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Received: 9 September 2024 / Accepted: 8 April 2025
© The Author(s) 2025

Abstract
One of the most widely used sources for information regarding the state of the ionosphere is the global ionospheric maps
provided by the IGS service. These maps are created through a weighted average of solutions from various centers, including
CODE, ESA, JPL and UPC. As technology has advanced, the application of artificial intelligence in ionospheric research
has become more prevalent, motivating us to apply this approach to improve the process of combining ionospheric maps.
The objective of our research is to use deep learning in the form of recurrent neural networks to generate global ionospheric
maps. The model is complemented by the inclusion of positional and temporal parameters as well as solar and geomagnetic
activity indices. In the study, the total electron content (TEC) was extracted from Jason altimetry measurements that served
as the reference data for the model. The Jason TECs contain electron content up to an orbit height of approximately 1336km.
Therefore themissing data above the Jason orbit wasmodelled using several ionospheric/plasmasphericmodels. One of the key
objective of this studywas to identify the optimal fittingmodel formapping electron content above the Jason orbit. The solution
that demonstrate themost significant impact on the learning process and providing the best results was the Neustrelitz Electron
DensityModel (NEDM). To validate theGdańskUniversity of Technologymodel (GUT),we conducted a comparative analysis
of single-frequency positioning using maps from GUT and IGS. Our solution demostrated an improvement in positioning for
over 70% out the 300+ stations studied on average for each studied day during calm or disturbed ionospheric conditions. For
three-dimensional positioning errors, we obtained improvements ranging from 5 to 15% relative to IGS results.
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University of Technology, Narutowicza 11/12, 80-233
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Introduction

The ionosphere is a key layer of the atmosphere that
directly affects our daily lives. High frequency signals are
reflected back at the bottom ionosphere what is the core ele-
ment to long-distance radio communication. Ionosphere also
affects information transmission between ground receivers
and satellites. The distance traveled by a radio wave on
the satellite-receiver path is extended/shortened by iono-
spheric propagation effectswhen passing throughmediawith
different electron densities. Ionosphere is a very dynamic
medium controlled by the space weather. It is necessary
to constantly monitor it to reduce its influence on signal
propagation, which is particularly important in a satellite
communications. The distance traveled by a radio wave on
the satellite-receiver path is extended by multiple refraction
of the signal that is passing through media with different
electron densities. This also contributes to sudden changes
in signal strength which might result in signal fading. There-
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fore, it is important to know the state of the ionosphere.
Over the years, a number of models have been developed
to conduct research on this layer of the atmosphere. Such
models are, for example, the Field Line Interhemispheric
Plasma (FLIP) (Richards 35), The Global Assimilation
of Ionospheric Measurements-Gauss Markov (GAIM-GM)
(Gardner et al. 12), the Thermosphere Ionosphere Elec-
trodynamic General Circulation Model (TIEGCM) (Qian
et al. 33). In addition to models focusing on study of the
physical aspects of the ionosphere, others have also been
developed to describe the state of electron density. These
models have been primarily developed to eliminate the first-
order ionospheric delay on single-frequency measurements,
which, unlike dual-frequency measurements, lack the abil-
ity to compensate for it by using a linear combination of
ionosphere-free data at L1 and L2 frequencies (Liu et al. 22).
Additionally, these models serve as an excellent source of
data to further study the state and variability of the iono-
sphere.

The models that are commonly used to reduce the impact
of the ionosphere on single-frequency satellite signals are
shown in Table 1. The Klobuchar model is still used to pro-
vide an ionospheric correction for GPS measurements. A
similar application is found in the NeQuick2 model, with
one version (NeQuick G) employed by ESA for Galileo
satellites. NeQuick 2 has also been implemented as a pro-
posed ionosphere model in recommendation ITU-R P.531.
The International Reference Ionosphere (IRI) is a model that
finds global application in climatology and in prediction of
the state of the ionosphere (Bilitza et al. 2). An extension
of this model is the IRI Real-Time Assimilative Mapping
(IRTAM), which employs a network of ionosondes to obtain
additional data regarding the vertical profiles (Galkin et al.
11). Models from CODE, ESA, JPL and UPC centers pro-
vide information on the global state of the ionosphere. Data
for these maps are collected via a network of ground stations
conducting continuous GNSS measurements, enabling the
determination of slant total electron content (STEC) along
signal paths. These STEC values are then converted to ver-
tical TEC and employed to produce final maps by the IGS,
utilizing a straightforward method involving weighted aver-
ages of the input maps. These weights are derived by the
evaluation center (UPC), computed from the inverse root
mean square error of STEC reproduction. For validation, the
IGS uses TEC information extracted from altimetrymissions
data, in past from Topex/Poseidon, nowadays from Jason
(Hernández-Pajares et al. 17). The resulting combined prod-
ucts are the finalmaps, typically available approximately two
weeks after measurement collection, generated as a two-hour
interval map in IONosphere Map EXchange format version
(IONEX) format (Schaer et al. 37) Due to its high quality,
the IGS solution is widely utilized for reducing ionospheric
delays impact on GNSS measurements in postprocessing.

The development of machine learning and its ability to
uncover hidden connections between parameters have been
utilized for many years to study the state of the ionosphere
and predict its behavior. In the literature, numerous studies
can be found that focus on predicting TEC using deep learn-
ing algorithms (Huang and Yuan 19; Razin et al. 34; Wen
et al. 41). The development of fundamental machine learning
algorithms for TEC prediction and modeling has also gained
popularity (Zhukov et al. 47; Razin et al. 34). However, there
are only a few works dedicated to creating algorithms that
fuse ionosphericmaps usingmethods other than theweighted
average approach employed by the IGS. One approach to
combining products that describe the state of the ionosphere
into a single final product involves the use of hybrid deep
learning to integrate maps extracted from the Massachusetts
Institute of Technology (MIT), the IGS, and TEC derived
from altimetry measurements (Chen et al. 3). By combining
products with different coverage areas (IGS - global; MIT
- continents and coastal regions; altimetry - ocean measure-
ments), satisfactory results were achieved, yielding a highly
accurate solution.

