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Kernel Principal Component Analysis (KPCA), an example of machine learning, can be considered a non-linear extension
of the PCA method. While various applications of KPCA are known, this paper explores the possibility to use it for
building a data-driven model of a non-linear system—the water distribution system of the Chojnice town (Poland). This
model is utilised for fault detection with the emphasis on water leakage detection. A systematic description of the system’s
framework is followed by evaluation of its performance. Simulations prove that the presented approach is both flexible and
efficient.
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1. Introduction

This paper discusses the concept and results of applying
kernel principal component analysis to the problem of
leakage detection in Water Distribution Systems (WDSs).
The motivation behind it is twofold. Firstly, leakages in
water distribution systems are a serious problem all over
the world. The level of losses in urban water networks
can be measured as the difference between the volume of
water delivered to this system and the volume of billed
authorised consumption. This difference, referred to as
non-revenue water, reaches 48 billion m3/year (Thornton
et al., 2008) according to the World Bank. The problem
does not only concern developing countries. European
Commission studies indicate that in certain areas of
Europe losses can be as high as 50%. A major source of
losses are leakages. Since water distribution systems are
located underground, inspection is troublesome. Leaking
fittings or pipe-cracks are difficult to spot and, as a
consequence, leakages may remain unnoticed for years.

Secondly, kernel methods have recently become
popular in applications typical for machine learning such
as computer vision (Hott, 2008; Li et al., 2008), voice
recognition (Campbell et al., 2006), clustering (Kulczycki
and Charytanowicz, 2010) or medicine (Lima and Coelho,
2011). However, the number of studies looking into the
possibility of applying kernel methods to fault detection in
industrial man-made systems remains limited (Slišković

et al., 2011). Fault detection systems can serve a great
help for Fault Tolerant Control (FTC). They can isolate a
particular fault or just indicate in which operational state
the system is. The FTC mechanism can then properly
modify the controller (e.g., by adapting the performance
index and the constraints in the MPC approach) or replace
it with another one, better fit to the actual plant operating
condition. The examples of such approach can be found,
e.g., in the works of Patan and Korbicz (2012) or Brdyś
et al. (2008).

The approach presented in this article is based
on data-driven novelty detection, where the monitoring
system learns during the training phase the correct
behaviour of the system; in other words, it creates a
black-box model of a correctly operating system. Later
on, during the generalisation phase, the corresponding
operational states are regarded as normal states while
novel, previously unseen operational states are regarded as
faults. This seems an interesting alternative to the typical
modelling based on physical laws because no in-depth
knowledge of the system considered is required. It has
also some advantages over the classification approach
(popular in machine learning), where symptoms of a
fault are sought—it is possible to detect unforeseen faults
and training data do not need to be rich in samples
representing faulty states.

Application of a data-driven novelty detection
system to the problem of leakage detection has already
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been studied (Duzinkiewicz et al., 2008; Jezior et al.,
2007). However, a major limitation came from the linear
nature of the method applied—Principal Component
Analysis (PCA). As a result, the system led to limited
sensitivity or a high false alarms rate. Although an attempt
to utilise a non-linear extension of PCA—Kernel Principal
Component Analysis (KPCA)—is found in the work of
Nowicki and Grochowski (2011), this paper presents a
systematic and comprehensive approach as well as a
quantitative performance comparison between PCA and
KPCA.

The remainder of this paper is organised as follows.
Section 2 presents a state-of-the-art review of the KPCA
algorithm for data-driven novelty detection. It starts
with a general overview of the KPCA method. Next,
four aspects of model building and usage are covered:
training data processing, an algorithm for data driven
modelling, test data processing, and an algorithm for
determining if the test data are represented by the model.
Section 3 presents the framework of the proposed fault
detection system. The first subsection presents the
approach to leakage detection; the second one explains
how the algorithms presented in the previous section are
applied to the problem of leakage detection in water
distribution systems. Some of the ideas (node selection,
fault symptom propagation) described in this section are
based on the previous work, while other have been revised
to take into account the non-linear KPCA method. The
section ends with a detailed presentation of the steps taken
to build the proposed system. Section 4 presents results of
experiments and, finally, Section 5 summarises the paper.

