
Crystallization of space: Space-time fractals from fractal arithmetic

Diederik Aerts1, Marek Czachor1,2, and Maciej Kuna1,2
1 Centrum Leo Apostel (CLEA), Vrije Universiteit Brussel, 1050 Brussels, Belgium,

2 Wydzia l Fizyki Technicznej i Matematyki Stosowanej, Politechnika Gdańska, 80-233 Gdańsk, Poland

Fractals such as the Cantor set can be equipped with intrinsic arithmetic operations (addition,
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means of homogeneous spaces associated with appropriate Lie groups. The construction is illustrated
by explicit examples.
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I. INTRODUCTION

There are various reasons why fractal sets in space-
time are intriguing. For example, quantum gravity [1–6]
or causal trangulation theory [7] suggest that space-time
itself might posses certain fractal features — either at
small distances, or at early phases of the Universe. At
the other extreme are all those astrophysics or cosmo-
logical problems where one encounters fractal-like sets
embedded in a non-fractal space-time. The typical ex-
amples include fractal aspects of galaxies, cosmic voids,
or dark matter halos [8–14].

On the other hand, one can regard a putative space-
time fractality as the very origin of quantum physics.
Here one should mention Hausdorff 2-dimensionality of
Feynman paths [15], or Ord’s derivation of uncertainty
and de Broglie relations from 2-dimensional fractal tra-
jectories [16]. The scale-relativity project of Nottalle [17–
19] leads to quantum mechanics as a version of mechanics
in a non-differentiable, fractal space-time. A similar phi-
losophy can be found in studies on diffusion on fractals
[20], and their culmination in analysis [21] and differen-
tial equations [22] on non-smooth spaces. It is quite typ-
ical to associate fractality of space-time with fractional
differential structures [23–25, 32].

In the present paper we follow an alternative approach
[26]. The departure point is to find arithmetic operations
that map the fractal in question into itself. Once one
knows how to add, multiply, subtract and divide elements
of the fractal, one automatically obtains appropriate
derivatives, integrals, differential equations, group repre-
sentations, and thus practically all ingredients needed for
classical and quantum physics. Fractal subsets of space-
time are then generated by means of homogeneous spaces
associated with Lie groups whose parameters satisfy frac-
tal arithmetic. Fractals equipped with arithmetic oper-
ations possess intrinsic Lie symmetries that are easy to
overlook if one does not have control over the arithmetic.

It is particularly striking that the formalism creates a
room for continuous physical processes occurring in sets
of zero measure [26]. For example, quantum harmonic
oscillations in the Cantor set are invisible from the point
of view of quantum mechanics since quantum states are

insensitive to modifications of Schrödinger wave functions
on sets of zero Lebesgue measure. Still, one can solve
the Schrödinger equation in the Cantor set and find the
energy eigenstates. The resulting energy is physically
analogous to dark energy, as it literally ‘comes out of
nowhere’ from the point of view of quantum mechanics.

The goal of the present paper is to explicitly analyze
examples of fractal sets that go beyond the simple tri-
adic Cantor set discussed in [26]. We begin with a repre-
sentation of real numbers where the standard fixed base
(binary, triadic...) is replaced by a sequence of proba-
bilities representing different local resolutions of the real
line. Having a generalization of the triadic representation
we can define an appropriate generalization of the Can-
tor set equipped, by construction, with its own intrinsic
arithmetic.

We illustrate general considerations with explicit plots
of 2-dimensional structures generated by means of rota-
tions in Cantorian plane and Lorentz transformations in
1+1 dimensional Cantorian Minkowski space. The re-
sulting sets possess symmetries inherited from the group
that generates the homogeneous spaces, although in or-
der to reveal the symmetries one first has to understand
the arithmetic behind them.

The formalism one arrives at is mathematically simple
and surprisingly rich, but many interpretational ques-
tions remain. The term ‘crystallization of space’ has been
inspired by the art of Ludwika Ogorzelec.

II. FRACTAL ARITHMETIC AND
SYMMETRIES

Following the general formalism from [26] we define

x⊕ y = f−1
(
f(x) + f(y)

)
,

x	 y = f−1
(
f(x)− f(y)

)
,

x� y = f−1
(
f(x)f(y)

)
,

x� y = f−1
(
f(x)/f(y)

)
,

where x, y ∈ X, and f : X → Y ⊂ R is a bijection.
In later applications we will basically concentrate on an
appropriately constructed fractal X, but the results are
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more general. This is an example of a non-Diophantine
arithmetic in the sense of [27].

