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ABSTRACT When system parameters vary at a fast rate, identification schemes based on model-free local
estimation approaches do not yield satisfactory results. In cases like this, more sophisticated parameter
tracking procedures must be used, based on explicit models of parameter variation (often referred to as
hypermodels), either deterministic or stochastic. Kalman filter trackers, which belong to the second category,
are seldom used in practice due to difficulties in adjusting their internal parameters such as the smoothness
coefficient and the order of the hypermodel. The paper presents a new solution to this problem, based
on the concept of preestimation of system parameters. The resulting identification algorithms, which can
be characterized as decoupled Kalman trackers, are computationally attractive, easy to tune and can be
optimized in an adaptive fashion using the parallel estimation approach. The decoupled KF algorithms can be
regarded as an attractive alternative to the state-of-the-art algorithms which are much more computationally
demanding.

INDEX TERMS Kalman filter, parallel estimation, preestimation of system parameters, system
identification.

I. INTRODUCTION
Consider the problem of identification/tracking of a
time-varying finite impulse response (FIR) system governed
by

y(t) = ϕT (t)θ (t)+ e(t) (1)

where t = . . . ,−1, 0, 1, . . . denotes discrete (normalized,
i.e., dimensionless) time, y(t) denotes system output, ϕ(t) =
[u(t − 1), . . . , u(t − n)]T is the regression vector made up
of past measurements of the observable (locally) wide sense
stationary input signal {u(t)}, {e(t)} denotes white measure-
ment noise, and θ (t) = [θ1(t), . . . , θn(t)]T is the parameter
vector made up of unknown time-varying system coefficients,
independent of {u(t)} and {e(t)}.
Linear time-varying FIR models are used, among others,

to describe rapidly fading mobile communication channels.
Their identification allows one to efficiently solve the channel
equalization (inverse filtering) problem [1], [2] or to miti-
gate self-interference in full-duplex communication systems
[3], [4]. The FIR structure describes well the so-called
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multi-path effect: due to scattering the transmitted signal
reaches the receiver along different paths, i.e., with different
time delays; the values of FIR coefficients depend on the
strength of ‘‘natural reflectors’’ and their time variation is
caused by the receiver motion [1], [5].

When system parameters vary slowly with time, their esti-
mation can be successfully carried out using the local estima-
tion approach, such as the method of weighted least squares
(WLS) [6], [7]. Since local methods fail in the presence
of fast parameter changes, in cases like this more sophisti-
cated frameworks must be used, such as those incorporat-
ing explicit models (hypermodels) of parameter variation.
Hypermodels can be deterministic or stochastic. In the first
case, parameter trajectory is modeled as a linear combi-
nation of known functions of time, called basis functions
(BF), such as powers of time (polynomial basis) or sine and
cosine functions (harmonic basis). The BF approach can be
traced back to the paper of Subba Rao [8], which was fol-
lowed by a large number of contributions exploring different
aspects of the BF-based estimation [1]–[4], [7], [9]–[23].
This research covered different types of system/signal mod-
els, such as FIR [1]–[4], [22], [23], AR/ARX (autoregres-
sive/autoregressive with exogenous inputs) [8], [18]–[21] and
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ARMA (autoregressive moving average) [12], [16], [19],
and their various applications in telecommunications [1]–[4],
biomedical signal analysis [18], [20], speech analysis [11]
and diagnostics of mechanical systems [19]. It involved dif-
ferent functional bases, such as polynomial [3], [4], [8]–[11],
[15], [16], [21], [22], harmonic [1], [2], prolate spheroidal
[12] and wavelets [17], [20]. For FIR systems and free choice
of basis functions some pretty general analytical results,
describing both static and dynamic parameter tracking char-
acteristics of BF algorithms, were presented in [7], [14], [15],
[22] and [23].

In the case of stochastic hypermodels it is assumed that sys-
tem parameters change in a random way, e.g. that their evolu-
tion can be described by a generalized randomwalk equation.
Then the problem of estimation of θ (t) can be expressed
and solved as the problem of estimation of a state vector of
an associated dynamical system. In such a setup parameter
estimation can be carried out using appropriately designed
Kalman filtering (KF) algorithms [24]–[31]. The available
research results are focused on identification of ARX [24],
[25] and FIR [31] systems, and AR signals [28]–[30], and
on different approaches to tuning of KF trackers, such as
the smoothness priors technique [27]–[29] or cross-validation
[31]. Some interesting applications of KF-based identifica-
tion algorithms can be found in [26], [29] and [30].

