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Abstract. In this paper, the data, information, knowledge, and wisdom (DIKW) 
pyramid is revisited in the context of deep learning applied to machine learning-
based audio signal processing. A discussion on the DIKW schema is carried out, 
resulting in a proposal that may supplement the original concept. Parallels be-
tween DIWK pertaining to audio processing are presented based on examples of 
the case studies performed by the author and her collaborators. The studies shown 
refer to the challenge concerning the notion that classification performed by ma-
chine learning (ML) is/or should be better than human-based expertise. Conclu-
sions are also delivered.  

Keywords: Data, Information, Knowledge, Wisdom (DIKW) Pyramid, audio 
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1 Introduction 

Data, information, knowledge, and wisdom (DIKW) are typically presented in the form 
of a pyramid [1-7]. When looking at this schema, several thoughts may occur. The first 
refers to what is not included in it, i.e., intuition and perception. These two notions are 
certainly needed in acquiring knowledge and wisdom. Moreover, the Cambridge dic-
tionary definition of wisdom shows: “the ability to use your knowledge and experience 
to make good  and judgments.” So, other missing factors are experience and judgment. 
Then, what about courage, pushing the boundaries of believing in what one is doing, 
perseverance, and expertise, which is not an exact synonym for knowledge or wisdom 
but competence, proficiency, or aptitude. Then, one may look for humility in wisdom 
to know one’s limits. What about understanding and intelligence? Where do they fit in 
this schema? 

Furthermore, we cannot treat the pyramid as an equation in which a sum of data, 
information, and knowledge equals wisdom. So, maybe this concept should not be pre-
sented as a pyramid but rather as a chaotic mixture of all those factors mentioned blend-
ing into each other (see  Fig. 1). Figure 1 illustrates some of the notions recalled above. 
Of course, there is sufficient ocean-like space to contain more ideas and beliefs to sup-
plement such a visualization concept.  
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On the contrary, the hierarchical presentation has advantages, as it shows the direc-
tion from raw data through information and knowledge toward wisdom [6,7], measured 
as a level of insight. Even though there is an observation that the levels of DIKW hier-
archy wisdom are fuzzy, moreover, the path from data to wisdom is not direct. This is 
further expanded in a strong thread on DIKW within the rough set community [8-9]. A 
wistech (wisdom technology) was introduced, defined as a salient computing and rea-
soning paradigm for intelligent systems [8].  

 

 

Fig. 1. Word cloud translating data, information, knowledge, and wisdom (DIKW) pyramid to 
the chaotic concept of acquiring knowledge and wisdom (created with the use of 
https://www.wordclouds.com/). 

In that respect, all these questions pertain to machine learning (ML) and artificial intel-
ligence (AI). Nowadays, the first attempts that employ learning algorithms are called 
conventional or baseline. Still, when an artificial neuron was modeled by McCulloch 
and Pitts [10], and Rosenblatt later proposed a perceptron to classify pictures, there 
were already ambitious plans for what could be done with such an approach. A well-
known Rosenblatt’s statement envisioned that perceptron would be able to “recognize 
people and call out their name,” “instantly translate speech in one language to speech 
or writing in another language,” “be fired to the planets as mechanical space explorers,” 
but also “reproduce itself” and be self-conscious in the future [10,11]. However, before 
this belief came true, several decades passed, and technology had to change to employ 
graphical units instead of CPU (central processing unit), resulting in data-hungry deep 
learning [12]. A very apt statement of Vandeput on the last decade’s machine learning 
evolvement refers to the “deep learning tsunami” [10]. However, already in the ’50s of 
the previous century, a need for data was recognized [10]. Even though one may discern 
a difference between machine learning and deep learning, the first regarded as 
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prediction, classification, etc., and the second considered as “algorithms inspired by the 
structure and function of the brain called artificial neural networks” [11]; they both 
need data. 

In most cases, data should be structured and annotated by experts. The latter notion, 
however, may no longer apply as synthesized data may substitute carefully crafted da-
tasets [13]. Moreover, a knowledge-based approach to machine learning may not be 
necessary as relevant features are extracted automatically in some deep model struc-
tures [13,14]. Contrary, the notion of imperfect data in the sense of incomplete, too 
small a size, unbalanced, biased, or unrepresentative [15] is still valid. 

In this paper, examples of work performed by the author and her collaborators are 
shown further on. This short review of study encompasses intelligent audio processing.  