2. Kernel PCA for fault detection

2.1. General premise. This section presents
state-of-the-art kernel PCA based on the novelty detection
approach. The algorithms and notation presented here
are crucial to comprehensively understand the operating
principle of the proposed system. This section has
been founded on the papers by Schölkopf et al. (1998),
Shawe-Taylor and Cristianini (2004), as well as Hoffman
(2007).

Principal component analysis allows finding a linear
subspace of the input space where a data set can be
represented with a minimal loss of variance. This allows
detecting linear patterns (Jackson, 1991). Kernel PCA,
described by Schölkopf et al. (1998), can be considered
a non-linear extension of PCA that combines multivariate
analysis and machine learning. Instead of looking for a
linear relationship between the variables in the input space
R

n, all measurements are mapped into a higher dimension
inner product space F, called the feature space, through
a non-linear mapping φ where linear patterns are sought
using PCA

φ : R
n → F. (1)

The linear relationship in the feature space
corresponds to the nonlinear relationship in the input
space. However, thanks to the kernel trick introduced by
Aizerman et al. (1964), neither mapping φ nor any image
φ(x) needs to be calculated explicitly. This allows not
only significant reduction of computational workload,
but one does not have to look for φ that linearises the
problem, either. The trick can be applied to any algorithm
that operates on data entirely in terms of the inner product
〈· , · 〉. Then it is possible to substitute it with a kernel
function κ(· , · ). This corresponds to inner product 〈x, z〉
in the input space R

n replaced by 〈φ(x), φ(z)〉 in the
feature space F which is given by κ(x, z):

κ(x, z) = 〈φ(x), φ(z)〉. (2)

The kernel function κ has to fulfil Mercer’s theorem to
ensure that the mapping φ exists (Mercer, 1909).

The choice of the function can be dictated by a
domain-specific knowledge. The Gauss function is used
in this paper:

κ(x, z) = exp
(−‖x − z‖2

2σ2

)
. (3)

This distance-based kernel allows generalising
the data without any prior assumptions regarding
relationships between variables. The resulting
feature space F associated with this kernel function
is infinite-dimensional. However, in order not to
over-complicate the remainder of the paper, the empirical
feature space R

m associated with empirical mapping
φm is used instead (Schölkopf et al., 1999; Xiong
et al., 2005):

φm : R
n → R

m. (4)

Like φ, the mapping φm does not need to be known
explicitly. For a data set consisting of m data points,
R

m represents an m-dimensional Euclidean space that
preserves the geometrical structure in F with inner product
defined as

κ(x, z) = 〈φm(x), φm(z)〉. (5)

This means that PCA carried out in the feature space F and
in the empirical feature space R

m gives the same result
(Schölkopf et al., 1999).

2.2. Preparing training data. Let xi be a 1 × n
row vector containing measurements that represent the
operational state of the system considered at a given time:

xi =
[

xi1 xi2 . . . xin

]
. (6)

This vector belongs to the input space R
n. A training set,

consisting of m data points, is represented by an m × n
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matrix X :

X =

⎡
⎢⎢⎢⎢⎢⎢⎣

x1

...
xi

...
xm

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

x11 x1j x1n

. . .
xi1 xij

. . .
xm1 xmn

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(7)
It is assumed that the training set consists of vectors

representing certain behaviour of the modelled node and
that all measured variables are normalised, i.e., column
vectors of X have unit variance, thus fulfilling

1
m − 1

m∑
i=1

(xij − μj)
2 = 1 for j = 1, 2, . . . , n, (8)

where

μj =
1
m

m∑
i=1

xij .

In order to use the kernel trick, an algorithm must
operate on data entirely in terms of the inner product. In
the case of PCA, there is a dual formulation that fulfils
this requirement; the algorithm is fed with Gram’s matrix
G where each element is calculated as an inner product
between data points gij = 〈xi, xj〉. In KPCA, this matrix
is substituted with the kernel matrix K:

K =

⎡
⎢⎢⎢⎢⎢⎢⎣

k11 k1j k1m

. . .
ki1 kij

. . .
km1 kmm

⎤
⎥⎥⎥⎥⎥⎥⎦

, (9)

where kij = κ(xi, xj).
Typically, PCA operates on centred data (Jackson,

1991) and therefore the image of the training set φm(X)
in the empirical feature space R

m needs to be centred.
Although the image is not known explicitly, the centreing
procedure can be applied directly to the Kernel matrix.