In spite of qualitative similarities, pointed out in Section II,
the KF approach is less frequently used than the BF approach,
mainly because of problems with tuning its design parame-
ters. In the current contribution we propose decoupled ver-
sions of the KF-based identification algorithms, free of the
drawback mentioned above. Decoupling means that identi-
fication is carried out independently for each coefficient of
the analyzed system. Such a solution is possible owing to a
new estimation paradigm for identification of nonstationary
stochastic systems, based on the concept of preestimation.
Preestimates are very noisy but unbiased estimates of param-
eter trajectories. They can be used to ‘‘X-ray’’ the structure of
system parameter variation without making any assumptions
about its functional form or speed. Due to large variability,
preestimates must be postprocessed. We will use for this
purpose Kalman filters/smoothers.

It will be shown that, unlike in the case of the classical
KF-based parameter trackers, the estimation memory span
of the proposed algorithm is data-independent and hence it
can be easily controlled by the user. It will be also shown
that optimization of the tracking performance of the decou-
pled KF algorithm, i.e., tuning of its design parameters to
the unknown and possibly time-varying form and rate of
parameter changes, can be achieved by means of parallel
estimation and cross-validation. Finally, we will derive the
simplified, steady state version of the proposed identifica-
tion algorithm with reduced computational load (depend-
ing linearly on the number of estimated parameters), which
is a computationally attractive alternative to the current
state-of-the-art.

II. CLASSICAL KALMAN FILTER BASED
IDENTIFICATION ALGORITHMS
The integrated random walk (IRW) model of parameter vari-
ation is the most frequently used stochastic hypermodel [7].
The IRW model [25], [28] of order m is governed by

∇
mθ(t) = w(t) (2)

where ∇mθ (t) denotes the m-th order difference of θ (t):
∇
mθ (t) = (1 − q−1)mθ(t) =

∑m
i=0 fiθ (t − i), fi = (−1)i

(m
i

)
,

i = 0, . . . ,m (q−1 is the backward shift operator), and {w(t)}
denotes a zero-mean i.i.d. sequence, independent of {e(t)}
and {ϕ(t)}. To reduce the number of degrees of freedom it
is usually assumed that cov[w(t)] = σ 2

wI , i.e., that the rate
of variation is the same for all system coefficients. Generally,
the larger the order m of the IRW model, the smoother the
corresponding parameter trajectory.

Equations (1) and (2) can be put in the state space form
[25], [28]

x(t) = Fmx(t − 1)+ Cmw(t)

y(t) = ϕT (t)CT
mx(t)+ e(t) (3)

where x(t) = [θT (t), θT (t − 1), . . . , θT (t − m + 1)]T is the
mn× 1 regression vector,

Fm =


−f1I −f2I . . . −fm−1I −fmI
I O . . . O O

O O . . . I O


is the mn × mn state transition matrix, and Cm =

[I,O, . . . ,O]T is the mn × n output matrix (I and O denote
n× n identity and null matrices, respectively).

Since θ (t) = CT
mx(t), the problem of estimation of θ (t)

can be formulated and solved as the problem of estimation
of the state vector x(t) of the dynamical system (3). The
optimal, in the mean squared sense, estimate of x(t) based
on the available observation history �(t) = {y(i),ϕ(i), i ≤
t} has the form x̂(t|t) = E[x(t)|�(t)]. Under Gaussian
assumptions the conditional mean can be computed recur-
sively using the Kalman filtering algorithm. Whenever non-
causal estimation – based on the prerecorded data set �(N ),
containing both ‘‘past’’ and ‘‘future’’ measurements (relative
to t) – is feasible, the minimum-variance estimate has the
form x̂(t|N ) = E[x(t)|�(N )] and can be evaluated using
the algorithm known asKalman smoother. The corresponding
causal and noncausal estimates of θ (t) have the form

θ̂ (t|t) = CT
mx̂(t|t), θ̂ (t|N ) = CT

mx̂(t|N ).

It is well known [7] that parameter tracking proper-
ties of the Kalman filtering/smoothing algorithms based on
the hypermodel (2) depend on the variance quotient ξ =
σ 2
w/σ

2
e , further referred to as the smoothness coefficient (both

Kalman filtering and Kalman smoothing algorithms can be
written down in a normalized form which depends on ξ ,
rather than separately on σ 2

w and σ 2
e ). Different values of ξ
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and m correspond to different estimation memory settings of
KF algorithms. In practice ξ and m serve as user-dependent
‘‘knobs’’, allowing one to tune KF tracker/smoother to the
rate of system nonstationarity, or in statistical terms – to
trade off the bias and variance components of the mean
squared parameter estimation error. Tuning can be achieved
by running several KF algorithms, equipped with different
hypermodel order and smoothness coefficients, and choosing
at each time instant the estimates yielded by the algorithm
which proves to be ‘‘locally the best’’ [32].