Artificial intelligence algorithms serve as valuable tools
in modeling the state of the ionosphere. Consequently, we
decided to explore their utility in the process of merging the
products included in the IGS solution. The challenge associ-
ated with fusing global ionospheric maps from CODE, ESA,
JPL and UPC centers lies in their multidimensional charac-
ter. We encounter variations in space (geographic longitude,
latitude and solar zenith angle) and in time (diurnal, seasonal,
and solar cycle-related). In addition, modeling of the agitated
state of the ionosphere, especially during extreme geomag-
netic disturbances, is a problem. The main factor inducing
disturbances in the atmospheric layer in question is coronal
mass ejections from the Sun (Peng et al. 30), which result in
shocks to the Earth’s magnetic field, leading to geomagnetic
storms (Wu et al. 42; Gonzalez et al. 15). The stronger the
phenomenon, the more severe its effects on the positioning
process (Poniatowski andNykiel 31; Luo et al. 23). Correctly
combining maps for days on which geomagnetic storms
occurred is crucial and also problematic due to the small
amount of available data describing the agitated state of the
ionosphere in the learning set. The objective of our research
was to determine whether deep learning techniques could
address the aforementioned challenges and assess the quality
of our solution in comparison to the IGS product. Accord-
ingly, we decided to integrate of maps from IAAC centers
with local information (time, position, TECvalue) and global
information (solar and geomagnetic activity indices). In our
work, we propose a deep learning-based approach to iono-
spheric modeling that aims to improve GNSS positioning
accuracy by capturing complex, non-linear spatio-temporal
patterns between input GIMs. While our method differs in
input, structure, and technique from the final IGS product,
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Table 1 Common models representing state of the ionosphere utilized in elimination of first-order ionospheric delay for single-frequency receivers

Product Reference Main modeling technique

Klobuchar [20] Empirical approach with thin-single-layer of the ionosphere

Center for Orbit Determination in Europe (CODE) [36] Single-layer approach using spherical harmonics of degree 15

Jet Propulsion Laboratory (JPL) [24] 3D-Triangulation based on tessellation of a sphere

Polytechnic University of Catalonia (UPC) [16] Tomographic method

European Space Agency (ESA) [10] Single-layer approach using spherical harmonics of degree 15

NeQuick2 [27] 5 semi-Epstein layers with thickness modeling

International GNSS Service (IGS) [17] Weighted average

Natural Resources Canada (NRCan) [14] Spherical harmonics

Wuhan University (WHU) [46] Spherical harmonics of degree 15 with inequality-constrained least
squares

Chinese Academy of Science (CAS) [21] Spherical harmonics with generalized trigonometric series

NeQuick G [7] The bottom layer of the model is composed of three Epstein layers,
while the topside consists of a semi-Epstein layer with a correction for
an exosphere electron density

International Reference Ionosphere (IRI) [2] Six sub-regions; for each of them different model is applied

NTCM G [8] Empirical approach focusing on five major components: local time and
seasonal dependency, geomagnetic field and solar activity dependency,
equatorial anomaly dependency

the comparison between them will provide a useful insight
into the strengths of a data-driven approach.

Data

Global ionospheric maps

In our work, we focused on combining available ionospheric
maps from IAAC centers that contribute to the IGS solution,
namely products from CODE, ESA, JPL and UPC centers.
TheCODEsolution is basedon the use of a single layermodel
of the ionosphere of infinitesimal thickness using spherical
harmonics of degree 15 (Schaer et al. 36). A similarmethod is
used by the ESA center (Feltens 9, 10). The JPL center, on the
other hand, uses a three-dimensional triangulation approach
by tessellating the sphere at a certain height. The model also
uses bilinear splines to represent the TEC distribution (Man-
nucci et al. 24). The UPC model, on the other hand, uses a
tomographic method based on phase measurements. It is a
two-layer solution (layer one: 60–740km; layer two: 740–
1420km). In this solution the surface of the ionosphere is
divided into cells with size of 5◦ × 2.5◦ or 10◦ × 5◦, in which
the electron density is constant (Hernández-Pajares et al. 16).

For the purpose of our study, we collected global ionospheric
maps over a 16-year period (2005–2021). The dataset was
prepared on the basis of a set obtained from studies on the
spatio-temporal distribution of ionospheric maps and altime-

try TEC (Poniatowski et al. 32). Based on these studies, we
were able to identify similarities and differences between
maps from IAACs and Jason-derived TEC. Results of this
studies allowed us to identify Jason-TEC as high-quality
source that can be used as a reference to train our model.

JASON

The basis of our learning set is the Jason-derived TEC. The
main purpose of the altimetry measurements is to study the
seas and oceans. However, the data from these missions is
also a verygood source of informationon the state of the iono-
sphere. Based on the nature of altimetry measurements, our
training set contains only data over aquatic regions. We used
the data from three Jason missions: Jason-1 (2001–2013),
Jason-2 (2008–2019) and Jason-3 (2016–still in use). Each
of the altimeter satellites is equipped with a GPS receiver
and Doppler Orbitography and Radiopositioning Integrated
by Satellite system (DORIS). With the data obtained from
dual-frequency (Ku-band and C-band) altimetry measure-
ments, it is possible to determine the vertical TEC between
ocean surface and Jason orbit (Yasukevich et al. 44; Scharroo
and Smith 38).