Let φS denote the centre of the mass of the training
set X in the empirical feature space R

m:

φS =
1
m

m∑
i=1

φm (xi) , (10)

and let φ̃m be the empirical mapping that takes into
account the centreing procedure:

φ̃m(x) = φm(x) − φS . (11)

For any two data points x and z, it is possible to evaluate
the inner product between centred images (Schölkopf

et al., 1998; Shawe-Taylor and Cristianini, 2004):

〈φ̃m(x), φ̃m(z)〉
= 〈φm(x) − φS , φm(z) − φS〉
= 〈φm(x), φm(z)〉 − 〈φm(x), φS〉 (12)

− 〈φS , φm(z)〉 + 〈φS , φS〉

= κ(x, z) − 1
m

m∑
i=1

κ(x, xi) − 1
m

m∑
i=1

κ(z, xi)

+
1

m2

m∑
i=1

m∑
j=1

κ(xi, xj).

Therefore, the centreing procedure can be applied directly
to a kernel matrix. In a matrix-wise notation, this
corresponds to

K̃ = K − 1
(

1
m

1T K

)
−

(
1
m

K1
)

1T (13)

+ 1
(

1
m2

1T K1
)

1T

where 1 and K̃ denote the m × 1 all-ones vector and a
kernel matrix K centred at the origin of the coordinates
in R

m, respectively. This normalisation can be associated
with a mapping φ̃m that takes into account this centreing.
Having represented the training data in the form of a
kernel matrix K̃, it is possible to process it using PCA.

2.3. Looking for a pattern: The data model.
By applying PCA to a training set, one can find
an orthonormal coordinate system where subsequent
coordinates (for historical reasons they are often called
scores), evaluated for data points from this set, have
decreasing variation. The primal formulation of PCA
(Jackson, 1991) allows calculating these scores using
eigenvectors V and eigenvalues Λ of the covariance
matrix C calculated for the training data X in the
empirical feature space R

m:

C =
1

n − 1
φ̃m(X)T φ̃m(X). (14)

Let λi be the i-th eigenvalue from the diagonal matrix Λ
corresponding to vi, the i-th eigenvector from V . Then,
assuming that the eigenvalues and the eigenvectors are
ordered so that λ1 ≥ λ2 ≥ · · · ≥ λn, the column vectors
of V are a new basis that spans the PC space. Therefore,
the image of the training set φ̃m(X) could be projected on
the eigenvectors V by

XPC = φ̃m(X)V (15)

However, in the case of the kernel PCA the
covariance matrix C cannot be calculated explicitly
because φ̃m(X) is unknown, and therefore the vectors of
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V cannot be evaluated directly. Instead, it is possible to
use the dual formulation of PCA (Barshan et al., 2011;
Shawe-Taylor and Cristianini, 2004). The eigenvectors
V and the eigenvalues Λ of the re-scaled covariance
matrix φ̃m(X)T φ̃m(X) can be obtained from the kernel
matrix K̃ = φ̃m(X)φ̃m(X)T , thus allowing to use
the data in terms of the inner product. Using Singular
Value Decomposition (SVD), the image of the training set
φ̃m(X) can be decomposed as

φ̃m(X) = UΛ
1
2 V T , (16)

where U and V contain left and right singular
vectors given as column vectors that are eigenvectors
of φ̃m(X)T φ̃m(X) and φ̃m(X)φ̃m(X)T , respectively,
while Λ− 1

2 holds the square roots of eigenvectors
φ̃m(X)T φ̃m(X) which are identical to the eigenvectors
of φ̃m(X)φ̃m(X)T . This allows representing V as

V = φ̃m(X)T UΛ− 1
2 . (17)

By combining (15) with (17), it is possible to calculate the
PC scores XPC of the training set:

XPC = φ̃m(X)φ̃m(X)T UΛ− 1
2 = K̃UΛ− 1

2 , (18)

where U and Λ are the eigenvectors and the eigenvalues
of K̃.