It is straightforward to show that when w(t) in (2) is set to
zero, i.e., when ∇mθ (t) = 0, system parameters must obey

θj(t) =
m∑
l=1

ajl t l−1, j = 1, . . . , n. (4)

Hence, the IRW model can be regarded as a local, or per-
turbed, power series model of parameter variation, which cor-
responds to the deterministic BF hypermodel incorporating
polynomial basis {1, t, t2, . . . , tm−1}. This is an obvious point
of tangency of the deterministic BF approach and the stochas-
tic KF one. The difference lies in the way the polynomial
description of parameter variation is time-localized. In the
deterministic case the memory of the estimation algorithm
is controlled by restricting the model to a local interval only.
In the stochastic case the same goal is achieved by adding
to the polynomial generating function a random perturbation.
However, while the estimation memory of the BF algorithm
can be easily evaluated and controlled by changing the local
approximation range (see Section 7), the dependence of the
estimation memory of the KF algorithm on ξ is not known
and obscured by the fact that it depends also on the charac-
teristics of the regression vector ϕ(t) [7]. This significantly
complicates design of KF algorithms and KF-based parallel
estimation schemes mentioned above.

III. PREESTIMATION TECHNIQUE
Preestimation is a technique introduced in [33] and fur-
ther developed in [34]–[36]. Preestimates are raw parameter
estimates, unbiased but with a very large variability. For
this reason to obtain reliable parameter estimates, provid-
ing satisfactory bias-variance trade-off, preestimates must be
further postfiltered. As shown in [34], preestimates, further
denoted by θ∗(t), can be obtained by ‘‘inverse filtering’’
short-memory exponentially weighted least squares (EWLS)
estimates, namely

θ∗(t) = Lt θ̂
EWLS

(t)− λ0Lt−1θ̂
EWLS

(t − 1) (5)

where λ0, 0 < λ0 < 1, denotes the so-called forgetting
constant and Lt =

∑t−1
i=0 λ

i
0 = λ0 Lt−1 + 1 denotes the

effective width of the exponential window. EWLS estimates
can be computed recursively [6]

ε(t) = y(t)− θ̂
T
(t − 1)ϕ(t)

g(t) =
R(t − 1)ϕ(t)

λ0 + ϕT (t)R(t − 1)ϕ(t)

θ̂ (t) = θ̂ (t − 1)+ g(t)ε(t)

R(t) =
1
λ0

[
R(t − 1)−

R(t − 1)ϕ(t)ϕT (t)R(t − 1)
λ0 + ϕT (t)R(t − 1)ϕ(t)

]
.

For large values of t the effective window width reaches
its steady state value equal to L∞ = 1/(1 − λ0). In this
case the preestimate (5) can be evaluated using the following
simplified formula

θ∗(t) =
1

1− λ0
[̂θ
EWLS

(t)− λ0θ̂
EWLS

(t − 1)] . (6)

It can be shown that if the input signal {u(t)} is (locally)
stationary, and the measurement noise {e(t)} is white, the
preestimates defined in this way are approximately unbiased
[34], namely

θ∗(t) = θ (t)+ z(t) (7)

where z(t) denotes (approximately) zero-mean white noise
with large covariance matrix 6z.

Fig. 1 shows the preestimated parameter trajectories
obtained for a nonstationary two-tap FIR system governed by

y(t) = θ1(t)u(t − 1)+ θ2(t)u(t − 2)+ e(t) (8)

excited by a zero-mean stationary autoregressive Gaussian
process with autocorrelation functionE[u(t)u(t−i)] = (0.8)i,
and corrupted by white Gaussian noise with variance σ 2

e =

0.0025 (SNR = 25 dB). Parameter θ1(t) was changing in a
chirp-like way, and parameter θ2(t) was piecewise constant –
see Fig. 1. The forgetting constant λ0 was set to 0.9.

Note that preestimates provide interesting insights into the
structure of parameter variation, and they do so without mak-
ing any assumptions about the speed and mode of parameter
variation. Additionally, such a ‘‘prescreening’’ is provided
separately for each system coefficient, which allows one to

FIGURE 1. Preestimated parameter trajectories (blue lines) of a
nonstationary two-tap FIR system, superimposed on the true
trajectories (red lines).
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individually adjust the postprocessing scheme (as different
components of the parameter vector may require using dif-
ferent algorithm settings).

