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Critical examination of benchmark problems for large rotation  
analysis of laminated shells 
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Gdańsk University of Technology, Gdańsk, Poland 

ABSTRACT: The paper presents a critical review of benchmark problems for large rotation analysis of lami-
nated shells. Several examples taken from the literature have been re-analysed using the author’s own com-
puter programs based on different levels of the geometrical non-linearity. The comparative analysis allows 
one to drawn some conclusions on suitability of the considered examples for the use as benchmark problems. 

LRT5 –  FE realization (Ferro et al. 1998) of the 
Large Rotation Theory for anisotropic 
shells (Librescu 1987); 

1 INTRODUCTION  

In last years a relatively large number of publica-
tions were dedicated to the geometrically nonlinear 
FE analysis of laminated shells undergoing large 
rotations (see e.g. Balah & Al-Ghamedy 2002, Başar 
et al. 1993, 2000, Brank et al. 1995, Kim & Voyiad-
jis 1999, Kulikov & Plotnikova 2003, Masud et al. 
2000). It is quite natural that every author of a new 
finite element code for large rotation analysis of 
laminated shells starts to test his formulation by con-
fronting his results with those published by other au-
thors. However, in contrast to the state of the art in 
the field of isotropic shells, there is lack of a com-
monly accepted set of benchmark problems for 
laminated shells undergoing large rotations. As a 
consequence, it happens that an advanced formula-
tion accounting for finite rotations in laminated 
shells is illustrated with numerical examples where 
rotations stay well within the range of small rota-
tions (see e.g. Brank et al. 1995).  

LRT56 –  a revised FE implementation of LRT 
(Librescu 1987) based on the use of 
Euler angles (Kreja & Schmidt 2002, 
2005). 

The 8-URI shell element has been applied (Kreja 
et al. 1997). Each time the calculations have been 
performed using a finite element mesh of a density 
that provided a convergent solution. The arc-length 
control method used in the incremental calculations 
allowed us for the investigation of snap-through and 
snap-back problems. 

2 SELECTED EXAMPLES 

2.1 Hinged cylindrical panel under point load 
The laminated hinged cylindrical panel under the 
point load as presented in Figure 1 was proposed by 
Saigal et al. (1986). It was adopted as a benchmark 
example by many other researchers (see e.g. Brank 
et al. 1995, Kim & Voyiadjis 1999, Sze et al. 2004). 

A critical examination of benchmark problems 
for the large rotation analysis of laminated shells 
performed in the present report is based on a re-
calculation of all considered examples with the au-
thor’s own computer programs with gradually in-
creased and clearly distinguished levels of geometri-
cal non-linearity. The four FE formulations for 
laminated shells based on the First Order Shear De-
formation hypothesis were considered in the present 
analysis: 

 
 

 

RVK5 –  FE model (Kreja et al. 1997) of anisot-
ropic shells with the von Kármán type 
non-linearity (Reddy 1982); 

MRT5 –  FE formulation (Kreja et al. 1997) based 
on the Moderate Rotation Theory of ani-
sotropic shells (Schmidt & Reddy 1988); 

 
Figure 1. Hinged cylindrical panel under point load  

admin



The orthotropic material of the shell is character-
ized by the following parameters: Ea = 3.3 kN/mm2, 
Eb = 1.1 kN/mm2, Gab = Gac = Gbc = 0.66 kN/mm2 
and νab = 0.25. Dimensions of the panel are assumed 
as R = 2540 mm, L = 254 mm and β = 0.1.  

Three different thicknesses of the shell were con-
sidered. In the first attempt, the thickness of the shell 
was equal to 12.6 mm following the original pro-
posal of Saigal et al. (1986). As one can observe in 
Figure 2, there is almost no difference between re-
sults of the LRT56, MRT5 or RVK5 formulations. 
Therefore, one can assume that the magnitude of de-
formations of the panel stays within the limits of 
small rotations. 

 
 

 
Figure 2. Central deflection for laminated panel 12.6 mm thick. 

 
 

 
Figure 3. Central deflection for laminated panel 6.3 mm thick. 

 
 
Brank et al. (1995) introduced a laminated panel 

with the thickness reduced by half (h = 6.3 mm) 
hopping probably to gain a more pronounced snap-
ping behavior. Looking at the graphs in the Figure 3, 
one can observe that the equilibrium path is repre-

sented by an evidently more complex curve than for 
h = 12.6 mm. Nevertheless, here again the responses 
for LRT56, MRT5 and RVK5 formulations seem to 
be the same.  

 
 

 
Figure 4. Central deflection for laminated panel 3.15 mm thick. 

 
 
In the third case of the present analysis even a 

further reduction of the panel thickness was pre-
sumed taking h = 3.15 mm, what resulted in a rather 
complicated shape of the equilibrium path (see Fig-
ure 4). However, even in such a case, it is also diffi-
cult to notice any distinction between the curves ob-
tained for LRT56, MRT5 or RVK5 models (Fig. 4). 