T EC = f 2Ku f
2
C

f 2Ku − f 2C

RC − RKu

ku
(1)

where fKu and fC are the frequencies at Ku-band and
C-band in GHz, respectively, RKu and RC are the dis-
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tances measured in meters at Ku-band and C-band respec-
tively, and ku is a constant of 0.403 m GHz2 TECU−1.
We obtained already calculated TEC values from altime-
try missions from the OpenADB service (Dettmering et al.
5) (https://openadb.dgfi.tum.de/) with a 1 s resolution. The
resulting TEC is noisy and it is related to the significant dif-
ference between the two frequencies: Ku-band (waveband
set to 13.575 GHz with a bandwidth of 350 MHz) and C-
band (waveband of 5.3 GHz with a bandwidth of 320 MHz)
(Nencioli 28). Equally important is the correction for Sea
State Bias (SSB), which includes electromagnetic bias asso-
ciated with wave crest reflectivity, skewness bias related to
non-linear wave dynamics, and tracker bias linked to satel-
lite tracking and instrumental errors (Badulin et al. 1). To
smooth our dataset, we used a 30-s moving average with
data break detection. Altimeter data are available only for
seas and oceans, so encountering land creates a break in the
data. Some of them span from a few to tens of degrees of
latitude, resulting in a significant change in TEC. Therefore,
we took this into account in the calculations. To standard-
ize and eliminate the bias between altimetry missions, we
used information from calibration periods and then aligned
the data to Jason-3F mission level (Poniatowski et al. 32).
Between Jason-2D and Jason-1E we obtained bias of 3.22
± 2.84 TECU, where between Jason-3F and Jason-2D it is
equal to −3.97 ± 2.23 TECU. The data was subsequently
re-sampled every 5min. We implemented this to reduce the
computing power required for model learning process, while
maintaining good spatial coverage. In addition, the influence
of the plasmasphere above Jason’s orbit also had to be taken
into account. For this purpose, we used the NEDM model
(Hoque et al. 18) to generate a correction above an altitude
of 1336km. The TEC correction was calculated as an inte-
gration of the profile up to 10000km altitude with a step
every 10km. The F10.7 index was also used as an external
indicator of solar activity.

Methodology

In order to create a model that allows the fusion of iono-
sphericmaps from individual IAACs,weused adeep learning
technique known as standard recurrent learning. This tech-
nique allowed us to detect connections between the temporal
and spatial variability of the points on which the model was
trained. To construct a suitable learning set, it was essential to
understand the desired links we aimed to obtain in the model
and ensure an adequate amount of data (Geron 13). The data
should be carefully selected to unambiguously describe the
reference value, as the selection of reference values forms
the foundation of the model and greatly influences the algo-
rithm’s performance.
When addressing a spatio-temporal problem, the data consid-
ered during the learning processmust appropriately represent
these characteristics. The training set consists of features
describing location, time, solar activity, and corresponding
TEC values from individual IAACs. We used Jason-derived
TEC as a reference data. Final product data from each IAACs
(CODE, ESA, JPL, UPC) were linearly interpolated into
altimeter satellite position and time, and incorporated as fea-
tures in the deep learning model.
One of the issues encountered in creating the dataset was
the date line transition. Longitudes range from −180◦ to
180◦, where the ionospheric conditions at a given latitude
can be very similar or identical at the extreme ends of the
longitude range. To address this, we opted to convert longi-
tudes to trigonometric functions of sine and cosine. A similar
approach was adopted for UTC time. As for latitude, it was
converted to radians. In addition,we added another positional
parameter, the solar zenith angle. The parameters that had the
greatest impact on the quality of the model were Kp param-
eter, which is a global indicator of geomagnetic activity, and
the F10.7 index, which describes the level of solar radiation.

Fig. 1 Diagram showing the
process of creating global
ionospheric maps from the GUT
model

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


GPS Solutions           (2025) 29:111 Page 5 of 16   111 

Machine learning

Since the ionosphere is a heterogeneous layer with irregu-
lar variability, an algorithm was needed to combine multiple
features and assign a single value to such a set of features.
The calculations were based on tools available in the Keras
and scikit-learn libraries (Pedregosa et al. 29; Chollet et al.
4). To solve this complicated problem, we decided to use
deep machine learning, specifically recurrent neural net-
works. Many structures were tested, however, in order to
minimize the chance of overfitting while maintaining very
good model quality. Model was trained for 50 epochs with
a batch-size of 64. The initial layers consist of a 5 recurrent
layer with 128, 2 × 64, 2 × 32 neurons and rectified lin-
ear unit (ReLU) activation function. This is followed by four
dense layers for regression, with 64, 128, 32 neurons and
ReLU activation function, culminating in 1 neuron with lin-
ear activation function. The use of this activation function is
justified by its effect on the learning process. Although non-
linear activation functions are proposed for recursive layers,
they do not cope with the problem described by our data
and often lead to undertraining or overtraining of the model.
However, the ReLU function strongly generalizes the solu-
tion, which turns out to have a positive effect on the quality
of the learning process. We illustrated the described process
in the diagram in Fig. 1.

The input parameters included data interpolated to Jason’s
position fromCODE, ESA, JPL, andUPC centers, longitude,
UTC time in sine and cosine, latitude, solar zenith angle, as
well as Kp and F10.7 indices. In order to provide optimal
conditions for the learning process and the evaluation of our
model, we decided that the learning set would be divided into
three subsets: the training set, the testing set, and the valida-
tion set, with a ratio of 75:15:10.
The model was then compiled, entailing the definition of a
loss function, an optimizer, and metrics for evaluating the
model’s performance during training. To reduce the impact
of back propagation on our model, we used the adaptive gra-
dient algorithm (AdaGrad) (Duchi et al. 6) optimizer with a
loss function defined by mean squared error, and mean abso-
lute error as a metric for assessing model quality. After the
training process, the model was validated. To analyze perfor-
mance of ourmodel we generated global ionosphericmaps in
IONEX format with 2h resolution, maintaining spatial res-
olution of standard GIM (Latitudes ±87.5◦ with 2.5◦ step;
Longitudes±180◦ with 5◦ step). Thereafter, the results were
compared to the final IGSmaps for the purpose of validation.