IV. DECOUPLED KALMAN FILTER BASED
IDENTIFICATION ALGORITHMS
Consider the j-th component of the parameter vector θ (t).
As shown above the preestimate of θj(t) can be written down
in the form

θ∗j (t) = θj(t)+ zj(t) (9)

where zj(t) denotes zero-mean white ‘‘noise’’ with a large
variance σ 2

z (for a stationary input signal the variance of zj(t)
does not depend on j).

The proposed postprocessing will be based on Kalman
filtering/smoothing. Similar to the classical case, we will
assume that θj(t) obeys the IRW model of order m

∇
mθj(t) = wj(t) (10)

where wj(t) denotes white perturbation noise with variance
σ 2
w.
Rewriting (9) and (10) in the state space form, one obtains

xj(t) = Fmxj(t − 1)+ cmwj(t)

θ∗j (t) = cTmxj(t)+ zj(t) (11)

where xj(t) = [θj(t), θj(t − 1), . . . , θj(t −m+ 1)]T and cm =
[1, 0, . . . , 0]T are m× 1 vectors and

Fm =


−f1 −f2 . . . −fm−1 −fm
1 0 . . . 0 0

0 0 . . . 1 0


is a m× m matrix.

Let π = {m, ξ}, where ξ = σ 2
w/σ

2
z is a smoothness coef-

ficient, which can be used for tuning purposes. Equations of
the normalized version of Kalman filter, which constitute the
causal identification algorithm, have the form

x̂j|π (t|t − 1) = Fmx̂j|π (t − 1|t − 1)

Pπ (t|t − 1) = FmPπ (t − 1|t − 1)FTm + cmc
T
mξ

εj|π (t) = θ∗j (t)− c
T
mx̂j|π (t|t − 1)

qπ (t) = cTmPπ (t|t − 1)cm + 1

kπ (t) =
Pπ (t|t − 1)cm

qπ (t)
x̂j|π (t|t) = x̂j|π (t|t − 1)+ kπ (t)εj|π (t)

Pπ (t|t) = Pπ (t|t − 1)− kπ (t)kTπ (t)qπ (t)

θ̂j|π (t|t) = cTmx̂j|π (t|t)

t = 1, 2, . . . (12)

where Pπ (t|t − 1) = cov[̂xj|π (t|t − 1)]/σ 2
z and Pπ (t|t) =

cov[̂xj|π (t|t)]/σ 2
z denote normalized a priori and a posteriori

covariance matrices, respectively. Note that for fixed values
ofm and ξ , the quantities Pπ (t|t−1), Pπ (t|t), kπ (t) and qπ (t)
can be computed once for all values of j = 1, . . . , n.

The estimationmemory of the KF tracker can be quantified
in terms of the noise reduction rate observed when θj(t) =
θ0j = const, i.e., θ∗j (t) = θ

0
j + zj(t). Its steady state value is

given by

N∞ = lim
t→∞

σ 2
zj

var[θ̂j(t|t)]
(13)

and can be easily evaluated numerically for different values
of ξ and m. The quantity N∞ can be interpreted as the width
(number of taps) of the averaging filter which in the constant
excitation case provides the same noise reduction rate as the
KF algorithm. Unlike the classical estimation case, the noise-
equivalent width N∞ does not depend on the characteristics
of the regression vector ϕ(t).

For m = 1 the following expressions

N∞ ∼=
2
√
ξ
, ξ ∼=

(
2
N∞

)2

(14)

can be easily derived by means of analyzing equations of the
steady state Kalman filter – see Appendix A.

For m > 1 such calculations become cumbersome, but
there are some analytical clues suggesting a possible inverse
dependence ofN∞ on 2m

√
ξ . Form = 1, 2, 3 the empirical for-

mulas which provide a pretty good approximation of N∞(ξ )
and ξ (N∞) have the form

N∞ ∼=
2− 0.1(m− 1)

m 2m
√
ξ

(15)

ξ ∼=

[
2− 0.1(m− 1)

mN∞

]2m
. (16)

When both ‘‘past’’ and ‘‘future’’ measurements are avail-
able, as in the channel identification case [1], more accurate
parameter estimates can be obtained using the fixed inter-
val Kalman smoother. Smoothing is achieved by means of
backward-time processing of the KF estimates, which in the
so-called Bryson-Frazier realization [7], [31] takes the form