One verifies the standard properties: (1) associativity
(x ⊕ y) ⊕ z = x ⊕ (y ⊕ z), (x � y) � z = x � (y � z),
(2) commutativity x ⊕ y = y ⊕ x, x � y = y � x, (3)
distributivity (x ⊕ y) � z = (x � z) ⊕ (y � z). Elements
0, 1 ∈ X are defined by 0 ⊕ x = x, 1 � x = x, which
implies f(0) = 0, f(1) = 1. One further finds x	 x = 0,
x � x = 1, as expected. A negative of x ∈ X is defined
as 	x = 0	 x = f−1

(
− f(x)

)
, i.e. f(	x) = −f(x) and

f(	1) = −f(1) = −1, or 	1 = f−1(−1). Note that

(	1)� (	1) = f−1
(
f(	1)2

)
= f−1(1) = 1. (1)

In general, one has to be careful to distinguish unit el-
ements occurring at both sides of f(1) = 1. For ex-
ample, the rescaled-multiplication approach of Benioff
[28, 29] can be regarded as a particular case of the above
formalism with f(x) = px, p 6= 0. Indeed, x � y =
(1/p)(pxpy) = pxy, x ⊕ y = (1/p)(px + py) = x + y,
x � y = (1/p)(px)/(py) = x/(py), but f(1/p) = 1.
Since (1/p) ⊗ x = (1/p)

(
p(1/p)px

)
= x one infers that

1p = f−1(1) = 1/p is the unit element of multiplication
in Benioff’s non-Diophantine arithmetic.

Now, let F : R→ R and Ff : X → X be related by

Ff (x) = f−1
(
F
(
f(x)

))
. (2)

As noted in [26] the trigonometric functions sinf x =
f−1

(
sin f(x)

)
, cosf x = f−1

(
cos f(x)

)
satisfy the stan-

dard trigonometric formulas, provided ‘plus’ and ‘times’
are represented by ⊕ and �. In consequence

x′ = x� cosf α⊕ y � sinf α, (3)

y′ = y � cosf α	 x� sinf α, (4)

is a rotation in X2. Fig. 1 shows circles of various radii,
defined parametrically by

X 3 α 7→ (r � cosf α, r � sinf α) ∈ X2. (5)

The bijection f employed in Fig. 1 corresponds to the
standard triadic Cantor line X = C [26] and for simplic-
ity is taken in the antisymmetric form f(−x) = −f(x)
(let us stress again that in general −x and 	x cannot be
identified). The circles are examples of fractal homoge-
neous spaces, here corresponding to the rotation group
in X2. Homogeneous spaces of the (1+1)-dimensional
Lorentz group are the hyperbolas,

X 3 α 7→ (r � coshf α, r � sinhf α) ∈ X2, (6)

depicted in Fig. 2 (with the same f as in Fig. 1, and with
hyperbolic functions of the form (2)).

Analogues of arithmetic-based higher dimensional
space-time fractals can be found in Ludwika Ogorzelec’s
installations from her ‘Crystallization of space’ cycle
(Fig. 3) [30, 31].

FIG. 1: A new type of rotational symmetry. Circles in Can-
torian plane C2 for various radii. From top to bottom: 1, 10,
and 50 circles.
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FIG. 2: Hyperbolic symmetry. Proper-time hyperbolas
in (1+1)-dimensional Cantorian Minkowski space-time C2.
From top to bottom: 1, 2, and 20 hyperbolas.

III. FRACTAL DERIVATIVES AND
INTEGRALS

A derivative of a function A : X → X is defined by

dfA(x)

dfx
= lim

h→0

(
A(x⊕ h)	A(x)

)
� h. (7)

It satisfies

dfA(x)�B(x)

dfx
=

dfA(x)

dfx
�B(x)⊕A(x)� dfB(x)

dfx
,

dfA(x)⊕B(x)

dfx
=

dfA(x)

dfx
⊕ dfB(x)

dfx
,

dfA[B(x)]

dfx
=

dfA[B(x)]

dfB(x)
� dfB(x)

dfx
.

FIG. 3: An Ogorzelec set. Higher dimensional space-time
structures generated by fractal arithmetic are analogous to
L. Ogorzelec installations from her ‘Crystallization of space’
cycle. Mathematical Ogorzelec sets can be constructed by
foliations consisting of homogeneous spaces of a symmetry
Lie group with parameters subject to fractal arithmetic.

Employing (7) and the fact that f(0) = 0 one finds for
functions of the form (2)

dfFf (x)

dfx
= f−1

(
F ′
(
f(x)

))
, (8)

where F ′(y) = dF/dy is the usual derivative in Y , defined
in terms of +, −, ·, and /. Note that no derivatives of
f and f−1 occur in (8). In particular, df expf x/dfx =
expf x, df cosf x/dfx = 	 sinf x, df sinf x/dfx = cosf x,
and so on.

There is no relation between df/dfx and fractional
derivatives. In fact, one could formulate non-Diophantine
analogs of fractional derivatives and integrals, if needed.
In order to do this one simply has to know how to in-
tegrate in a way guaranteeing the standard laws of the
calculus.

An integral is defined so that the fundamental laws,∫ b

a

dfA(x)

dfx
� dfx = A(b)	A(a),

and

df
dfx

∫ x

a

A(x′)� dfx′ = A(x), (9)

hold true. For Ff (x) given by (2) the explicit form of the
integral reads∫ b

a

Ff (x)� dfx = f−1

(∫ f(b)

f(a)

F (y)dy

)
, (10)

where
∫
F (y)dy is the standard (say, Lebesgue) integral

in R.
In this way one arrives at the calculus which is as sim-

ple as the one one knows from undergraduate education,
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and yet one can formulate and solve problems formulated
entirely within fractal sets. In practice, the only problem
to solve for a given fractal is to find the bijection f .