Validation

We divided the quality validation of our model into two
stages: the first stage is to validate the machine learning pro-
cess itself, and the second stage is to check the quality of

positioning using our product. The evaluation of the learn-
ing process is mainly based on checking the correctness of
the algorithm. As the basic parameter determining the qual-
ity of our model, we use the coefficient of determination R2

(Mbarak et al. 26), which indicates the fit of the model to the
learning data and takes the form:

R2 = 1 −
∑n

i=1(yi − ŷi )2
∑n

i=1(yi − ȳi )2
(2)

where yi is the expected value from the data-set, ŷi is the
value obtained from the model’s prediction, and ȳi is the
average value of y in the learning set.

The second parameter describing the quality of our model
is the Root Mean Square Error (RMSE), which provides
information about how far the values obtained from themodel
are relative to the reference values. It is defined as:

RMSE =
√
√
√
√

n∑

i=1

(ŷi − yi )2

n
(3)

The second stage of validation was to use global iono-
spheric maps to perform positioning tests and then compare
the results with those obtained using the IGS final products.
To carry out this analysis, maps with 2-hour resolution were
generated so that a direct comparison between the two prod-
ucts could be made. To perform the validation in the GNSS
positioning domain, we used the RTKLIB (Takasu 40) soft-
ware to determine the positions of IGS stations during a three
selected quiet periods (January 23–29, 2016, March 16–23,
2022 and February 1–6, 2023) and on specific days dur-
ing which geomagnetic storms occurred (March 17, 2015,
November 4, 2021, April 23–24, 2023). Validation over days
with a sudden changes in the distribution of electrons in the
ionosphere is crucial. Modeling the state of the ionosphere
during geomagnetic storms is a significant problem, espe-
cially due to the small amount of data describing such a
state in the training set. We specifically chose these storms
and quiet weeks to test how the model handles the fusion of
maps that were part of the learning set and those that were
outside the set. This allowed us to assess the interpolation
and extrapolation ability of the model. In addition we used
calm period from 2016 and storm period from 2015 in order
to show ability of our model not only to fuse maps that are
outside of training range (2005–2021), but also to show abil-
ity to merge and improve historical data. Positioning was
conducted on code-based single-frequency measurements,
utilizing CODE precise ephemerides (orbit and clock) and
compared to the precise coordinates from weekly IGS solu-
tions stored in Solution INdependent EXchange (SINEX)
files. To ensure consistent positioning conditions using both
the IGS product and our model (referred to as GUT model),
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Fig. 2 The learning results of
the trained model, showcasing a
comparison between reference
(Jason-derived TEC) and
predicted values. The
comparison results are depicted
in blue, while the red color
represents the straight line fitted
to the resulting data

Fig. 3 A graph of the loss curve for the created model; the blue line
shows the training curve and the red line shows the validation curve

we employed DCBs (as time group delay) from the naviga-
tion files for GPS and for GLONASS satellites. Using this
parameters prepared in this manner, we determined the posi-
tions for over 300 IGS stations on selected storm days and
during a calm periods.

Results

The results of learning model depend on three things in par-
ticular: the preparation of the dataset, the structure of the
model and the selection of hyperparameters. As a first mea-
sure of the model quality, we used a comparison between
the model’s prediction results and the reference data. We
obtained a low RMSE of 1.67 TECU and high R2 score of
0.97, which indicates a high quality of the learning result.We
presented a comparison between the reference data (Jason-
derived TEC) in Fig. 2. These results show a disadvantage
of the dataset, which is caused by the nature of the given
input data. We noticed that our dataset contained mostly val-
ues ranging between 0–20 TECU, while number of points
with higer values decreases proportionally with the increase
of TEC. We did not found any significant deviations of pre-
dicted values from reference ones especially for higher TECs
where we had smaller number of them in training dataset.

As a second metric of the quality of the learning process,
we generated a loss curve. We noticed that as the number of
epochs processed increased, the value decreased. Based on
this, we decided to stop the learning process after 50 epochs

due to the lack of performance improvement (Fig. 3). What
is important at this stage is that we did not notice any signs
of overtraining or undertraining of the model. This would be
evident if, as the number of epochs processed increased, the
loss of the validation set relative to the training set increased,
or if the loss of the validation set was noticeably lower than
the loss of the training set.

In Fig. 4, we show a comparison between the resulting
predictions from the GUT model and the reference (Jason-
derived TEC) and validation (IGS TEC) data from the test
set. The average difference with respect to TEC from the
altimetric measurements is −0.07± 1.67 TECU, while with
respect to IGS it is 2.64±0.99TECU.These results show that
the model satisfactorily fits the Jason’s reference data. When
examining the differences between Jason andGUT,we found
a homogeneous distribution ranging mostly between −5.0
and 5.0 TECU, but when comparing IGS and GUT, we found
that the differences aremostly positive, indicating lower TEC
values from the GUT model. Based on the distribution of
these differences, we noticed considerable variation in them
for the solar maximum period (2012–2016).