2 Intelligent music and speech processing  

Even though music information retrieval (MIR) is a well-established area encompass-
ing musical sound, melody and music genre recognition, music separation and tran-
scription, music annotating, automatic music mixing, music composing, etc. [16-18], 
there is a void between human- and machine-based processing, which is sometimes 
referred to as a semantic gap or bridging a semantic gap [19], i.e.,  finding interconnec-
tions between human knowledge, content collections, and low-level signal features. 
There are two layers to music services, i.e., a general map of the relation between songs 
− interconnections between the users and songs, and a personalization layer − infor-
mation from the above analysis is confronted with the user’s music preferences, mood, 
emotions, and not only what the particular user listens to but what songs they like to 
combine. In the dictionary of terms related to MIR, one should include music represen-
tation, which may be obtained by automatic tagging using metadata (ID3v2), included 
in, e.g., Gracenote or FreeDB databases; manual tagging by experts or social tagging; 
content-based; low-level description of music (feature vectors based on MPEG-7 stand-
ard, Mel-Frequency Cepstral Coefficients (MFCC), and dedicated descriptors), or 2D 
maps as features (e.g., spectrograms, mel-spectrograms, cepstrograms, chromagrams, 
MFCCgrams, designated for deep learning [20]. One should not forget collaborative 
filtering in Music Recommendation Systems (MRS) that creates maps based on neigh-
bors or taste compatibility.  

None of the mentioned representations is devoid of problems. For example, if there 
are millions of songs in a music service, then even very active users cannot listen to 1% 
of the music sources; thus, this may result in an unreliable recommendation if the co-
occurrence-based method is considered. Contrary to the above consideration, low-level 
descriptors seem a straightforward representation. However, when comparing time- or 
time-frequency representation of music/speech signals, one may notice that sounds of 
the same instrument differ regardless of their representation (see Fig. 2). Obviously, 
male and female voices uttering the same sentence also differ (see Fig. 2). This may 
cause identification problems.  

From the derivation of signal representation (as shown in Fig. 2) to much more so-
phisticated tasks is not so far. This may be illustrated based on the identification process 
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of mixed and often overlapped instruments in a music piece to decide which classes are 
contained in the audio signal [21]. This task was performed on Slakh dataset [22], des-
ignated for audio sources separation and multi-track automatic transcription, consisting 
of 2,100 songs. In most cases, there are four instruments in a song in Slakh. This con-
cerns piano, bass, guitar, and drums.  

In Fig. 3, a block diagram of the deep model designated for musical instrument iden-
tification is shown [21].  
a. 

 
b. 

 
c. 
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d. 

 
e. 

 
f. 

 

Fig. 2. Violin C4 and C6: (a) spectrograms, (b) chromagrams, (c) MFCCgrams; male/female 
utterance: (d) spectrograms, (e) chromagrams, (f) MFCCgrams. 

The dataset for music identification was divided into three parts: training set – 
116,369 examples; validation set – 6,533; evaluation set – 6,464. Figure 4 refers to the 
metrics obtained during the training and validation processes [21]. In Fig. 5, a histogram 
of instruments contained in a music piece, identified by the deep model, is presented.  
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Fig. 3. A block diagram of the deep model designated for musical instrument identification 
based on Mel Frequency Cepstral Coefficients ( MFCCs). 

 

Fig. 4. Metrics on validation and training sets [21]. 

 

Fig. 5. Histogram of instruments contained in a music piece [21]. 

Overall results were as follows: precision – 0.95; recall – 0.94; AUC ROC (area under 
the ROC curve) – 0.94; true positive – 21,064; true negative – 2,470; false positive – 
1,283; false negative – 1,039.   

Another example concerns the autonomous audio mixing using the wave U-Net deep 
model [23]. The signal waveform and music genre label are provided at the net input. 
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Individual models are mixed to a stem (stem-mixing is a method of mixing audio ma-
terial based on creating groups of audio tracks and processing them separately prior to 
combining them into a final master mix). Then, stems are mixed within the given genre 
to the entire mix. 

In Fig.  6, spectrograms resulting from a mix prepared by a professional mixer and 
that of the deep U-Net model are shown. One can see that these signal representations 
are visually indistinguishable, which was further confirmed by the outcome of listening 
tests (see Fig. 7).  

 

Fig. 6. Spectrograms resulted from autonomous audio mixing using mixes prepared by a profes-
sional mixer and the U-Net deep model. 