If the linear pattern exists within the data in the
feature space, then only the first r coordinates are
sufficient to describe the data, and so only the first r
eigenvalues and eigenvectors need to be extracted. Let Ur

denote the matrix containing first r column vectors from
U and Λr denote the matrix containing corresponding
eigenvalues across its diagonal. The first r PC scores of
the training set X can be calculated as

XPC(r) = K̃UrΛ
− 1

2
r . (19)

The aim is to find a configuration of relevant
eigenvectors r and parameter σ of the kernel function
κ that allows describing the general pattern represented
by the training set X exclusively. This means that the
transformation would be well fitted for points that follow
the discovered pattern. Thus, little information is lost
while projecting on Vr . Great information losses take
place in all other cases. Hence, the training set X , the
kernel function κ and the matrices Ur and Λr define the
model.

2.4. Preparing test data. Let Xnew be a test set that
needs to be matched against the pattern represented by the
kernel PCA model. It is given as a p×n matrix containing
p data points xnew i given as 1 × n row vectors:

Xnew =
[

xnew 1 · · · xnew i · · · xnew p

]T
.

(20)

It is assumed that Xnew is normalised with respect to the
training set X . Like the training set, these data need to be
represented in the form of a kernel matrix. Let this p× m
matrix be denoted by Knew. It contains evaluation of a
kernel function between each test point xnew i and each
training point xj :

Knew =

⎡
⎢⎢⎢⎢⎢⎢⎣

kn 11 kn 1j kn 1m

. . .
kn i1 kn ij

. . .
kn p1 kn pm

⎤
⎥⎥⎥⎥⎥⎥⎦

, (21)

where kn ij = κ(xnew i, xj). Knew needs to be
normalised (centred in the feature space) with regard to
the training set by

K̃new = Knew − 1p

(
1
m

1T
mK

)

−
(

1
m

Knew1m

)
1T

m (22)

+ 1p

(
1

m2
1T

mK1m

)
1T

m,

where 1p denotes the p×1 all-ones vector and 1m denotes
the m × 1 all-ones vector.

Additionally, evaluation of the kernel function
between each test vector and itself is needed. This is
stored in the p × 1 vector Kext:

Kext =
[

ke 1 · · · ke i · · · ke p

]T
, (23)

where ke i = κ(xnew i, xnew i). Following (12), this
vector is subject to the centreing procedure:

K̃ext = Kext −
(

2
m

Knew1m

)
(24)

+ 1p

(
1

m2
1T

mK1m

)
.

2.5. Matching a new data point against the pat-
tern: The reconstruction error. Following evaluation
of reconstruction error as described by Hoffman (2007),
it is possible to measure the squared distance E(xnew)
between the projection xPC

new of a test point xnew on

all principal components V and its projection x
PC(r)
new on

relevant eigenvectors VR using the Pythagoras theorem:

E(xnew ) = ‖e‖2 = ‖xPC
new‖2 − ‖xPC(r)

new ‖2. (25)

A small value of the error E indicates that the test point
is well represented by the model, which means that it
follows the pattern.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Data-driven models for fault detection using kernel PCA: A water distribution system case study 943

The term x
PC(r)
new , an element of X

PC(r)
new , can be

easily calculated using (19):

XPC(r)
new = φ̃m(Xnew )φ̃m(X)T UrΛ

− 1
2

r (26)

= K̃newUrΛ
− 1

2
r ,

but evaluation of the first term xPC
new using (18) could

impose some serious workload. However, it is possible
to use two facts here. Firstly, since PCA operates in the
feature space on centred data, it can be perceived as a pure
rotation of the basis without any translation. Secondly, it
is not the vector itself that is required here, but the squared
distance to the origin. This means that xPC

new is equal to the
inner product 〈φ̃m(xnew), φ̃m(xnew)〉, which is already
calculated in (24) and denoted by K̃ext .