IV. FRACTAL SPACE-TIME TRAJECTORIES

Not only is Fig. 1 an illustration of fractal homoge-
neous spaces, but it simultaneously shows phase-space
trajectories of a classical nonrelativistic harmonic oscil-
lator in (1+1)-dimensional Cantorian space time [26].
Fig. 2 shows proper-time hyperbolas defined by

gµν � xµ � xν = x0 � x0 	 x1 � x1 = s�2. (11)

Note that in (1+1)-dimensional Minkowski space one
finds

x0 = x0 = g00 � x0 = 1� x0, (12)

so g00 = 1 is the neutral element of multiplication. Now,
on one hand,

x1 = g11 � x1 = f−1
(
f(g11)f(x1)

)
. (13)

Putting it differently we find

x1 = 	x1 = 0	 x1 = f−1
(
f(0)− f(x1)

)
. (14)

Accordingly, f(g11)f(x1) = −f(x1), g11 = f−1(−1). In
general,

x1 = f−1
(
− f(x1)

)
6= −x1. (15)

The Lorentz transformations, defined by

x′0 = x0 � coshf α	 x1 � sinhf α, (16)

x′1 = x1 � coshf α	 x0 � sinhf α, (17)

satisfy

gµν � x′µ � x′ν = gµν � xµ � xν . (18)

The characteristic Cantor-like structure visible at the
lowest plot at Fig. 2 could be equivalently generated by
plotting a bunch of ‘straight’ world-half-lines, as shown
in Fig. 4,

xµ(s) = uµ � s, 0 ≤ s. (19)

The uppermost plot involves only three world-half-lines,
two null and one timelike. The null lines look ‘ordinary’,
i.e. comply with the intuitive picture of a straight line.
The timelike world-line is also ‘straight’ in the sense of
formula (19), and for inhabitants of Cantorian Minkowski
space would appear as ‘ordinarily straight’ as generators
of the light cone.

By definition of the derivative we find

dfx
µ(s)

dfs
= lim
h→0

(
uµ � (s⊕ h)	 uµ � s

)
� h = uµ (20)

and thus the straight line (19) is a space-time trajectory
in the usual sense, with four-velocity uµ. Such a sim-
ple family of world-lines is enough to formulate a fractal
analogue of the twin paradox.

FIG. 4: World half-lines in (1+1)-dimensional Cantorian
Minkowski space-time C2. From top to bottom: Light cone
plus 1, 22, and 400 timelike worldlines. The same f as in
Fig. 1 and Fig. 2.

V. FRACTAL MINKOWSKI COORDINATES

Lorentz transformations (16)–(17) define coordinate
axes as the world-lines

x0 = β � x1, (21)

(Lorentz-transformed simultaneity hyperplane of the
event xµ = x′µ = 0) and

β � x0 = x1, (22)

(Lorentz-transformed time axis), where β = tanhf α =
sinhf α� coshf α.

The left part of Fig. 5 shows two coordinate systems in
fractal Minkowski space C2 (see Sec. VIII). Coordinate
axes correspond to β = 0 (vertical and horizontal axes)
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FIG. 5: Left: fractal light cone and two fractal coordinate
systems for the multi-resolution Cantor-line-Minkowski 1+1
dimensional space C2, defined by means of f from Sec. XI.
Right: the same lines but mapped by f into the usual
Minkowski space.

and β = f−1(1/2) (diagonal broken lines), together with
the light cone defined by β = 1 and β = 	1. The right
part shows the result of applying f to C2. The bijection f
is taken in the irregular ‘multi-resolution’ form, described
in detail in Sec. XI.

VI. TWIN PARADOX

Consider two world lines. The ‘travelling twin’ corre-
sponds to

xµ(s) =

{
uµ � s for 0 ≤ s < s1

uµ � s1 ⊕ vµ � (s	 s1) for s1 ≤ s ≤ s2
.(23)

The twin ‘at rest’ is described by

x̃µ(s) =
(
uµ � s1 ⊕ vµ � (s2 	 s1)

)
� s� s2, (24)

for 0 ≤ s ≤ s2. Here xµ, x̃µ, u, and vµ are position and
4-velocity world-vectors, respectively, with uµ � uµ =
vµ � vµ = 1. Since x(0) = x̃(0) and x(s2) = x̃(s2) the
two trajectories can be used to derive the paradox. The
Cantorian Minkowski-space length of s 7→ x(s) is S =

s1⊕(s2	s1) = s2 whereas the one of x̃(s) satisfies S̃�2 =
gµν � x̃µ(s2) � x̃ν(s2). Assume for simplicity that S =
s2 = s1 ⊕ s1 = f−1(2)� s1:

x̃µ(s) = (uµ ⊕ vµ)� s1 � s� s2,
S̃�2 = (uµ ⊕ vµ)� (uµ ⊕ vµ)� s�21

= S�2 � (1⊕ uµ � vµ)� f−1(2). (25)

In order to cross-check (25) take the trivial case f(x) = x,

(u0, u1) = (1, β)/
√

1− β2, (v0, v1) = (1,−β)/
√

1− β2.
Then

(1⊕ uµ � vµ)� f−1(2) =
1

1− β2
= u20 (26)

i.e. S = S̃
√

1− β2 = S̃/u0, as expected. For a general
f let us first note that the normalization