To highlight the differences of �TEC for the IGS-GUT
prediction, we performed the spatial comparison presented
in Fig. 5. The vast majority of them are positive, indicat-
ing a general underestimation of values relative to the IGS.
For the intertropical region they are smaller than for areas
in the northern hemisphere, where we found an increase in
differences. When comparing the altimetric measurements
and the results from GUT model, we found that the negative
values are mostly distributed in the northern and southern
hemispheres above the parallels 23.5◦ North and South. In
contrast, in the intertropical area, we recorded mostly posi-
tive difference values. This means that our model produces
higher TEC for the equatorial areas while for the northern
hemisphere and the southern polar circle it gives differences
that are on average lower by 1.30 TECU. The differences
obtained can be explained by the inaccuracy of TEC model-
ing above Jason’s orbit. Despite themodeling of these values,
this information does not perfectly reflect conditions for a
given position at a given time. Presented results demonstrate
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that the data and learning method used are close to reference
values and should reflect well the state of the ionosphere.

Discussion

During the learning process, we tried to adapt the model to
fit the Jason-derived TEC as accurately as possible. As a
result, the predictions obtained from it have a 98% correla-
tion with the reference Jason measurement data. However,
as is well known, the Jason measurements have certain lim-
itations, such as the availability of data only for the seas and
oceans and the lack of complete coverage of the polar regions.
Therefore, the model must have excellent interpolation and
extrapolation capabilities. To verify this, we decided to per-
form a comparison of single-frequency positioning results
using IGS maps and the maps generated using the developed
GUT model.

Quiet periods

For the purpose of validating the model during quiet periods,
we selected weeks based on the average daily Kp and maxi-
mum daily solar disturbance. This information was obtained

from theAurora and Solar ActivityArchive provided byGFZ
German Research Centre for Geosciences (Matzka et al. 25).
The validated periods are as follows: January 23–29, 2016;
March 16–23, 2022; and February 1–6, 2023, where themax-
imum Kp index value does not exceed 4. It’s worth noting
that only the 2016 period was included in the model training
data.

Figure 6 presents the cumulative distribution function for
the RMSE for the three studied quiet periods. We noticed
a considerable difference between the errors obtained for
the altitude component of the topocentric coordinates. The
results obtained with the GUT model for it (red line) show
respective average improvements of 10.3% for January 23–
29, 2016, 5.9% for the week of March 16–23, 2022, and
15.0% for February 1–6, 2023, relative to the IGS results.
This translates directly to 3D positioning, where the aver-
age improvement in RMSE for the specified periods being
8.2%, 4.8%, and 12.0%, respectively. However, these results
are negatively affected by the slight increase in errors for
2D positioning, which amounts to 1.6% for the period Jan-
uary 23–29, 2016, and slight average improvements of 0.6%
and 2.1% for March 16–23, 2022 and February 1–6, 2023,
respectively.

Fig. 4 Temporal comparison
among test sets between
prediction results and reference
data (Jason-derived TEC) and
validation data (IGS TEC)

Fig. 5 Spatial comparison among test sets between prediction results and reference data (Jason-derived TEC) and validation data (IGS TEC)
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Fig. 6 Cumulative distribution
functions graphs for the RMSE
obtained from positioning for all
available IGS stations for the
studied quiet periods: January
23–29, 2016; March 16–23,
2022; February 1–6, 2023. The
red line shows the results
obtained using maps generated
from the GUT model, while the
black line shows the results
obtained by using IGS maps

Figure 7 shows the distributions of improvement or dete-
rioration of the 3D RMSE relative to the IGS results for
selected quiet periods. We noticed that the results are not
uniform, although some trends might be discerned. Signifi-
cant improvements were recorded for stations located in the
North and South America for all periods. We also found, that
for each dates we got an improvement for stations close to
polar regions. Out of the 332 stations for the 2023 period,
302 stations (91%) show improved 3D RMSE, while only 4
stations exhibit an error deterioration of more than 0.10 m.
During the 2016 survey period, 301 stations were used in
validation, with 74% of them showing improved positioning
results, while for the 2022 period, it was 71%. It is worth
noting that for the quiet periods in 2016 and 2023, more than
40 stations reached more than 20% 3D RMSE improvement.

The spatial range of the Jason satellite is limited to 66.15◦
N and 66.15◦ S. It means, that part of the analyzed stations
are located outside this area and the result of their positioning
may be burdened by incorrect modeling of the ionospheric
state for these regions. For the quiet period in 2016, 21 sta-
tions reached an improvement of the 3D RMSE. For ten of
them, the improvement was more greater equal than 20% (up
to a maximum of 26%). Accuracy degradation was obtained
for only one station and amounted to less than 1%. For other
analyzed quiet periods the results were similar. For 2022,
23 stations with improvements up to 24% and only 5 with
deterioration not greater than 6%. For 2023, all 19 stations
achieved an improvement of 6–39%. In general, wewere able
to obtain average percentage improvements for the studied
calm dates of 11% for the northern polar region and 22%
for the southern polar region. This proves that the developed
model performs well in extrapolating data beyond Jason’s
coverage areas. In the Appendix A we provided the informa-
tion regarding 3D RMSE deterioration and improvement for

calm periods for GNSS stations that are outside of Jason’s
area of operation.

More detailed information about the distribution of the
improvements or deteriorations compared to the IGS solu-
tion are presented in Fig. 8. The figure shows the difference
between the positioning RMSE obtained using IGS andGUT
maps.Apositive value of the difference indicates an improve-
ment, while a negative value indicates a deterioration for
the studied stations. For each of the quiet terms tested, we
obtained an improvement in 3D positioning. In the figure, the
range of improvements obtained in the form of percentiles,
where we will refer the 25th percentile as Q1 and the 75th
as Q3. The median was 0.14 m with Q1 of 0.00 m and Q3 of
0.29 m for January 23–29, 2016, 0.07 m with Q1 of−0.01 m
and Q3 of 0.17 m for March 16–23, 2022, and 0.22 m with
Q1 of 0.10 m and Q3 of 0.34 m for February 1–6, 2023. The
medians of the positioning errors according to the altitude
component are close to the 3D results. The medians, Q1 and
Q3 for eachof the studied periods are higher than zero. For 2D
positioning the medians are close to zero, indicating a high
degree of similarity to IGS. The obtained results indicate that
the use of the GUT model for the generation of ionospheric
maps enables a general improvement of the single-frequency
positioning for the quiet state of the ionosphere.