Using (26) and (24) it is possible to evaluate the
reconstruction error E in (25). The iso-potential curves or
surfaces of the reconstruction error can serve as decision
boundaries for novelty detection (Hoffman, 2007).

3. Fault detection: The system framework

3.1. General overview of the framework. Although
there are various approaches to fault detection
(Venkatasubramanian et al., 2003a; 2003b; 2003c),
the data-driven approach has been chosen for purposes
of this paper. Similar attempts have already been made
with regard to water distribution systems (Mashford
et al., 2009; Duzinkiewicz et al., 2008). The most popular
approach for detecting leakages is the acoustic based
method, which uses the fact that leakages produce sound
of a certain frequency; an overview of other methods is
given by Xiao-Li and Jiang Chao-Yuan (2008). These
methods cannot be adopted in a straightforward manner
for a fault detection system since they require manual
measurements to be taken at various points across the
network. The approach presented in this paper utilises
measurements taken in some fixed nodes—pressure
and flows associated with each node registered in a
cyclic manner. The analysis of these physical quantities
allows, to a certain extent, detecting faults that introduce
perturbation into the network. Among these faults
leakages are the most common and serious as well.

There are two main reasons for that data-driven
approach. Firstly, the values of flows and pressure
measured in any node of real-life networks are, in general,
highly repeatable on a daily basis and they predictably
vary depending on the season. During a leakage the
relationship between measurements is disturbed. Thus the
measurements themselves can directly provide a symptom
of a fault.

Secondly, a water distribution system is a dynamic,
complex, nonlinear system with varying parameters. The
classical approach, based on control charts or modelling

and estimation has been used for simple pipeline
systems (Isermann, 1984). However, present-day water
distribution systems require more powerful methods.
Data-driven machine learning methods allow us to
disregarding, to a certain extent, the complexity of the
modelled network—the problem of describing the system
itself is simplified to that of describing data that represent
the behaviour of the system in question. This translates
to several benefits. To begin with, thanks to the fast
dynamics of the hydraulics, it is possible to consider
measurements of flow and pressure taken at a given
point in the network as the vector representing the
operational steady state (transient states can be neglected)
of the network at that point. Additionally, quick
propagation of the perturbance caused by the fault allows
to process separate measurement vectors independently
and locate the fault quickly. Another benefit is the
possibility to decompose a large system into a number
of smaller systems (Jezior et al., 2007), each modelled
and monitored independently, as will be explained later.
In order to deal with nonlinear relationships between
variables in the training data (the result of non-linearity
in the represented system), a method allowing one to
capture non-linear patterns needs to be utilised. Finally,
the network’s parameters are subject to changes, resulting
in different data representations of the system, but the
process typically spans years, so the model does not
require frequent updates.

A water system can be represented by a set of
nodes (junctions, tanks or reservoirs) connected by links
(pipes, pumps or valves). It takes the form of a network.
As proven by a series of experiments (Jezior et al.,
2007), leakage symptoms (perturbation of the relation
between pressure and flows) propagate over the network
within a limited distance from the source of the leakage.
There is no easy way to determine this distance but,
generally speaking, the larger the leakage, the stronger
the leakage symptom and, consequently, the distance
grows. As the damping of the symptom varies across
the network, the symptom propagates with a different
magnitude in different directions. The mains in particular
(the network’s backbone) have been identified to have
strong dumping properties. This means that, in order to be
able to detect faults with reasonable efficiency, a number
of nodes where the measurements are taken is required.
Promising candidates are the nodes where several pipes
are crossing and which supply water to a few other nodes.
Unfortunately, there is no straightforward way to select
nodes that would guarantee to perform well. It is also not
possible to determine a priori how many measurement
points are required to provide the assumed quality of
detection. Hence the nodes have to be selected empirically
(Jezior et al., 2007).