Bπ (t) = Fm[I − kπ (t)cTm]

rπ (t − 1) = BTπ (t)rπ (t)+ cm
εj|π (t)
qπ (t)

Rπ (t − 1) = BTπ (t)Rπ (t)Bπ (t)+
cmcTm
qπ (t)

x̂j|π (t|N ) = x̂j|π (t|t − 1)+ Pπ (t|t − 1)rπ (t − 1)

Pπ (t|N ) =Pπ (t|t − 1)−Pπ (t|t − 1)Rπ (t − 1)Pπ (t|t − 1)

θ̂j|π (t|N ) = cTmx̂j|π (t|N )

t = N − 1, . . . , 1 (17)

with initial conditions rπ (N ) = 0 and Rπ (N ) = O. The
steady state value of the estimation memory span is in this
case equal toM∞ = limt→∞ σ

2
zj/var[θ̂j(t|2t)] = 2mN∞. The

values of the smoothness coefficient ξ corresponding to the
selected values of the estimation memory spans N∞ andM∞,
and to the order of the IRW model m, are listed in Table 1.
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TABLE 1. The values of the smoothness coefficient ξ corresponding to
the selected values of the estimation memory spans N∞ (upper table)
and M∞ (lower table), and to the order of the IRW model m.

V. SIMPLIFIED ALGORITHMS
To further reduce computational load of the KF tracker,
the algorithm (12) can be replaced by its steady state version.
Denote by P∞π and k∞π the steady state values of the a priori
covariance matrix and Kalman gain, respectively

P∞π = lim
t→∞

Pπ (t|t − 1), k∞π =
P∞π cm

1+ cTmP
∞
π cm

.

The steady state version of (12) takes the form

x̂j|π (t|t − 1) = Fmx̂j|π (t − 1|t − 1)

εj|π (t) = θ∗j (t)− c
T
mx̂j|π (t|t − 1)

x̂j|π (t|t) = x̂j|π (t|t − 1)+ k∞π εj|π (t)

θ̂j|π (t|t) = cTmx̂j|π (t|t)

t = 1, 2, . . . (18)

The steady state values P∞π and k∞π can be obtained by
solving the associated Riccati equation, or by iterating KF
equations for a sufficiently long time (in the second case
the so-called doubling algorithms can be used to reduce the
number of iterations [37]).

Similarly, the smoothing algorithm (17) can be reduced
down to

rπ (t − 1) = [B∞π ]T rπ (t)+ cm
εj|π (t)
q∞π

x̂j|π (t|N ) = x̂j|π (t|t − 1)+ P∞π rπ (t − 1)

θ̂j|π (t|N ) = cTmx̂j|π (t|N )

t = N − 1, . . . , 1 (19)

where

B∞π = Fm[I − k∞π c
T
m], q∞π = 1+ cTmP

∞
π cm.

Exploiting symmetry of all covariance matrices and a
special structure of the matrix Fm and the vector cm, the
computational cost of running n filtering algorithms (12) can
be reduced to 3

2m
2
+

5
2m+ 2mn multiply-add operations per

time update. The same count for the smoothing algorithm (17)
yields 3m3

+ m2
+ m + (2m2

+ 1)n operations per time
update. When the matrices/vectors are precomputed, or when
their steady state values are used, the computational load is
further reduced to 2mn (filtering) and (2m2

+1)n (smoothing)

operations, respectively. Note that in both cases the number
of operations depends linearly on the number of estimated
coefficients.

VI. PARALLEL ESTIMATION
As already mentioned in Section II, tuning of the identifi-
cation algorithm to the unknown, and possibly time-varying
form and rate of parameter changes can be achieved bymeans
of parallel estimation. Consider L KF-based identification
algorithms, equipped with different settings π = {m, ξ} ∈
5 = {π1, . . . , πL}, πi = {mi, ξi}, i = 1, . . . ,L, yielding the
estimates

θ̂π (t|t) = [θ̂1|π (t|t), . . . , θ̂n|π (t|t)]T

θ̂π (t|N ) = [θ̂1|π (t|N ), . . . , θ̂n|π (t|N )]T

l = 1, . . . ,L.