Positioning results for individual stations depend on their
location and ionospheric conditions. In order to check the
quality of positioning for individual stations on a different
latitudes with various densities of surrounding stations, we
present the time series of positioning errors in the North, East
and Up directions for the SCOR (Greenland; 70.5◦ N 22.0◦
W), STR1 (Australia; 35.3◦ S 149.0◦ E) and LROC (France;
46.2◦ N 1.2◦ E) stations as shown in Fig. 9. The error val-
ues obtained with the GUT model in each direction are very
similar to the IGS results. However, a certain improvement is

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


GPS Solutions           (2025) 29:111 Page 9 of 16   111 

Fig. 7 Spatial distribution of stations showing improvement or deterio-
ration with respect to IGS for the studied quiet periods: January 23–29,
2016, March 16–23, 2022 and February 1–6, 2023

noticeable. This is particularly evident during the first three
days of the observation period for station STR1, where a
significant improvement in positioning in the North and Up
directions is visible. For the entire week, the average altitude
error for the GUT model was 0.22 ± 1.58 m, while for the
IGSmodel it was−0.81±1.85m. In the north and east direc-
tions, the improvements are not as pronounced, although we
noticed centimeter improvements in standard deviation (std),
of 0.04 m and 0.03 m respectively. For the SCOR station,
there is a slight bias against the IGS results. It is particularly
pronounced for the altitude component, where GUT shows
an average of 0.37 ± 1.54 m, and IGS −0.61 ± 1.55 m. For
the LROC station, we obtained a bias between the GUT and

Fig. 8 Comparison of the improvements and deterioration of the GUT
model against the IGS solution for Up, 2D, 3D positioning error for
the studied quiet periods: January 23–29, 2016, March 16–23, 2022,
February 1–6, 2023. The red line represents the median, the bottom and
top of the box indicate the 25th and 75th percentile while the whiskers,
lower and upper, indicate the 5th and 95th percentile respectively

IGS results of 0.80 m for altitude. For the GUT model the
standard deviation decreased slightly, by 0.03 m. However,
considering the RMSE, we noted a significant improvement,
0.87 m for the GUT model and 1.26 m for the IGS.

Storm events

In order to validate the model for periods with increased
ionospheric activity,we selected such days duringwhich geo-
magnetic storms were recorded. The validated periods are as
follows: March 17, 2015 (Wu et al. 42), November 4, 2021
(Zhai et al. 45;Wu et al. 43), April 23–24, 2023. During each
of these storms, theKp index value reached 8 in a scale of 0 to
10. We chose such extreme storm dates to test the quality of
the model under the worst conditions. It should be noted that
the events in November 2021 and April 2023 were outside
the range of data used to train the model.

In Fig. 10 we noticed a similar pattern as in the analy-
sis of the calm days. For each of the selected storms, we
obtained a better average improvements for 3D positioning
while compared to IGS (March 17, 2015: 12.9%; November
4, 2021: 8.5%; April 23–24, 2023: 11.5%). For 2D posi-
tioning errors we obtained similar results to IGS. This is
another evidence that the applied method performs effec-
tively in mapping changes in the state of the ionosphere. The
results show that on days with strong geomagnetic distur-
bances, we get comparable 2D positioning results using the
GUT model as with final IGS products, and we get better
results for the altitude component.

Figure 11 shows the distribution of improvements and
deterioration in the positioning RMSE for the available
IGS stations during selected periods when strong geomag-
netic disturbances were recorded. In the case of ionospheric
storms, their magnitude and area of occurrence should be
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taken into account.Weobtained very goodpositioning results
for the strongest storm of the 24th solar cycle (March 17,
2015). Out of 269 stations analyzed on a given day, we found
an improvement for 209 of them (78%), while only 27 (10%)
stations experienced a degradation of more than 0.10 m dur-
ing the storm. The April 2023 storm shows similar statistics,
where out of 334 stations we noticed an improvement for 288
of them (86%). A slightly lower number of improved results
was obtained for the November 2021 storm, where out of 323
stations considered in the calculations, 224 received lower
positioning errors than when using the IGS maps (69%). An
important issue in the development of the fusion model is the
consideration of the extreme behavior of the ionosphere. Of
the 16 years of data used in the study, only a few describe
the ionosphere in an excited state, which could be reflected
in model accuracy during intense geomagnetic activity. Nev-
ertheless, the maps generated by the GUT model allow to
improve on average 70% of the stations for the studied storm
days.
When analyzing the percentage improvement in 3D position-
ing results for days of geomagnetic disturbances, we noticed
that for storms from 2015 and 2023, more than 70 stations
achieved more than 15% improvement.

Likewise for the calm days, also for the storm events we
noticed good performance of the model for the GNSS sta-
tions located onnorthern and southern polar regions (Fig. 11).
For the March 2015 storm, 22 stations achieved 3D RMSE
improvements ranging from 3 to 26% (average 18%), and
only 3 stations showed minor degradation not exceeding 5%.
For the 2021 storm, 24 stations with an average improvement
of about 13%, and only 5 stations with average deterioration
around 1.4%. For the event in 2023, all 19 stations reached
significant 3D positioning improvement about 17% on aver-
age. For the northern polar region, the average percentage
improvement for all of the storms was 13%, while for the
southern polar region it was 15%. This shows that the devel-
opedmodel does a very good jobof extrapolating data beyond
the Jason range for both calm and stormy periods. We have
presented more detailed information regarding the quality
of positioning using the GUT model for stations outside the
Jason satellite operating area on storm days in the Appendix
A.