The nodes where pressure and flows are measured
are called monitoring nodes. For each monitoring
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x(1)

x(2
)

 

 
reconstruction error E

training set X

x(1)

x(2
)

 

 EMAX
1

< EMAX
2

< EMAX
3

training set X

test set X
new

 − normal

test set X
new

 − fault

EMAX
1

EMAX
2

EMAX
3

(a) (b)

Fig. 1. Graphical interpretation of reconstruction error E (bright area corresponds to low values of E) (a), three sample reconstruction
error thresholds EMAX (only EMAX

1 provides good leakage detection) (b). The training set represents two flows (variables
x(1), x(2)) at node 030.

node a separate model is built. This corresponds to
splitting a complex network into a number of small
semi-independent subsystems. Each monitoring node
provides information about faults only with respect to its
local neighbourhood.

At each time step, it is possible to observe n
measurements (n − 1 flows and a pressure) for a single
monitoring node with n − 1 links—a single set of
n measurements can be perceived as a data point in
an n-dimensional input space R

n. A set of m data
points collected over a period of time from a single
node serves as a training set X . That set should be
representative, which means that it should be rich enough
to contain information about all key operational states of
the monitoring node. The training set representing a given
node is perceived as a set of points in R

n (Fig. 1(a)). It
can be enclosed by a regular decision boundary that, on
the one hand, tightly encloses this set, but on the other
hand, generalises the relationship between the variables
(Fig. 1(b)). Provided that the training set is representative,
any data point lying outside the decision boundary would
represent a faulty state. In this paper, kernel principal
component analysis is employed to build the said decision
boundary.

Let EMAX be the threshold value of the
reconstruction error chosen for a given KPCA model.
Following the previous reasoning, for any test vector
xnew ,

E(xnew)

{
≥ EMAX ⇒ xnew ⊂ faulty states,

< EMAX ⇒ xnew ⊂ normal states.
(27)

The graphical interpretation of (27) is the iso-potential

surface in R
n enclosing the training set that serves as a

decision boundary (Fig. 1).

3.2. Set-up of the network model. This section
describes the steps necessary to set up the proposed
fault detection system (Fig. 2). The entire process
starts with selection of monitoring nodes. As described
earlier, this is a purely heuristic operation (indicated by
the trapezoidal shape of the operation in Fig. 2). It
requires the knowledge of the network’s structure and
understanding of fluid mechanics, or a simple model
of the network that enables to verify which nodes are
sensitive to water distribution changes. It might be a good
idea to identify semi-independent zones with nodes of
similar characteristics first (e.g., a residential area within
a single district). Those zones might be separated by
the network’s backbone or separated physically as district
metering areas (Thornton et al., 2008). Within each
zone at least one monitoring node should be selected, but
depending on the size of this zone, the required sensitivity
of the system and performance of selected nodes, more
monitoring nodes might be needed.

Once the monitoring nodes are identified, a separate
model is built for each node. The remaining part of this
subsection describes operations for setting up a model of
a single node, to be repeated for each node.

It is required that, in the monitoring node, cyclic
measurements of pressure and flows in all incoming pipes
associated with this node be taken as described earlier.
The training data must be acquired from a fault-free
system to guarantee that the training set represents
correctly the operating sub-system. The test set should
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Parameters (r)

Pressure 
(training set)

Flow 
(training set)

Current pressure 
(test point)

Current flow 
(test point)

Parameters (Emax)

Normalisation 
of the training set

Normalisation 
of the test point

with respect to the training set

input & fixed data

Kernel 
evaluation

(Eq. 18, 20)
xnew

var

processing

X

KPCA 
model

(Eq. 21, 22)

Parameters (sigma)

Knew

Fault 
detection
(Eq. 23)

E normal 
/ fault

State of i-th model

output

Kext

Fig. 3. Data processing model for fault detection. The solid line denotes variable input, the dashed line denotes fixed input.

Start

Stop

N

N

Y

Y

Training and test 
data acquisition

Normalisation
(Eq. 7)

Parameter choice
(sigma, r)

KPCA Model
(Eq. 21, 22)

Parameter choice
(Emax)

Selection 
of monitoring nodes

Possible to tune
parameters?

Performance
acceptable?

Search algorithm

Fig. 2. Flowchart for setting up a WDS fault detection system.

represent the faults that are expected to be detected by the
system. Both the training and test sets are then normalised
with respect to the training set (as in Eqns. (8) and (22)),
to ensure that variables are equal in the statistical sense.