In Fig. 7, the results of the subjective tests checking the quality of mixes prepared by 
autonomous deep model, technology-based (Izotope), anchor (filtered, low-quality 
sound), and reference mixes, the last one referring to professionally created mix [23], 
are shown. Listeners correctly identified both the reference and anchor signals. The U-
Net model, in the listeners’ opinion, is almost as good as the reference signal and is 
much better than state-of-the-art-based technology [23]. 
In music processing – information is often provided by tagging music and its user’s 
behavior and actions (i.e., creating an ecosystem); it is contained in music services 
(MRS) within the frameworks of music ecosystem (music+users of music services); 
music content is analyzed at the low-level features, or there is a mixture of approaches.  

In speech processing – datasets are collected by, e.g., automatically extracting 
speech and conversations from TV, radio, Facebook, YouTube, and other resources, as 
well as listened to and recorded by Alexa, Siri, Google, WhatsApp, etc. Indeed, there 
exist (and are still created) resources prepared manually dedicated to a particular prob-
lem [20]; however, as already mentioned, synthesized data may fill in these needs [13].     
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Fig. 7. Outcome of the subjective tests checking the quality of mixes prepared by autonomous 

deep mode, technology-based (Izotope), anchor (low-quality filtered signal), and the reference 
mixes, the last one referring to professionally created mix [23].  

 
In the speech area, several applications may be discerned, e.g.,  speech recognition en-
abling communication, healthcare assistance, etc.;  voice recognition/authentication 
systems; emotion recognition in speech and singing; voice cloning (testing vulnerabil-
ity to attack speaker verification system); automatic aging of biometric voice; pronun-
ciation learning by 2L (second language) speakers; automatic diagnosis or computer-
aided diagnosis based on speech characteristics retrieved from the patient’s voice 
(voice, speech and articulation disorders, Parkinson disease, dementia, dysarthria, etc.).  

Voice authentication (VA), i.e., testing vulnerability to attack speaker verification 
system, based on DeepSpeaker-inspired architecture models using various parametri-
zation approaches, brought high values of accuracy and a low level of equal error rate. 
The outcome of such a study for voice authentication based on the DeepSpeaker-in-
spired model, along with various representations, such as VC (vocoder), MFCC (Mel 
Frequency Cepstral Coefficients); GFCC (Gammatone Frequency Cepstral Coeffi-
cients), and LPC (Linear Predictive Coding Coefficients) is shown in Table 1. Depend-
ing on what criterion is more important, i.e., equal error rate (EER) or the number of 
epochs (each epoch took between 7 and 30 minutes), one may optimize the approach 
to VA.  

Table 1. Outcomes of a DeepSpeaker-inspired model, along with various representations, such 
as VC (vocoder), MFCC (Mel Frequency Cepstral Coefficients); GFCC (Gammatone Frequency 
Cepstral Coefficients), and LPC (Linear Predictive Coding Coefficients). 

Representation/model F-score Accuracy EER Epochs 

VC model (MFCC) 0.875 0.997 0.0208 895 
MFCC 0.784 0.8641 0.0829 400 
GFCC 0.732 0.8132 0.1378 400 
LPC 0.741 0.8216 0.0936 400 D

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://mostwiedzy.pl


9 

3 Conclusions 

Challenges that could be identified within audio technology are related to the role of 
human factors such as, for example, the user’s personality and experience, emotions in 
the user’s models, and personalized services. Emotions are one of the most important 
aspects of interpersonal communication, as spoken words often − in addition to their 
content − contain additional, more deeply hidden meanings. Recognizing emotions, 
therefore, plays a crucial role in accurately understanding the interlocutor’s intentions 
in all human-computer (and vice versa) technology. When searching for the keyword 
“emotion recognition in speech” on Google in December, the number shown was 
17,500,000 results; today, as of January 8th, the value increased by almost 2 million. 
This shows the extremely high and growing importance of this issue, which can also be 
observed within the scientific community [24,25] 

Moreover, speech signal contains phonemic variation, temporal structure, prosody, 
timbre, and voice quality. It also includes various aspects of the speaker’s profile. State-
of-the-art methods employ deep learning to recognize all these components in audio 
signals. One may say that what is easily discerned and analyzed by a human may no 
longer escape an ML-based approach, as this is already happening.  

Finally, the author hopes that this paper is another voice in the discussion regarding 
whether this is already the stage when algorithms gain wisdom on their own. 
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