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ABSTRACT The field of cancer diagnostics has been revolutionized by liquid biopsies, which offer a bridge
between laboratory research and clinical settings. These tests are less invasive than traditional biopsies and
more convenient than routine imaging methods. Liquid biopsies allow studying of tumor-derived markers
in bodily fluids, enabling the development of more precise cancer diagnostic tests for screening, disease
monitoring, and therapy personalization. This study presents a multiclass approach based on deep learning
to analyze and classify diseases based on blood platelet RNA. Its primary objective is to enhance cancer-type
diagnosis in clinical settings by leveraging the power of deep learning combined with high-throughput
sequencing of liquid biopsy. Ultimately, the study demonstrates the potential of this approach to accurately
identify the patient’s type of cancer. Methods: The developed method classifies patients using heatmap
images, generated based on gene expression arranged according to the Kyoto Encyclopedia of Genes and
Genomes pathways. The images represent samples of patients with ovarian cancer, endometrial cancer,
glioblastoma, non-small cell lung cancer, and sarcoma, as well as cancer patients with brain metastasis.
Results: Our deep learning-based models reached 66.51% balanced accuracy when distinguishing between
those 6 sites of cancer origin and 90.5% balanced accuracy on a location-specific dataset where cancer types
from close locations were grouped. The developed models were further investigated with an explainable
artificial intelligence-based approach (XAI) - SHAP. They returned a set of 60 genes with the highest impact
on the models’ decision-making process. Conclusions: Our results show that deep-learning methods are a
promising opportunity for cancer detection and could support clinicians’ decision-making process in finding
the solution for the black-box problem.

INDEX TERMS Deep learning, liquid biopsies, tumor educated platelets (TEP), CNN-convolutional neural
network, explainable AI.
Clinical and Translational Impact Statement— Utilizing TEPs-based liquid biopsies and deep learning,
our study offers a novel approach to early cancer detection, highlighting cancer origin. The integration of
Explainable AI reinforces trust in predictive outcomes. Category: Early/Pre-Clinical Research.

I. INTRODUCTION

THE number of patients diagnosed with cancer con-
tinues to rise each year due to carcinogen exposure,

higher life expectancy, health awareness in society, and
access to diagnostic tests [1]. Routine markers such as car-
bohydrate antigen 125 (CA-125) [2] in ovarian cancer or
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carcinoembryonic antigen (CEA) in non-small cell lung can-
cer (NSCLC) [3] and imaging methods are successfully used
in diagnosis only to some extent. Routinely used diagnostic
tests are often costly, hard to obtain, or lack accuracy. Hence,
a non-invasive, straightforward approach is needed to enable
an extended blood morphology that detects cancer and indi-
cates its type.

This problem can be partially addressed by introducing
liquid biopsies – samples of body fluids, especially blood,
analyzed with the latest high-throughput technologies [4].
One sample can be analyzed in multiple ways, including
interrogation of extracellular vesicles, circulating proteins,
cell-free RNA, cell-free DNA, RNA of tumor-educated
platelets (TEPs), or RNA/DNA of single circulating tumor
cells (CTCs), immune cells, circulating endothelial cells and
cancer-associated fibroblasts [4], [5]. There are many break-
through cancer studies related to analyzing those biomarkers
where each type may shine in its field, covering the following
areas: a) screening and early cancer detection research (Epi-
proColon, GRAIL) [6], [7]; b) tools for decision-making
and companion diagnostics (Cobas EGFR Mutation Test v2,
Guardant360) [8], [9]; as well as c) determination whether
the patient has a drug targetable mutation (FoundationOne-
Liquid, Resolution-HRD) [10]. Multi-omics models and
multi-platform solutions have also emerged, basing their
outcomes on data from multiple related sources [11], [12],
[13], [14]. In general, liquid biopsies constitute a promising
alternative to traditionally performed tissue biopsies and,
in certain conditions, can complement, if not replace, tradi-
tional biopsy evaluation [15], [16].
TEPs have shown potential in early cancer detection, track-

ing cancer’s evolution, and metastasis [17], [18]. They can
be used complementarily with other biomarkers like ctDNA
in the detection of endometrial cancer [16] and along the
CA-125 to boost the detection of ovarian cancer [19]. Impres-
sively, platelet transcriptomes are fairly stable, retaining their
RNA profiles even under prolonged storage at room temper-
ature or freezing, making them practical study subjects [20].
Past research indicates that RNA profiles from TEPs can
provide diagnostic accuracy of up to 80% for detecting sites
of origin of various cancers [17], [21].
In our work, we harness the power of deep learning (DL)

models, building upon the approach by [18] organizing genes
within signaling pathways according to the Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) [22]. Our analysis
involves a thorough comparison of ResNet, DenseNet, and
EfficientNet models. Additionally, to ensure our models are
both accurate and transparent, we’ve employed an Explain-
able AI (XAI) technique, SHAP [23]. This method illumi-
nates the inner workings of ourmodels, helping us understand
how specific predictions are made and the significance of
different genes in the outcome.