In the next step, two parameters, namely, σ and r,
have to be chosen. Large values of σ allow building
a generalised model of the data that results in a fault
detection capability similar to the one provided by the
classic linear PCA model, while small values of σ and
a high number of relevant eigenvectors r result in a rather
strict data model. For given parameters it is possible to
build a KPCA model and evaluate its behaviour for the
training set. This can provide the first estimate of EMAX.
It should be, on one hand, large enough to minimise false
alarms during normal operation, but on the other—small
enough to be able to detect abnormalities during a fault.
For a well-prepared KPCA model, EMAX can be chosen
to provide some fixed performance over the training set,
e.g., as the 95th percentile of the reconstruction error
calculated for the training set.

Finally, it is possible to evaluate the efficiency of the
monitoring node model by verifying the reconstruction
error calculated for the test data. If the performance is
not satisfactory, one can try to look for different sets of
σ and r parameters, then rebuild the KPCA model and
go again through the EMAX procedure. However, to
avoid the manual trial and error approach, it is possible to
use a search algorithm instead. The grid search method
is particularly popular for kernel methods, but other
strategies can be applied as well (Nogayama et al., 2003).

If the performance turns out below expectations and
it cannot be further improved by tuning the parameters,
either the training set must be re-examined or the
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Fig. 4. Model of the Chojnice WDS with the residential zone (grey background) chosen for the performance evaluation and three
monitoring nodes: 030, 074, 088 (black circles) (a), reconstruction error values evaluated for a sample test scenario (leakage of
a size 1.4 m3/h simulated in node 122 between 15 and 24 h) for the three monitoring nodes (b).

expectations are too high. Should the latter be the case, the
test set needs to be updated to represent the new, revised
expectations.

Figure 3 illustrates the data processing model for
fault detection. For each monitoring node an independent
model is created. The model is defined by the training
set X with some fixed variance var and a set of three
parameters: r, σ and EMAX. They are all fixed (this is
indicated by the dashed lines). Current measurements of
pressure and flows taken at the monitoring node are the
input for the model (the solid lines). At each time step
these measurements make up an n-dimensional vector (a
test point). This vector is normalised with respect to
the training set and processed according to the algorithm
presented in Section 2. The model’s output is a current
state indication in the binary form (normal /fault).

4. Chojnice WDS case study

4.1. Experiment set-up. For the purpose of
performance evaluation, a well-calibrated model of the
water distribution system in the Chojnice town (northern
Poland) is used (Duzinkiewicz et al., 2008). The
model was prepared in Epanet—a public-domain water
distribution system modelling software package. It was
used as a substitute of measurement equipment to generate
values of flows and pressures in monitoring nodes both
during correct operation and simulated faults.

Based on the documentation of the network, the
entire area was split into semi-independent zones and
a single residential zone was chosen for further study.
Within this area three monitoring nodes were selected
empirically: 030, 074 and 088 (Fig. 4(a)).

Three training sets (one for each monitoring node)
were generated from Epanet’s model. Each set consisted
of data collected in fault-free conditions during 6
consecutive days with various demand patterns. The
measurements were made every 5 minutes, and hence the
training set consisted of 1728 samples.

The test set consisted of a number of different
scenarios. An individual scenario contained three data
sets (again, one for each monitoring node) from a single
day (288 samples) with demand patterns different from the
training ones and a fault (leakage of a fixed size) simulated
in a random node within a selected zone at a random time.
Only single-fault cases were considered.

The local KPCA models of the monitoring nodes,
like all other necessary computational algorithms used
for fault detection (Fig. 3), were implemented in
the MATLAB environment (self-developed scripts).
Parameters of σ and r were determined by an exhaustive
discrete two-dimensional grid search based on results
from 10 test scenarios. This allowed determining the
parameters for each monitoring node (‘030’: r = 70,
σ = 0.8, ‘074’: r = 120, σ = 1.2, ‘088’: r = 130,
σ = 1.5).