1 = uµ � uµ

= u0 � u0 	 u1 � u1

= f−1
(
f(u0)2 − f(u1)2

)
(27)

together with f(1) = 1 implies f(u0)2 − f(u1)2 = 1. If
v0 = u0 and v1 = 	u1 then

(1⊕ uµ � vµ)� f−1(2) = f−1
(
f(u0)2

)
= u�20 . (28)

(28) is exactly analogous to (26), so finally we get the
simple formula for the time delay which is valid in any
f -arithmetic Minkowski space,

S = S̃ � u0. (29)

Since

1� u0 = f−1
(√

1− f(β)2
)
, β = u1 � u0, (30)

we can alternatively write

f(S) = f(S̃)
√

1− f(β)2. (31)

Comparing S and S̃ in a space-time neighborhood of a
given x = x(0) = x̃(0), we can in principle directly probe
the form of f (Fig. 6).

The problem is which of the two formulas, (29) or (31),
should be employed in comparison of experimental data
with the theory? Which of the two velocity parameters,
0 ≤ β ≤ 1 or 0 ≤ f(β) ≤ 1, is the one employed in
the experiment if we assume that the observers live in
the fractal space-time? Moreover, which f should be
employed? The bijection f is non-unique, this is the
essence of relativity of arithmetic discussed in [26].

It seems at this stage of the formalism we are just lack-
ing appropriate physical intuitions. We do not have yet
a ‘theory of measurement’. Several options are logically
possible, so it is best to begin with less trivial examples.

VII. MULTI-RESOLUTION REPRESENTATION
OF REAL NUMBERS

Although Cantor-type sets are homeomorphic to the
idealized fully symmetric triadic Cantor set, it is clear
that fractal-like sets one encounters in real life are highly
non-symmetric and non-regular. Their effective dimen-
sions vary with resolution and are position dependent.
The mathematical notion that seems close to natural
fractals is associated with the concept of a multifractal.
However, in order to apply the idea of fractal arithmetic
to a multifractal one needs a bijection f , and it is by no
means evident that such an f always exists.

So, we propose to reverse the problem. Namely, can we
describe a class of fractals that, on one hand, have the

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


6

FIG. 6: The time-delay factor 1 � u0 of Eq. (30), for various
choices of f . The continuous curves correspond to f(x) = xq,
with q = 1/3 (leftmost), q = 1, q = 3, and q = 5 (rightmost).
The discrete points correspond to f of the standard triadic
Cantor set (as defined in [26]).

FIG. 7: A j-th interval and its splitting into intervals whose
proportions differ from resolution to resolution (indexed by n
in (n, j)).

irregularities typical of multifractals, but on the other
hand are equipped with f? The answer is in the affir-
mative and is related to the concept of a multi-resolution
representation of real numbers.

To begin with, let us make the trivial remark that ge-
ometry of physical space-time involves objects that have
‘dimension of length’ (x or x0 = ct are expressed in me-
ters, inches, parsecs, Planck lengths...). In pure mathe-
matics the element 1 ∈ R is just the neutral element of
multiplication in the real ‘line’ and, obviously, does not
have a ‘physical unit’. The construction given in [26] is
conceptually in-between these two, ‘physical’ and ‘math-
ematical’, perspectives. We are interested in physical-
space fractals constructed by means of a map f satis-
fying f(1) = 1, where the 1s are understood as neutral
elements of multiplication. Following the suggestion from
[26] we will treat the physical space as an object which
is dimensionless, and this can be obtained only for the
price of introducing a fundamental unit of length, ` say.

With this observation in mind let us split a one-
dimensional physical ‘position-space line’ X into a count-
able union of disjoint intervals of length `. In order

to model it mathematically we identify X/` = R =
∪j∈Z[j, j + 1).

The diagram shown in Fig. 7 shows a jth interval
[j, j + 1). The interval is split into three (right-open)

segments of length p
(1,j)
k , k = 0, 1, 2. Each of the three

segments is yet further split into three right-open inter-

vals whose mutual proportions are determined by p
(2,j)
k ,

k = 0, 1, 2, and so on. For each (n, j) ∈ N × Z we

assume
∑2
k=0 p

(n,j)
k = 1, 0 ≤ p

(n,j)
k ≤ 1. Denoting

r
(n,j)
0 = 0, r

(n,j)
1 = p

(n,j)
0 , r

(n,j)
2 = p

(n,j)
0 + p

(n,j)
1 , and

sja1...an = p
(1,j)
a1 . . . p

(n−1,j)
an−1 r

(n,j)
an , one can associate each

node of the diagram with the real number

x = xj.a1...an = j + sja1 + · · ·+ sja1...an ∈ [j, j + 1), (32)

where ak = 0, 1, 2, j ∈ Z. There exist two extreme cases

of (32). Firstly, if all p
(n,j)
ak = 1/3 we obtain a representa-

tion where the non-integer part x−bxc has the standard
ternary form. At the other extreme is the case where

the proportions p
(n,j)
k are completely unrelated to one

another for different choices of (n, j). Of particular in-
terest is, as we shall see later, the intermediate case where

limn→∞ p
(n,j)
k = pk exists and is independent of j. We

show in the Appendix that

xj.a1...an1 = xj.a1...an1(0) = xj.a1...an0(2). (33)

If x = j ∈ Z, then x = xj.(0) = xj−1.(2) ∈ [j, j + 1). In
consequence, there exist numbers that have exactly two
different representations (32). The set of such numbers
is countable.