To sum up, the contributions of this work are:

• Deep Learning with TEPs: We’ve utilized TEPs-based
liquid biopsies and advanced deep learning for early

TABLE 1. Data source overview.

cancer detection, presenting a potential tool to helpmed-
ical professionals pinpoint cancer origins.

• Benchmarking: Our model, benchmarked against
prominent studies, offers a fresh perspective on
pan-cancer classification challenges and opportunities.

• Integration of XAI: By incorporating SHAP, we’ve
deepened our understanding of cancer’s molecular
markers and reinforced trust in our model’s predictive
capabilities.

II. METHODS AND PROCEDURES
Platelet RNA samples were processed according to the guide-
lines published by [24]. All patients signed informed consent.
The study was performed following the Helsinki Declaration,
as revised in 1983. The final dataset contained the data from
asymptomatic donors (AD) and patients with 5 different can-
cer types (NSCLC – non-small cell lung cancer, OC – ovarian
cancer, EC – endometrial cancer, GBM – glioblastoma,
SARC – sarcoma) and brain metastasis (BM). Patients with
NSCLC and BM were treated as the NSCLC group, though
patients with brain metastases also had other primary tumors
than NSCLC. The blood samples from patients enrolled to the
study were collected before the start of the treatment. Hence,
there were no confounding factors related to the prior cancer
therapy. Due to quality control, we removed all samples with
less than 100k total reads from the dataset and only used
genes with known Gencode status. All samples underwent
the same pre-processing and were aggregated and normalized
together. Table 1 summarizes all elements of the dataset.
Following the methods of [18], expression data normal-

ization was performed via the DESeq2 package in R [28]
usingVariance Stabilizing Transformation [29]. TheGencode
v19 GRCh37 served as the annotation tool. Meeting quality
checks, expression profiles were transformed into visual for-
mats, each pixel mirroring the expression level of a distinct
gene, akin to a heatmap. Organizing these genes based on the
KEGG pathways [22] via the GAGE package [30] yielded
345 × 243 expression arrays, where each row signified a
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FIGURE 1. Model RN9-implat based on RN9 backbone. It comprises eight
convolutional blocks for feature extraction and two fully connected layers
responsible for classification tasks. A dropout layer was added to prevent
overfitting. Numbers depict the amount of input and output channels for
each layer.

specific pathway associated with metabolism, genetic infor-
mation processing, environmental information processing,
cellular processes, immune system, other organismal sys-
tems, cancer, or other human diseases. While the order of
genes within the rowmattered, the impact on the performance
of the order of the rows was minimal as it was shown in one
of our recent studies [31].

Our objective was to assess various deep-learning frame-
works for cancer classification through liquid biopsy data.
We evaluated the architectural depth and intricacy’s influence
on the models’ accuracy. Initial experiments utilized ResNet
architectures, recognized for computational efficiency [31].
Three primary variations, including ResNet9, ResNet18,
and ResNet50, were assessed with and without MaxPooling
layers, hypothesizing the potential loss of vital gene infor-
mation with pooling at two different kernel sizes. In addi-
tion, we conducted an extended comparative analysis with
other well-known architectures, including DenseNet-121,
DenseNet-169, EfficientNet-b0, and EfficientNet-b4. Inter-
estingly, our comprehensive evaluation revealed that the more
complex backbones of DenseNet and EfficientNet did not
enhance performance in our specific application. The shal-
lower architectures, including RN9 and RN18, consistently
outperformed other models. As a result, our efforts con-
centrated on refining the ResNet9’s configurations through
hyperparameter tuning and kernel optimization. The even-
tual model, termed RN9-implat, discarded pooling layers,
expanding its size but enhancing its accuracy. The complete
model architecture is shown in Figure 1, and detailed clas-
sification results are available in Supplementary Material
(‘‘Appendix.1 – model metrics’’).