One can remark that although the decrease of the 
thickness of the shell has reduced its stiffness, never-
theless, the range of rotations has not exceeded the 
limits of small rotations. It is obvious that because of 
that the considered example of the hinged laminated 
cylindrical panel cannot serve as a proper test prob-
lem for the large rotations shell analysis. 

2.2 Clamped cylindrical panel under point load 

In the second example, a deep cylindrical laminated 
panel is considered (Fig. 5) after Tsai et al. (1991).  
 
 

 
 
Figure 5. Clamped cylindrical panel under point load  
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The following parameters are assumed: R = 12 in, 
L = 5.5 in, β = 0.5, E11 = 20.46·106 psi, ν12 = 0.313, 
E22 = 4.092·106 psi, G12 = G13 = 2.53704·106 psi, 
G23 = 1.26852·106 psi. The laminate is composed of 
four layers (0/90/90/0), each of them being 0.01 in 
thick. 

2.3 Stretching of open laminated cylinder 

In the next example, stretching of a short laminated 
cylinder is considered, as shown in Figure 7, with 
R = 4.953 in, L =5.175 in, h = 0.094 in, and β = 0.5. 
The open cylinder loaded by two opposite stretching 
forces in its middle section exemplifies a very popu-
lar benchmark test for the nonlinear analysis of iso-
tropic shells (see Sze et al. 2004). Its composite 
variant was proposed by Masud et al. (2000) who 
considered the laminated (0/90) shell with the fol-
lowing orthotropic material data: E11 = 30500 ksi, 
E22 = 10500 ksi, G12 = G13 = G23 = 4000 ksi and 
ν12 = 0.3125, 

As one can see in Table 1, the buckling load lev-
els predicted with the LRT56, LRT5, MRT5 and 
RVK5 are very close each other and in a quite good 
agreement with the solution given by Tsai et al. 
(1991).  

Looking at the graphs of the central deflection of 
the panel versus the central load as presented in Fig-
ure 6, one can notice that distinction between ob-
tained results is evident only in the post-buckling re-
sponse. The RVK5 solution is surprisingly close to 
the results of the most advanced non-linear model in 
this study – the LRT56. None of the present results 
agrees with the reference solution of Tsai et al. 
(1991). After some further examinations (for details 
we refer to Kreja & Schmidt 2005) one can find that 
the formulation applied by Tsai et al. (1991) is rather 
closer to the LRT5 model (a lack of a proper updat-
ing of rotations) but differs by excluding all non-
linear terms in the transverse shear strains. Although 
the difference among the results of LRT56, LRT5, 
MRT5 and RVK5 is noticeable for the considered 
clamped cylindrical panel, nevertheless the lack of a 
clear distinction between curves of LRT56 and 
RVK5 could be a problem for the test example. 

The graphs of the outer deflection of the loaded 
points are presented in Figure 8. It is quite sympto-
matic that the snap-through behavior appears only in 
the LRT56 curve. Paradoxically, the MRT5 solution 
seems to give a better estimation of the panel re-
sponse than the LRT5 formulation.  

The qualitative and quantitative distinction of the 
LRT56 solution from the results of the other models 
(LRT5, MRT5 and RVK5) makes this example suit-
able for the application as a test problem. 
 
 

 

 
 

Table 1.  Buckling load for clamped cylindrical panel ___________________________________________ 
Model        Snap-through load  ___________________________________________ 
LRT56        25.83 lb 
LRT5        26.28 lb 
MRT5        26.67 lb 
RVK5        25.19 lb 

 Tsai et al. (1991)    ~26 lb  ___________________________________________ Figure 7. Stretching of open laminated cylinder    
  

  
  
Figure 8. Outer deflection for short cylinder Figure 6. Central deflection for clamped panel. 
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2.4 Simply supported plate strip REFERENCES 

In the last example a simply supported asymmetric 
laminated (0/90) panel as shown in Figure 9 was 
analyzed assuming a = 9.0 in, b = 1.5 in, h = 0.04 in, 
with E1 = 2.0 x 107 lb/in2, E2 = 1.4 x 106 lb/in2, 
ν12 = 0.30, and G12 = G23 = G13 = 0.7 x 106 lb/in2. 
The graphs in Figure 7 show that the LRT56 results 
agree very well with the reference solution of Başar 
et al. (1993) who solved the problem using a fully 
non-linear formulation accounting for finite rota-
tions. On the other hand, the LRT56 solution is evi-
dently separated from the curves obtained for the 
models LRT5, MRT5 and RVK5. Therefore, this 
example can also be considered as a proper bench-
mark problem. 
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Figure 10. Central deflection of plate strip 
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