VIII. MULTI-RESOLUTION CANTOR LINE

Here we generalize the construction of the Cantor line

given in [26] (for p
(n,j)
ak = 1/3). Our goal is to have a frac-

tal C ⊂ R and a bijection f : C → R which will be used
in definition of fractal arithmetic, an essential ingredient
of fractal derivatives and integrals. Fractal C so con-
structed is, to some extent, reminiscent of a multifractal
but, as opposed to standard multifractals, is equipped
with the natural bijection f . This is why we speak of
multi-resolution fractals, distinguishing them from mul-
tifractals where arithmetic operations and derivatives are
difficult to introduce.

To begin with, consider a real number y = j + ε ∈
[j, j + 1). The ε ∈ [0, 1) has at most two different binary
representations,

ε = (0.b1 . . . bn . . . )2 = (0.b′1 . . . b
′
n . . . )2 (34)

which defines two sequences of bits. The two sequences
allow us to define two numbers of the form (32):

x = xj.2b1...2bn... and x′ = xj.2b′1...2b′n..., (35)

both belonging to [j, j + 1). Note that out of the three
possible digits ak = 0, 1, 2, occurring in (32), formula
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(35) involves only two of them: 2bk = 0, 2, 2b′k = 0, 2.
The absence of ternary 1 is typical of Cantor-like sets.

The injective map g : R → R is defined by g(y) =
min{x, x′}. The image C = g(R) will be termed the
multi-resolution Cantor line. The inverse map f : C →
R, f = g−1, defines the bijection we need in order to
construct arithmetic in C. Let us check that f(0) = 0,
f(1) = 1. 0 occurring in the argument of f(0) corre-
sponds to x0.(0) = x−1.(2) ∈ C. By definition f(x0.(0)) =
0 + 0.(0)2 = 0, f(x−1.(2)) = −1 + 0.(1)2 = 0. 1 in the
argument of f(1) corresponds to x1.(0) = x0.(2) ∈ C.
Again, by definition f(x1.(0)) = 1+0.(0)2 = 1, f(x0.(2)) =
0 + 0.(1)2 = 1.

One similarly shows that f(j) = f(xj.(0)) = j +
0.(0)2 = f(xj−1.(2)) = j − 1 + 0.(1)2 = j ∈ Z. Thus,

for integer x one finds f(x) = x = f−1(x). In particu-
lar, f(−1) = −1. This is the peculiarity of this concrete
f , but the general formalism of ‘relativity of arithmetic’
from [26] requires only that f(0) = 0 and f(1) = 1.

IX. RELATION TO MULTIFRACTALS

Let us put what we do in the context of multifractals,
concentrating only on multifractals of a Cantor type. As-

sume, first of all, that p
(n,j)
a = pa for any (n, j), but not

all pa are equal. At resolution n one deals with seg-
ments of length pn−m0 pm2 , m = 0, . . . , n, and each inter-
val [j, j + 1) contains n!/[m!(n−m)!] segments of a mth
type. The overall length of all the segments of the mth
type is pn−m0 pm2 n!/[m!(n−m)!] and the sum over all m is
(1− p1)n. So, if p1 > 0 then limn→∞(1− p1)n = 0. Re-
moving in each step a nonzero proportion p1 of [j, j + 1)
we get in the limit a set of Lebesgue measure zero.

The Hausdorff dimension D is defined by

n∑
m=0

n!

m!(n−m)!

(
pn−m0 pm2

)D
= (pD0 + pD2 )n = 1. (36)

Hence, pD0 +pD2 = 1 and D coincides with limn→∞D(n,j)

discussed in the next section.
In order to introduce the multifractal formalism [37,

38] one additionally assumes that there exists some ran-
dom process with probabilities P0, P2, P0 + P2 = 1 such
that the algorithm of generating the fractal may be re-
garded as a kind of random walk. One introduces a pa-
rameter q and a function τ(q), and demands that

P q0 p
−τ(q)
0 + P q2 p

−τ(q)
2 = 1. (37)

For q = 0 and τ(0) = −D one finds that −τ(0) is the
Hausdorff dimension. The so-called generalized dimen-
sions are defined by D(q) = τ(q)/(q − 1).

Our multi-resolution approach to Cantor-like sets does
not naturally lead to any stochastic process of a multi-
fractal type. Moreover, the essential ingredient of the
construction from [26] is the bijection f that leads to
arithmetic operations, but there is no natural definition
for such a f in the multifractal formalism.

X. DIMENSIONS OF C

With each node xj.a1...an from Fig. 7 one can associate
the length lj.a1...an of the interval extending to the right
till its nearest sibling,

lj.a1...an = p(1,j)a1 . . . p(n,j)an , (38)

satisfying

2∑
a1=0

· · ·
2∑

an=0

lj.a1...an =

n∏
k=1

2∑
a=0

p(k,j)a = 1. (39)

In Cantor-like sets the indices a = 1 would be missing in
sums (39), but one can find numbers D(k,j) such that

n∏
k=1

∑
a6=1

(
p(k,j)a

)D(k,j)

= 1. (40)

Putting n = 1 in (40) we get

∑
a6=1

(
p(1,j)a

)D(1,j)

= 1, (41)

which implies by induction that (40) is equivalent to(
p
(k,j)
0

)D(k,j)

+
(
p
(k,j)
2

)D(k,j)

= 1 (42)

which has a unique solution D(k,j) for any (k, j) (the
proof is standard; cf. the analysis of similarity dimension
in [36]).