The algorithms are run simultaneously and at each time
instant only one of the competing estimates is selected,
i.e., the estimated parameter trajectory has the form

θ̂ (t|t) = θ̂ π̂ (t)(t|t), θ̂ (t|N ) = θ̂ π̂ (t)(t|N )

where

π̂ (t) = {m̂(t), ξ̂ (t)} = arg min
π∈5

Jπ (t) (20)

and Jπ (t) denotes the local performance index.
In the causal (filtering) case, selection can be based on

minimization of the sum of squared one-step-ahead output
prediction errors observed in the recent past [32]

Jπ (t) =
I∑
i=0

ε2π (t − i) (21)

where

επ (t) = y(t)− ϕT (t )̂θπ (t|t − 1) (22)

and

θ̂π (t|t − 1) = [θ̂1|π (t|t − 1), . . . , θ̂n|π (t|t − 1)]T

θ̂j|π (t|t − 1) = cTmx̂j|π (t|t − 1), j = 1, . . . , n.

In the noncausal (smoothing) case, one can use the
approach known as cross-validation. In this approach predic-
tion errors are replaced with leave-one-out output interpola-
tion errors (sometimes referred to as deleted residuals)

η◦π (t) = y(t)− ϕT (t )̂θ
◦

π (t|N ) (23)

where

θ̂
◦

π (t|N ) = [θ̂◦1|π (t|N ), . . . , θ̂◦n|π (t|N )]T

denotes the holey estimate of θ (t), i.e., the one that excludes
from the estimation process the interpolated sample y(t)

θ̂◦j|π (t|N ) = cTmE[xj(t)|�
◦(N )]

�◦(N ) = �(N )− {y(t)}.
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TABLE 2. The values of the width K = 2k + 1 of the analysis interval
corresponding to the selected values of the estimation memory span M∞,
and to the number of basis functions m.

It can be shown that (see Appendix B)

θ̂◦j|π (t|N ) =
θ̂j|π (t|N )− βπ (t|N )θ∗j (t)

1− βπ (t|N )
(24)

where

βπ (t|N ) = cTmPπ (t|N )cm.

More generally

θ̂
◦

π (t|N ) =
θ̂π (t|N )− βπ (t|N )θ∗(t)

1− βπ (t|N )
(25)

which means that there is no need to implement the
holey estimation scheme in order to evaluate interpolation
errors (23). When the steady state version of the KF algo-
rithm is used, the formula (24) can be further simplified
by replacing the time-dependent coefficient βπ (t|N ) with
its asymptotic (constant) version β∞π = cTmP̃

∞

π cm, where
P̃∞π = limt→∞ Pπ (t|2t).

The local cross-validation decision statistic can be defined
in the following way

Jπ (t) =
I/2∑

i=−I/2

[η◦π (t + i)]
2. (26)

The recommended values of I are those from the interval
[20, 50] for the filtering algorithm, and from the interval
[50, 100] for the smoothing algorithm. Another practical
advice concerns selection of smoothness coefficients: for a
fixed value of m the competing values of ξ should be chosen
in such a way that the corresponding memory spans N∞
and M∞ form a geometric progression [32], [38], e.g. N∞,
M∞ = 20, 40, 80, 160 etc.

VII. COMPUTER SIMULATIONS
In our simulation study we will focus on comparison
of the noncausal KF algorithm (18)-(19) and simplified
cross-validation decision rule incorporating β∞π , with the
state-of-the-art BF smoother proposed recently in [23]. The
noncausal BF estimates can be obtained by minimizing the
local sum of squared output modeling errors

θ̂m|k (·) = argmin
θ (·)

k∑
i=−k

[y(t + i)− ϕT (t + i)θ (t + i)]2 (27)

under the constraints

θj(t + i) =
m∑
l=1

ajl il−1, i ∈ Tk (t), j = 1, . . . , n (28)

TABLE 3. Mean squared parameter estimation errors obtained for 12 noncausal basis function and Kalman filter estimators with different memory
settings (M∞) and different orders of the hypermodel (m), and for the corresponding adaptive parallel estimation schemes (A). Simulations were carried
out for 2 signal-to-noise ratios (SNR) and 3 speeds of parameter variation (SoV). All averages were computed for 100 process realizations.
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where Tk (t) = [t−k, t+k] denotes the local analysis interval
of widthK = 2k+1, centered at t . Even though such identifi-
cation scheme allows one to estimate the entire segment of the
parameter trajectory {θ (s), s ∈ Tk (t)}, it is used to generate
a sequence of point estimates instead of interval ones, i.e.,
only the ‘‘central’’ estimate θ̂m|k (t) is utilized at the instant t ,
and the estimation process is repeated for a new position of
the sliding analysis window Tk (t). The resulting local basis
function (LBF) algorithm can be regarded as a generalization
– to the system identification case – of the classical sig-
nal smoothing technique known as Savitzky-Golay filtering
[39], [40].