Figure 4(b) presents the reconstruction error
evaluated for each monitoring node for a sample
test scenario. It is normalised with respect to the
corresponding EMAX values for better readability. For
the node 074, the threshold upon fault is visibly exceeded,
thus allowing detecting the leakage. Before the fault
occurred, there were a few false alarms.

4.2. Performance evaluation. There are four possible
outcomes for a single input vector xnew i processed by
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Fig. 5. ROC curves obtained from experiments: three monitoring nodes—leakage size 1.1-1.5m3/h (a), three monitoring nodes—
leakage size 1.7-2.2m3/h (b).

a fault detection system: hit (alarm raised upon fault
detection), missed alarm, normal (no alarm raised in the
fault-free case), false alarm. Two of those, namely, missed
alarm and false alarm, should not occur with a perfectly
fine operating fault detection system. To simplify the
quantitative presentation of results coming from a number
of different scenarios, it is convenient to operate on rates.
In this paper an average hit rate (true positive rate, tp-rate)
and an average false alarm rate (false positive rate, fp-rate)
are used. An ideal fault detection system should have a hit
rate equal to one (detection of all faults) and a false alarm
rate equal to zero (no faults indicated during fault-free
operation). This is usually not possible in the case of
complex real-life systems, but a good fault detection
system should get as close to ideal as possible.

The tp-rate and the fp-rate allow plotting the
Receiver Operating Characteristics (ROC) curve—a
popular method to assess the performance of a classifier
(Alpaydin, 2010). That characteristic presents the hit rate
vs. the false alarms rate as the threshold changes. In
order to prove the efficiency of the proposed approach,
the results of experiments are given in the form of ROC
curves (Fig. 5).

A single test scenario does not provide sufficient
overview of fault detection capability in various operating
conditions. Therefore the tp-rate and the fp-rate for each
point on the characteristic are evaluated based on the
average performance from 200 random test scenarios.
The circle is the reference value and corresponds to the
tp-rate and the fp-rate obtained using EMAX, which is
determined during the training phase (99th percentile over
the test set). The remaining part of characteristics is drawn
by re-evaluating performance in identical conditions with
the value of EMAX changed gradually.

For the purpose of performance comparison, two
other methods were evaluated using an identical approach:
PCA—following the description by Jezior et al. (2007),
and a simple Control Chart (CCh), where a fault is
indicated whenever any variable exceeds fixed upper or
lower boundaries.

4.3. Overview of the results. The performance of a
fault detection system consisting of three local models
(node 030, 074, 088) was evaluated for two different sets
of test scenarios: a simulated leakage of 1.1–1.5 m3/h
(Fig. 5(a)) and 1.7–2.2 m3/h (Fig. 5(b)). With the daily
average demand of the entire network around 180 m3/h,
this represents reasonably sized leakages. Depending on
σ and r, it is possible to build either a conservative KPCA
model that would loosely enclose the training set or a strict
one. The model described in this section is the latter:
compared with PCA, it provides a higher hit alarm rate
at the cost of a slightly higher false alarm rate. Better
performance is especially visible with larger leakages
(Fig. 5(b) vs. Fig. 5(a)), because a precise KPCA model
allows detecting leakages within a larger range and for a
similar fp-rate it achieves a higher tp-rate. Notice that for
those two experiments the performance of a PCA-based
detection system is similar. The system based on models
using a simple control chart does not provide satisfactory
results.

5. Summary

The results obtained from well-designed experiments
prove that the novelty detection approach based on KPCA
is an efficient way to detect leakages and possibly other
faults that affect water distribution in water networks.
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It significantly outperforms the control chart approach,
proving that independent analysis of each variable is
not sufficient, and demonstrates advantages over classic
multivariate analysis (PCA). Although PCA models are
preferred for the cases where data follow a linear
(or almost linear) relationship due to easier parameter
tuning, KPCA models allow building an arbitrary smooth
decision boundary that permits to model non-linear
systems such as water networks. The parametric nature
of the model provides flexibility—by adjusting the KPCA
model it is possible to choose between sensitivity and
specificity. On the other hand, choosing the parameter is
not a trivial task, so one needs to employ a search strategy,
which is an interesting direction for future research.
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