Alternatively, one can consider D(n,j) defined by

1 =
∑
a1 6=1

· · ·
∑
an 6=1

(lj.a1...an)
D(n,j) . (43)

Eq. (43) possesses a unique solution D(n,j) which, how-

ever, in general differs from D(n,j). The limiting case
limn→∞D(n,j) equals the Hausdorff dimension of the jth
interval.

Dimensions D(n,j) and D(n,j) are the two effective sim-
ilarity dimensions that can be associated with resolution
n in the jth segment of C. Note that D(n,j) = 1 = D(n,j)

if and only if p
(n,j)
1 = 0, independently of the choice

of p
(n,j)
0 and p

(n,j)
2 . In infinite resolution the dimension

D(n,j) is well defined if limn→∞ p
(n,j)
a exists. If the limit

does not exist then D(n,j) fluctuates at large resolutions.
Now, let us parametrize the probabilities in a Gibbsian

way. Its simplest form reads

p(n,j)a (T ) =
e−E

(n,j)
a /(kT )∑2

b=0 e
−E(n,j)

b /(kT )
. (44)

Assuming E
(n,j)
0 < E

(n,j)
1 < E

(n,j)
2 one finds p

(n,j)
a (∞) =

1/3 for a = 0, 1, 2, and p
(n,j)
0 (0) = 1 (hence p

(n,j)
1 (0) =
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0). The corresponding dimensions are T -dependent:
D(n,j)(0) = D(n,j)(0) = 1, D(n,j)(∞) = D(n,j)(∞) =
log3 2. The change of dimensionality with T can be also
expressed in the escort-probability form [39, 40],

p(n,j)a (T ′) =
p
(n,j)
a (T )q∑2

b=0 p
(n,j)
b (T )q

, q = T/T ′. (45)

In our formalism the space itself, modeled by our C,
may have properties analogous to matter. One can speak
of macro- (small n), meso- (intermediate n) and micro-
structure (n � 1) of space. Degree of granularity of
space is measured in terms of fractal dimensions, but one
has to bear in mind that the Hausdorff dimension of a
Cartesian product of sets is greater or equal to the sum of
Hausdorff dimensions of the sets themselves [41]. Multi-
resolution space-time in general does not possess a well
defined scaling symmetry and thus it may be difficult to
compute its (local) dimensions, since a simple sum may
not give the correct result.

The change of dimensionality can be also analyzed in
terms of critical phenomena [42]. Spontaneous genera-
tion of a crystalline ground state in a higher derivative
theory [43] provides a concrete example of such a pro-
cess. Another related example is provided by the studies
of granularity of space in the formalism of path integrals
[44, 45]. Path integrals as well as the techniques of sig-
nal analysis can be naturally reformulated in the non-
Diophantine arithmetic by means of the representation
of complex numbers and integration introduced in [26].
This includes the ‘momentum’ or Fourier representation
on fractals equipped with fractal arithmetic. All these
issues are beyond the scope of the present paper.

As stressed in [26], the laws of physics can be the usual
ones even in fractal sets, provided one knows the explicit
form of f . The choice of f may be, though, restricted
by some additional laws, such as the thermodynamic for-
malism we have just outlined. For the moment such ad-
ditional laws are unknown.

XI. IRREGULARITIES OF C VIOLATE PARITY
INVARIANCE AT LARGE RESOLUTIONS

The readers may have noticed that for 	x 6= −x,
i.e. −f(x) 6= f(−x), one implicitly violates parity in-
variance, a property that leads to a reasonable estimate
of ` < 10−18m, which is the electroweak range. Plots
such as those from Figs. 1, 2, and 4 show that an an-
tisymmetric f implies an unphysical-looking symmetry
around x1 = 0 of space-time fractals. According to the
Copernican principle no preferred x1 should be a priori
assumed. This can be achieved either by translation in-
variance of space, which is excluded if a fractal structure
is present, or by a complete irregularity of f . This is the
main reason why the notion of multi-resolution Cantor
line is introduced. Fig. 8 and Fig. 9 show an example

of f constructed by means of a slightly less trivial p
(n,j)
k .

Here we have chosen

p
(n,j)
0 = p

(n,j)
2 =

1

2

(
1− 1

3(|j + 1|+ 1)

)
, (46)

p
(n,j)
1 =

1

3(|j + 1|+ 1)
. (47)

Independence of n makes the n → ∞ limit trivial
but the effective dimension is j dependent. Solving(
p
(n,j)
0

)D(n,j)

+
(
p
(n,j)
2

)D(n,j)

= 1 for D(n,j) we find that

the minimal dimension log3 2 is for j = −1, and with
j → ±∞ the dimensions tend to 1. Fig. 9 shows the
same plot as in Fig. 8, but from a wider perspective, il-
lustrating the effective disappearance of irregularities at
distances much larger than `.