The estimation memory of the LBF algorithm can be
obtained from

M∞ =

[
k∑

i=−k

h2m|k (i)

]−1
(29)

where hm|k (i) denotes the so-called impulse response associ-
ated with the LBF estimator [23]

hm|k (i) = f Tm(0)

[
k∑

i=−k

fm(i)f Tm(i)

]−1
fm(i) (30)

and fm(i) = [1, i, . . . , im−1]T . The values of the width K =
2k + 1 of the analysis interval corresponding to the selected
values of M∞ and to the order m of the polynomial basis are
shown in Table 2.

The identified nonstationary systemwas that presented ear-
lier in Section III. In addition to the medium speed parameter
variation scenario, depicted in Fig. 1, the two times faster
and two times slower variations were considered, obtained
by ’’resampling’’ the parameter trajectory without changing
its shape. As a result, the length of the simulation interval Ts
was equal to 1000, 2000 and 4000 for fast, medium speed
and slow changes, respectively. To check behavior of the
compared algorithms under different noise conditions, two
average signal-to-noise ratios were considered: 25 dB (σ 2

e =

0.0025) and 15 dB (σ 2
e = 0.025).

The KF-based parallel estimation scheme was made up
of 12 smoothers designed for 3 IRW models of orders
m = 1, 2, 3 and 4 estimation memory spans M∞ =

20, 40, 80, 160. Analogously, the adaptive BF algorithm
combined 12 LBF smoothers designed for 3 polynomial
bases of order m = 1, 2, 3 and 4 estimation memory spans
M∞ = 20, 40, 80, 160. In both cases thewidth of the decision
window was set to I + 1 = 61. Under such conditions
the KF and BF approaches can be expected to behave com-
parably, as the corresponding hypermodels and their mem-
ory settings are statistically compatible. Data generation was
started 1000 instants prior to t = 1 and was continued for
1000 instants after t = Ts, so that, irrespective of settings,
the estimation process and evaluation of its results could be,
for all algorithms, started at the instant 1 and ended at the
instant Ts. For t < 1 and t > Ts system parameters were
constant and equal to θ (1) and θ (Ts), respectively.

FIGURE 2. Identification results obtained using the adaptive LBF
algorithm (two upper plots) and adaptive decoupled KF algorithm (two
lower plots). The estimated trajectories (blue lines), obtained by
postprocessing the preestimates shown in Fig. 1, are superimposed on
the true trajectories (red lines).

Table 3 presents estimation results - the squared parameter
estimation errors ‖ θ̂(t) − θ (t) ‖2 averaged over time and
over 100 process realizations. The best results in each group
are shown in boldface. Noticeably, in all cases considered,
the adaptive parallel estimation algorithms yielded results
that were better than those provided by their component
algorithms with fixed settings. In the case of low SNR the
adaptive KF algorithm yielded slightly better results than
the adaptive LBF algorithm, while for the higher SNR the
adaptive LBF performed slightly better than the KF one.
Overall, however, for the same values ofM∞ andm both types
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of algorithms yielded a similar tracking performance. Typi-
cal identification results yielded by the adaptive scheme are
shown in Fig. 2. As expected, the results yielded by the deter-
ministic BF approach are comparable with those obtained
for the stochastic KF approach. This makes the decoupled
KF algorithm a computationally attractive alternative to the
LBF algorithm. The high computational requirements of the
LBF algorithm, of order O(m3n3), are due to the fact that
it requires evaluation and inversion, every time instant t ,
of the mn × mn-dimensional generalized regression matrix
Gm|k (t) =

∑k
i=−k ψm(t, i)ψ

T
m(t, i), where ψm(t, i) = ϕ(t +

i)⊗ fm(i) and ⊗ denotes the Kronecker product.
Remark: We note that a meaningful comparison of the

proposed decoupled KF approach with the classical one is not
possible since without equalization of the estimation memory
spans of the compared algorithms – which cannot be per-
formed due to limitations of the classical scheme, mentioned
in Section II – such comparison would not make much sense.

VIII. CONCLUSION
The problem of identification of a nonstationary FIR sys-
tem was considered and solved using the decoupled Kalman
filtering/smoothing approach. Unlike the classical KF-based
solutions, the proposed estimation algorithms are easy to
tune. It was shown that optimization of their tracking perfor-
mance can be carried out using parallel estimation and cross-
validation. Due to low computational requirements (achieved
without compromising good tracking capabilities) the decou-
pled KF algorithms can be regarded as an attractive alter-
native to the state-of-the-art algorithms based on functional
series approximation, known as basis function algorithms.

