excitation signal is presented in Fig. 2(a), whilst the result for
the reference case of a vacuum (ν = 1) is presented in Fig.
2(b). In Figs. 2(c)–(f), values of the parameter ν decrease.
Due to a small distance of signal propagation, the pulse-like
waveforms are obtained with highly attenuated amplitudes. As
one can note, the results obtained with the use of the proposed
and reference methods overlap perfectly. Therefore, in Table
I, we provide the values of the relative error (in dB) for CN-
FDTD with reference to the frequency-domain method. The
relative error is, on average, around −36 dB for CFL = 1, then
it is around −32 dB for CFL = 3, and approaches −23 dB for
CFL = 5. Hence, the relative error increases simultaneously
with the CFL factor. However, an increase of the CFL factor
allows for speeding up the computations CFL times.

In the simulations presented above, the time-step size is
greater than the CFL stability limit for standard FDTD. Let
us investigate the stability of these CN-FDTD simulations,
using the numerical method [22], [23] based on the global

TABLE I
RELATIVE ERROR OF CN-FDTD WITH TF CONSTITUTIVE RELATIONS

ν
CFL

1 3 5

1 -34.5 -35.9 -21.3
0.995 -35.3 -34 -22.9
0.99 -35.7 -31.4 -23.4
0.98 -36.3 -29.3 -23.5
0.97 -37.2 -29 -23.9

complex roots and poles finding (GRPF) algorithm [24]. This
stability test can be applied if it is possible to formulate the
characteristic equation in the form for which the existence of
a root inside the unit circle on the complex plane implicates
instability. Hence we transfer (19) into the z-domain, assuming
that n → +∞, and subtracting z = 1/w. Then one obtains
the following characteristic equation for CN-FDTD with the
TF constitutive relations (5)–(6):

f(w) = det

[
(1− w)νIN − 1

2
T ν(1 + w)A

]
= 0. (20)

Then, we execute the GRPF algorithm and search for roots
of the characteristic equation (20) inside the unit circle at
the complex plane. The GRPF algorithm operates on four
complex-plane quadrants ({Q1 : 0 ≤ arg[f(w)] < π/2},
{Q2 : π/2 ≤ arg[f(w)] < π}, {Q3 : π ≤ arg[f(w)] <
3π/2}, {Q4 : 3π/2 ≤ arg[f(w)] < 2π}). Roots of the charac-
teristic equation f(w) = 0 can be found based on a plane/unit
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circle triangulation, and Cauchy’s argument principle. If there
is a change of phase around a point inside the unit circle,
which is equal to 2qπ in the counterclockwise direction, then
this point is a root of order q, and the CN-FDTD method is
unstable (refer to [24]).

We execute stability tests for CN-FDTD with the parameters
CFL and ν as for simulation results in Fig. 2. However,
we reduce the size of the domain to 64 points in order to
finish the tests within a reasonable time. In all the considered
cases, we do not obtain roots of the characteristic equation
(20) for |w| < 1. Although the algorithm detects roots for
|w| = 1, these are single-order roots, which do not implicate
an explosion of CN-FDTD solution. A graph of exemplary
stability-test results is presented in Fig. 3, where the complex
w-plane with phase quadrants of the function f(w) (given by
the characteristic equation (20) with CFL = 5 and ν = 0.97)
is shown. There are 127 complex roots detected around the
unit circle by the GRPF algorithm. One of them w = 1 + 0i
is located on the unit circle, whereas the remaining ones are
outside. These roots are visible as changes of phase between
quadrants Q1 → Q2 → Q3 → Q4 in the counterclockwise
direction on the complex w-plane (i.e., the colours ■ → ■
→ ■ → ■ change in the counterclockwise direction around
a considered point). It means that CN-FDTD with the TF
constitutive relations (5)–(6) is stable.

Fig. 3. Quadrants of phase (■ Q1, ■ Q2, ■ Q3, ■ Q4) for f(w) function
when CFL = 5 and ν = 0.97. Unit circle is denoted by - -.

VI. CONCLUSION

We apply the unconditionally-stable CN-FDTD method for
simulations of electromagnetic-wave propagation in media
described by TF constitutive relations. It is demonstrated that
this computational method provides the same results as the
frequency-domain reference method already presented in the
literature. However, CN-FDTD is extendible towards multidi-

mensional simulations and varying material parameters in the
computational domain as a typical finite-difference scheme.
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[17] T. P. Stefański and J. Gulgowski, “Electromagnetic-based derivation of
fractional-order circuit theory,” Commun. Nonlinear Sci. Numer. Simul.,
vol. 79, p. 104897, 2019.

[18] K. Yee, “Numerical solution of initial boundary value problems involv-
ing Maxwell’s equations in isotropic media,” IEEE Trans. Antennas
Propag., vol. 14, no. 3, pp. 302–307, 1966.

[19] E. W. Weisstein, “Finite difference,” From MathWorld–
A Wolfram Web Resource, 2023. [Online]. Available:
https://mathworld.wolfram.com/FiniteDifference.html

[20] R. J. Vaccaro, Digital Control, 1st ed. McGraw-Hill Higher Education,
1995.

[21] U. Ali, F. A. Abdullah, and A. I. Ismail, “Crank-Nicolson finite differ-
ence method for two-dimensional fractional sub-diffusion equation,” J.
of Interpolation and Approximation in Scientific Computing, no. 2, pp.
18–29, 2017.

[22] Ł. Grzymkowski, D. Trofimowicz, and T. P. Stefański, “Stability analysis
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