XII. CHANGE OF PHYSICAL UNITS

Conceptual difficulties and subtleties related to funda-
mental length ` are well known and have been discussed
in the literature for more than a century (for a relatively
recent discussion cf. [33–35]). Here we would like to
make some remarks on the use of dimensional quantities
in non-Diophantine arithmetic, and in fractal arithmetic
in particular. The term ‘dimension’ is here understood
in relation to systems of physical units [46], and not to
Hausdorff dimensions or the like.

First of all, there exists a class of fs that do not lead
to any difficulties with dimensional quantities, namely
functions of the form f(x) = xq. For such an f one finds
x�y = xy, x⊕y = (xq+yq)1/q, so multiplication and di-
vision remain unchanged [26]. Rules such as 1km=1000m
are unaffected by the change of arithmetic. Addition is
not problematic either:

2m⊕ 3km = 2m⊕ 3000m =
(
(2m)q + (3000m)q

)1/q
=
(
2q + 3000q

)1/q
m = (2⊕ 3000)m. (48)

Alternatively,

2m⊕ 3km =
(
0.002q + 3q

)1/q
km = (0.002⊕ 3)km

= (0.002⊕ 3)1000m = (2⊕ 3000)m, (49)

since (x ⊕ y) � z = (x ⊕ y)z = (xz) ⊕ (yz). Let us
mention that quantum harmonic oscillator formulated in
terms of f(x) = xq arithmetic has energy levels En =
~ω
2 (2n+ 1)1/q [26].

Benioff’s f(x) = px rescales multiplication, x � y =
pxy, but keeps addition unchanged, x⊕ y = x+ y. Now
the oscillator has energy levels En = p~ω(n + 1/2) [26].
The example shows that a change of arithmetic may have
nontrivial consequences for the issue of varying funda-
mental constants [34, 35].

Although the above two cases have not led to diffi-
culties with dimensional variables, this will not be so in
general. The bijection f(x) = (x + x3)/2, f : R → R,
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satisfies all the assumptions needed for a well defined
non-Diophantine arithmetic, but applies only to dimen-
sionless variables. An attempt of computing f(1km) =
(km + km3)/2 leads, from the point of view of physics,
to an ill defined expression. In fractal sets this type of
difficulty will be generic.

A dimensional quantity is a pair, (x, `) say, in stan-
dard notation denoted by x`, but x and ` are not objects
of the same type: x is dimensionless while ` keeps track
of the type of physical quantity. The fundamental unit `
plays a role of an abstract index, analogous to ‘Alice’ and
‘Bob’ in cryptography, or the Penrose spinor/tensor ab-
stract indices. The change of scale by λ is mathematically
achieved by the identification λ(x, `) = (x, λ`) = (λx, `).
So, dimensional quantities belong to a quotient space ob-
tained by dividing a Cartesian product by an equivalence
relation. This is in fact how in abstract algebra one de-
fines a tensor product. We can thus say that the di-
mensional quantity (x, `) is a tensor product x ⊗ `. But
now we deal with three different sets: The dimensionless
X = {x}, the collection of all the possible fundamental
lengths L = {`}, and the tensor product X⊗L. In princi-
ple, in each of these sets we can define different arithmetic
operations, provided they are mutually consistent. So let
�, ⊕ be the operations in X, ‘·’, ‘+’ be those in L, and
let �̃, ⊕̃ act in X ⊗ L. In order to identify

(λ� x)⊗ ` = x⊗ (λ · `) = λ�̃(x⊗ `) (50)

we have to use only such λs that λ� x and λ · ` simulta-
neously make sense. For example, in the Cantor line C
introduced in [26] one finds 1/3 ∈ C and 2/3 /∈ C. The
change of units `→ `/3 is then meaningful, but `→ 2`/3
is not.

An interesting exercise is to solve the energy eigenvalue
problem for the quantum harmonic oscillator with the
non-Diophantine arithmetic defined by f(x) = (x+x3)/2,
and then link dimensionless parameters with observable
quantities. This could be done along the lines described
in [26], but would lead us too far astray from the main
topic of the present paper. A detailed discussion will be
presented elsewhere.

XIII. FURTHER PHYSICAL IMPLICATIONS
OF RELATIVITY OF ARITHMETIC

The principle of relativity of arithmetic [26] states that
the usual laws of physics do not tell us which f to choose
in order to define ‘the physical’ arithmetic operations.
Perhaps Ockham razor is in order, and f(x) = x should
be selected for reasons of simplicity, or maybe some new
physical laws are needed. Alternatively, what we per-
ceive as physical quantities may not be the elements of
X, equipped with � and ⊕, but rather their images f(X)

where ‘+’ and ‘·’ apply (cf. Fig. 5). The twin paradox
in fractal space-time provides an illustration of this ar-
gument. Indeed, even if the velocity β ∈ X is a fractal
quantity, originating from a fractal nature of both space
and time, it is the image f(β) ∈ [−1, 1] ⊂ R that en-

ters the expression
√

1− f(β)2 describing the time de-
lay. Perhaps this is why out of all the curves depicted
in Fig. 6, what one experimentally observes is the q = 1
case, independently of f . One can see here an analogy
to the special principle of relativity, stating that there is
no preferred inertial reference frame. This type of inter-
pretation echoes the paradigm of multi-scale spacetimes
[24, 25].