Figure 12 represents the RMSE statistics of positioning
using the GUT in relation to the IGS model for days with
strong geomagnetic activity. We noticed a similar results as
in for quiet period (Fig. 8). For the March 17, 2015, the
3D median was 0.20 m (Q1 of 0.02 m; Q3 of 0.39 m), for
November 4, 2021, the median was 0.07 m (Q1 of −0.02
m; Q3 of 0.15 m) and for April 23–24, 2023 it was 0.20 m
(Q1 of 0.08 m; Q3 of 0.23 m). The 3D medians obtained
for each date were positive, and the Q1 values are close to
zero, implying that improvements were achieved for the vast
majority of stations studied. We obtained similar results for

the altitude component. This median was 0.25 m, 0.08 m and
0.25 m for March 17, 2015, November 4, 2021 and April
23–24, 2023, respectively. The 2D positioning medians are
close to zero with slight centimeter deviations.

In order to validate how the model performs with TEC
mapping during a stormday,we decided to choose one station
that was in the center of the impact of ionospheric distur-
bances (Zhai et al. 45), which is the SPTU located in southern
Brazil. In Fig. 13 we showed the daily course of the com-
ponents of the topocentric coordinates. Our results do not
deviate much from the IGS results, especially for the quiet
part of the day. It should also be taken into account that we are
in the middle of the land, where the model had to interpolate
the data. According to the information in (Zhai et al. 45), the
disturbance started at 11:00UTC and lasted until 18:00UTC.
The results we obtained differ slightly from the IGS for this
period for each of the components. The average positioning
error in the East direction for the GUT model is 0.22 m and
for IGS is 0.25m,where the std is almost the same±0.86 and
±0.90 m respectively. In the North direction the GUTmodel
is characterized by a 4cm deterioration in the average error
relative to IGS and a 5cm improvement in the standard devi-
ation. For altitude it turns out that the IGS solution performs
better, as for the mean error using GUT is 0.85 m, while with
IGS it is 0.35 m, which is quite a difference. However, we
gained 0.18 m improvement in the standard deviation, which
for our model is ±2.12 m.

Impact of plasmaspheric TEC correction

During investigation we noticed that the plasmaspheric
model selection has a strong impact on the learning results.
The Jason satellites orbit at an altitude of 1336km. In con-
trast, the ionospheric maps from the IAACs use GNSS
measurements where the satellites are in orbits at altitudes
above 20000km. This means that the altimetric measure-
ments ignore the influence of the ionosphere above Jason’s
orbit resulting an underestimation of plasmaspheric total
electron content. Therefore, it was important to complement
the data with TEC above Jason’s orbit. In the course of our
research, we examined models such as IRI2016 (Bilitza et al.
2), IRIPLAS (Sezen et al. 39), NEDM (Hoque et al. 18)
and solution without ionospheric correction.We obtained the
best results using the NEDM model. In Fig. 14, we showed
the positioning statistics using different sources of plasma-
spheric correction. If no correction is applied we found a
significant deterioration of the positioning compared to the
IGS, reaching even more than 15% for 3D positioning dur-
ing a geomagnetic storm. The use of an appropriate model
was crucial. The IRI2016 model brought an improvement
in the results, but it was not satisfactory due to the numer-
ous deterioration’s that occurred. We found that on average
model performed better for 55% of the stations, where the
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Fig. 9 Time series of
topocentric coordinates for the
period February 1–6, 2023,
showing positioning results
using the GUT product (red
line) and IGS (black line);
SCOR station; STR1 station;
LROC station

Fig. 10 Cumulative distribution
function for the RMSE
distribution of positioning for all
available IGS stations during the
studied storm periods: March
17, 2015, November 4, 2021 and
April 23–24, 2023. The red line
represents results obtained using
maps generated from the GUT
model, while the black line
represents results obtained using
IGS maps
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Fig. 11 Spatial distribution of stations showing improvement or dete-
rioration with respect to IGS for the studied geomagnetic storm days:
March 17, 2015; November 4, 2021; April 23–24, 2023

Fig. 12 Comparison of the improvements and deterioration of the GUT
model against the IGS solution for Up, 2D, and 3D positioning error
for the studied storm periods: March 17, 2015, November 4, 2021, and
April 23–24, 2023. The red line represents the median, the bottom and
top of the box indicate the 25th and 75th percentile while the whiskers,
lower and upper, indicate the 5th and 95th percentile respectively

worst results were obtained for November 4, 2021 storm.
For this day we only got better results for 33% of the sta-
tion with an average 9.4% deterioration of 3D RMSE. We
noticed that the corrections were underestimated when using
IRI2016. The use of IRIPLAS proved to be more successful,
where we obtained significant improvements by increasing
the plasmapheric corrections. On average 65% exhibited
reduction in 3D RMSE. Unfortunately, the use of this model
still yielded some degradation, especially for 2D positioning,
which reached up to 6.4% of deterioration in relation to IGS
results. The use of the NEDM model proved to be a success
and it performed best for all the dates analyzed, both calm
and storm days. The results obtainedminimizing errors in 2D
positioning, which allows us to obtain results comparable to
and better than IGS at this point. We found improvement
for more than 70% of the studied station with average 7.9%
reduction of 3D RMSE in relation to results obtained using
final IGS products.