APPENDIX A
DERIVATION OF (14)
Let m = 1. The steady state value of the a priori variance
p∞π = limt→∞ pπ (t|t−1) is a solution of the Riccati equation

p∞π =
p∞π

1+ p∞π
+ ξ

leading to

p∞π =
ξ +

√
ξ2 + 4ξ
2

∼=

√
ξ

where the approximation holds for ξj � 1 (cf. Table 1).
Without any loss of generality, one can assume that θ0j = 0.

In this case the steady state relationship between θ̂j|π (t|t) =
x̂j|π (t|t) and zj(t) has the form

θ̂j|π (t|t) = (1− k∞π )θ̂j|π (t − 1|t − 1)+ k∞π zj(t)

where k∞π = p∞π /(1 + p∞π ) ∼=
√
ξ denotes the steady state

Kalman gain. Based on this relationship, one obtains

σ 2
θj
=

k∞π
2− k∞π

σ 2
zj
∼=
k∞π
2
σ 2
zj

which leads to (14).

APPENDIX B
DERIVATION OF (24)
Let �(t) = {y(i),ϕ(i), 1 ≤ i ≤ t} and �+(t) =
{y(i),ϕ(i), t ≤ i ≤ N }. Using the Mayne-Fraser two-filter
formula, the smoothed estimate x̂j|π (t|N ) can be expressed in
the form [41]

x̂j|π (t|N ) = Pπ (t|N )
{
[Pπ (t|t)]−1̂xj|π (t|t)

+[P+π (t|t + 1)]−1̂x+j|π (t|t + 1)
}

Pπ (t|N ) =
{
[Pπ (t|t)]−1 + [P+π (t|t + 1)]−1

}−1 (31)

where x̂+j|π (t|t + 1) = E[xj(t)|�+(t + 1)] denotes the
backward-time (anticausal) predictor, designed for the back-
wards Markovian model of xj(t) and operated in reverse
time. Similarly, P+π (t|t+1) denotes the associated covariance
matrix.

The analogous expression for the holey estimator of xj(t) is

x̂◦j|π (t|N ) = P◦π (t|N )
{
[Pπ (t|t − 1)]−1̂xj|π (t|t − 1)

+[P+π (t|t + 1)]−1̂x+j|π (t|t + 1)
}

P◦π (t|N ) =
{
[Pπ (t|t − 1)]−1 + [P+π (t|t + 1)]−1

}−1
. (32)

In order to prove (24), we first notice that

Pπ (t|t) = Pπ (t|t − 1)−
Pπ (t|t − 1)cmcTmPπ (t|t − 1)

1+ cTmPπ (t|t − 1)cm

=
[
P−1π (t|t − 1)+ cmcTm

]−1 (33)

where the transition follows from the well-known matrix
inversion lemma [6]. Combining (31) - (33) and using matrix
inversion lemma again, one arrives at

P◦π (t|N ) =
[
P−1π (t|N )− cmcTm

]−1
= Pπ (t|N )+

Pπ (t|N )cmcTmPπ (t|N )
1− βπ (t|N )

(34)

where βπ (t|N ) = cTmPπ (t|N )cm. Furthermore, since [cf.
(33)]

P−1π (t|t) = P−1π (t|t − 1)+ cmcTm (35)

and [cf. (12)]

x̂j|π (t|t) = x̂j|π (t|t − 1)

+
Pπ (t|t − 1)cm

1+ cTmPπ (t|t − 1)cm
[θ∗j (t)− c

T
mx̂j|π (t|t − 1)] (36)

after straightforward calculations, one arrives at

P−1π (t|t )̂xj|π (t|t)=P−1π (t|t − 1)̂xj|π (t|t − 1)+cmθ∗j (t). (37)

Substituting (34) and (37) into (32), one obtains

x̂◦j|π (t|N ) =
[
Pπ (t|N )+

Pπ (t|N )cmcTmPπ (t|N )
1− βπ (t|N )

]
×[P−1π (t|N )̂xj|π (t|N )− cmθ∗j (t)]
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= x̂j|π (t|N )+
Pπ (t|N )cmcTm
1− βπ (t|N )

x̂j|π (t|N )

−Pπ (t|N )cmθ∗j (t)−
βπ (t|N )Pπ (t|N )cm

1− βπ (t|N )
θ∗j (t).

(38)

Finally, after multiplying both sides of (38) by cTm and
noting that cTmx̂

◦

j|π (t|N ) = θ̂◦j|π (t|N ) and cTmx̂j|π (t|N ) =
θ̂j|π (t|N ), one obtains (24).
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