Let us note, however, that the argument does not work
anymore if one encounters two sets, X1 and X2, such that
they cannot be simultaneously described by the same f .
An analogy from special relativity would be the case of
two inertial frames in relative motion. This is in fact
what happens with the Cantor-like set C embedded in
R. Even if the arithmetic of R is the ‘standard’ one with
f(x) = x, the arithmetic in the Cantor set requires a
nontrivial f (the Cantor-line function). Now the freedom
of choosing f is limited by geometric relations between
the fractal set X1 = C ⊂ R and X2 = R. In principle,
having one f that describes C one can further modify
arithmetic by applying some new bijection g to both X1

and X2. An analogy from special relativity would be
two inertial frames in relative motion, but seen from yet
another frame of reference, even not of an inertial type.

Space-time fractals constructed by means of homoge-
neous spaces of Lie groups involving fractal arithmetic
of group parameters lead to a new concept of symme-
try. This is clearly seen in Fig. 1 where all the sets are
rotationally invariant , in spite of their Cantorian appear-
ance. Such a symmetry is ‘internal’ in the sense that it
can be identified only after having identified the implicit
arithmetic of a fractal object. It is thus natural to ask
if astronomical fractal-like objects, such as galaxy clus-
ters, halos or voids, can be equipped with these ‘internal’
symmetries. If so, what are their physical implications?

Particularly intriguing is the case of X1 whose
Lebesgue measure is zero. Sets of zero measure are invisi-
ble from the point of view of quantum mechanics since all
wave functions that are identical up to sets of zero mea-
sure represent the same state. If the zero-measure set X1

is equipped with an appropriate bijection f (this is the
case of the Cantor set), one can formulate physics (classi-
cal and quantum) within X1. An example of a quantum
harmonic oscillator in a Cantor line was described in [26],
with the conclusion that energy of such a system is anal-
ogous to dark energy. Obviously, all physical quantities
associated with sets of measure zero will ‘come out of
nowhere’ from the point of view of standard quantum
mechanics, and thus will be as ‘dark’ as the dark energy.
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Appendix: Proof of Eq. (33)

As usual, the symbol ‘(2)’ denotes the infinite sequence
of 2s. Let us first show that

r
(n,j)
2 + p

(n,j)
2 r

(n+1,j)
2 + p

(n,j)
2 p

(n+1,j)
2 r

(n+2,j)
2 + · · · = 1.(51)

Fig. 7 shows that

r
(1,j)
2 + p

(1,j)
2 r

(2,j)
2 + p

(1,j)
2 p

(2,j)
2 r

(3,j)
2 + · · · = 1

by definition. So

1 = r
(1,j)
2 + p

(1,j)
2 r

(2,j)
2 + p

(1,j)
2 p

(2,j)
2 r

(3,j)
2 + . . .

= 1− p(1,j)2 + p
(1,j)
2 r

(2,j)
2 + p

(1,j)
2 p

(2,j)
2 r

(3,j)
2 + . . .

= 1 + p
(1,j)
2

(
− 1 + r

(2,j)
2 + p

(2,j)
2 r

(3,j)
2 + . . .

)
= 1 + p

(1,j)
2 p

(2,j)
2

(
− 1 + r

(3,j)
2 + p

(3,j)
2 r

(4,j)
2 + . . .

)
= 1 + Πn−1

l=1 p
(l,j)
2

(
− 1 + r

(n,j)
2 + p

(n,j)
2 r

(n,j)
2 + . . .

)
which implies (51) for any n. Now consider

x = xj.a1...an0(2)

= j + sja1 + · · ·+ sja1...an + sja1...an0(2)

= j + sja1 + · · ·+ sja1...an

+p(1,j)a1 . . . p(n,j)an p
(n+1,j)
0 r

(n+2,j)
2

+p(1,j)a1 . . . p(n,j)an p
(n+1,j)
0 p

(n+2,j)
2 r

(n+3,j)
2 + . . .

= j + sja1 + · · ·+ sja1...an

+p(1,j)a1 . . . p(n,j)an p
(n+1,j)
0

×
(
r
(n+2,j)
2 + p

(n+2,j)
2 r

(n+3,j)
2 + . . .

)

Employing (51) and p
(n+1,j)
0 = r

(n+1,j)
1 we get

x = xj.a1...an0(2)

= j + sja1 + · · ·+ sja1...an

+p(1,j)a1 . . . p(n,j)an r
(n+1,j)
1

= j + sja1 + · · ·+ sja1...an + sja1...an1
= xj.a1...an1

which ends the proof.
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FIG. 8: Future cone generated by fractal-arithmetic proper-
time SO(1,1) homogeneous spaces. From top to bottom: f−1,
and the corresponding 1, 2, and 20 hyperbolas. Note the
lack of exact reflection symmetry, typical of multi-resolution
Cantor sets.
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FIG. 9: The same homogeneous spaces as in Fig. 8 but seen
from a larger perspective: 100 proper-time hyperboles. Parity
non-invariance is less pronounced at larger length-scales.
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