Fig. 13 Time series of
topocentric coordinates of the
SPTU station located in the area
of influence of the storm on
November 4, 2021. The red line
shows the results obtained using
maps generated with the GUT
model, while the black line
represents the IGS results

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


GPS Solutions           (2025) 29:111 Page 13 of 16   111 

Fig. 14 Comparison of average
3D RMSE improvements for
different applied plasmaspheric
TEC corrections with respect to
solution using final IGS GIM.
Blue: no plasmaspheric
correction, orange: IRI2016
model, green: IRIPLAS model,
red: NEDM

Summary

The objective of our work was to develop a deep learning
model that could be used to combine global ionosphericmaps
from different IAACs, and provide a high-quality end prod-
uct. To construct the GUT model, we used a deep learning
structure consisting of recursive layers and standard dense
layers. Algorithm was fed with learning data, which con-
sisted of TEC values from IAACs (CODE, ESA, JPL, UPC)
interpolated to the Jason position, parameters representing
UTC time, positional parameters representing solar zenith
angle, latitude and longitude, and solar and geomagnetic
activity parameters. Our model was validated in the posi-
tioning domain for different quiet and active solar periods
using IGS GNSS stations located worldwide. Subsequently,
the results were compared to those obtained using the final
IGS products.

The proposed deep learning-based model achieved a sig-
nificant reduction in GNSS positioning errors compared to
the reference model, demonstrating its effectiveness in cap-
turing complex spatio-temporal patterns within the input
GIMs. Although the approach differs from the IGS solution
in both methodology and input data, the results highlight the
potential of deep learning-based technique to enhance exist-
ing ionosphericmodeling strategies. Utilization of developed

model for the selected quiet and storm days resulted in an
improvement of the 3D positioning error (in comparison to
the application of the final IGS solution) for over 70% of the
investigated stations. This ismainly due to a notable enhance-
ment in the accuracy of the altitude component, while the
results for 2D positioning are comparable to those of the
IGS.

Our results proves that the that the application of deep
learning enables the combination of ionospheric maps from
different IAACs, providing an ionospheric state that allows
for improved positioning accuracy. Despite the model being
trained using data from Jason satellites as a reference VTEC
values, which are only available for the oceans, the posi-
tioning results demonstrate that even stations located deep
within terrestrial areas exhibit enhanced positioning accu-
racy. A similar situation arises for the stations situated in the
polar regions, where the altimetry data are unavailable. This
demonstrates that the model is highly effective at extrapo-
lating data beyond the range of the reference data. In our
research, we also tested the impact of plasmaspheric models
that were necessary to complete Jason’s data above the satel-
lite’s orbit. The results show that the NEDM model allowed
to improve learning process and improved positioning for
twice as many stations as in the absence of the spherical
plasma correction. Further advancement can be achieved by
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fusing data from different sources. The developed model can
not only successfully improve the combination of current
ionospheric maps, but also be applied to improve historical
solutions.

Appendix A Percentage improvement/
deterioration in 3D RMSE using the GUT
model against the IGS model for GNSS sta-
tions located outside Jason domain

Station Lat.[◦] Lon.[◦] Jan. 23–29 2016 Mar. 16–23 2022 Feb. 1–6 2023 Mar. 17 2015 Nov. 4 2021 Apr. 23–24 2023

ALRT 82.5 − 62.3 19.1 – – 20.6 – –
NABG 78.9 11.9 – 20.0 – – 16.4 –
NYA2 78.9 11.9 – 23.6 24.5 – 19.8 32.1
NYA1 78.9 11.9 19.9 19.9 20.7 23.4 17.3 29.0
THU3 76.5 − 68.8 22.5 – – 25.3 – –
THU2 76.5 − 68.8 25.4 19.9 – 25.7 16.8 12.8
RESO 74.7 − 94.9 21.0 – – 26.5 – –
TIXI 71.6 128.9 2.1 – – 7.2 3.8 –
TIXG 71.6 128.9 1.7 2.2 – 3.7 6.6 –
UTQI 71.3 − 156.6 – 19.5 26.3 – 15.4 23.0
HOLM 70.7 − 117.8 13.9 – – 22.6 – –
SCOR 70.5 − 22.0 3.5 10.2 5.8 5.8 7.1 16.4
TRO1 69.7 18.9 12.5 –1.7 10.1 –2.4 3.9 15.3
NRIL 69.4 88.4 3.3 – – 9.0 −0.1 –
TUKT 69.4 − 133.0 – 8.4 16.2 23.9 9.7 15.7
INVK 68.3 − 133.5 0.6 3.2 10.8 18.0 4.0 5.0
KIR0 67.9 21.1 9.6 −2.4 14.5 −1.1 −0.3 17.0
KIR8 67.9 21.1 – −4.1 12.9 – −0.3 16.1
KIRU 67.9 21.0 −0.9 −6.0 8.8 −5.1 −6.2 10.3
QIKI 67.6 − 64.0 12.0 – – 24.7 – –
SOD3 67.4 26.4 – −2.2 12.6 – −0.1 18.4
KELY 67.0 − 50.9 7.6 – – 19.5 – –
CAS1 − 66.3 110.5 – 16.2 34.0 16.7 16.4 15.2
DUMG − 66.7 140.0 – 13.4 32.0 – 12.9 –
ROTH − 67.6 − 68.1 19.4 – – – – –
MAW1 − 67.6 62.9 25.0 12.2 36.2 15.6 – 10.6
DAV1 − 68.6 78.0 22.5 16.0 38.1 12.5 14.5 –
SYOG − 69.0 39.6 26.1 11.4 39.2 19.4 5.5 16.5
COTE − 77.8 162.0 – 10.8 23.1 – 13.4 17.8
ARHT − 77.8 166.7 – 11.6 19.1 – 13.6 18.2
SCTB − 77.8 166.8 – 13.8 – – 17.4 20.8
MCM4 − 77.8 166.7 20.2 9.8 16.1 10.5 12.0 17.1
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