Developed in Python and reliant on the PyTorch back-
end [32], our models were trained using cross-entropy as the
loss function, with gradient optimization achieved through
the ADAM algorithm [33]. Various random seeds and learn-
ing ratios of 0.01 and 0.001were taken into account. Balanced
accuracy (calculated as the average recall of each class)
served as the main performance metric. To further evaluate
the performance of models we measured the accuracy,

TABLE 2. Number of samples in datasets used in model training and
evaluation.

F1-score, and top-2 balanced accuracy which considers if the
right prediction is among the model’s two top guesses. The
Python code used for model training and R-script describing
the step-by-step input image creation are provided in Supple-
mental Material section of the manuscript.

To overcome imbalanced classes in the dataset, we initially
experimented with Generative Adversarial Networks for data
augmentation, but it did not yield promising results. Hence,
we focused on redistribution of the data. We decreased the
number of samples from over-represented classes in the train-
ing set and added them to the test set. This data splitting
was performed with a random sampler set on different ran-
dom seeds to ensure impartiality. To assess generalized class
performance, a Location-specific dataset was created, amal-
gamating cancers from close body locations. This involved
grouping OC and EC samples as OC_EC class, and GBM
and BM as GBM_BM. Cancer-type and location-specific
datasets were further divided into the train and test sets in
three ways: Split A contained the highest number of samples
from all classes, leaving only a small portion for testing.
Split B was introduced to create a more balanced train-
ing dataset, transferring more samples for testing purposes.
Split C was introduced to check model training performance
when 30% of data from each class was used for test-
ing purposes only. This approach of redistributing samples.
All models were trained and tested using a 5-fold Stratified
Cross-Validation [34]. An overview of the train/test data split
for multiclass classification is shown in Table.2.

Included XAI method – SHAP is based on cooperative
game theory. Its goal is to identify the marginal contribution
of each feature to a prediction. Here, SHAP values illus-
trate how individual gene expression levels, transformed into
image pixels, influence predictions. Positive SHAP values
denote gene expression levels aligning with specific cancer
classifications, negative values indicate rejection and neutral
values suggest no influence of the gene on the classification.

III. RESULTS
Upon establishing the most accurate DL model architec-
ture during the initial tests as RN9-implat, the following
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TABLE 3. Performance characteristics of selected multiclass models
(RN9-implat). Metrics are calculated for all 5 cross-validation folds for
each experiment. Standard deviation (std) for folds is also included.
Values are shown as percentiles.

experiments were performed across both datasets and all data
splits. Initially, we pursued multiclass classification to gauge
the model’s proficiency in discerning multiple cancer types.
Subsequently, we delved into between-class classification,
examining the model’s ability to differentiate specific pair-
ings, shedding light on its particular strengths and potential
areas for refinement. Finally, we employed XAI (Explainable
Artificial Intelligence) through the SHAP method, aiming to
demystify the model’s decision-making processes, corrobo-
rate its alignment with recognized biological markers, and
enhance its credibility. This holistic approach was crucial
for an exhaustive assessment of our model’s efficacy and
interpretability.

A. MULTICLASS CLASSIFICATION
The random chance of guessing the correct class for the
Cancer-type and Location-specific datasets was equal to
16.67% and 25%, respectively. While the accuracy of all
trained models was usually high (∼80%), owing to a large
number of easily distinguishable NSCLC samples, the bal-
anced accuracy dropped to 66.51% over 5 folds in the case
of Cancer-type-specific dataset and to 90.50% over 5 folds
for Location-specific dataset. Results are shown in Table.3.
Detailed multiclass classification metrics for all tested runs
are shown in the supplementary material (‘‘Appendix.1 –
models metrics’’).

Covering top-2 balanced accuracy for the model showed
a significant increase in metrics, especially for the cancer-
type-specific dataset, where the mean accuracies were lower.
The inherent organization of the location-specific dataset,
which groups some of the toughest-to-distinguish classes,
could potentially explain this observation. This can also be
observed in Figure 2, which shows the class-specific metrics
and confusion matrix for the most accurate model on the
Cancer-type-specific dataset.

B. BETWEEN-CLASS CANCER TYPE CLASSIFICATION
To grasp the nuanced distinctions and overlaps among can-
cer types, we conducted between-class classifications across
both datasets. Key metrics, such as balanced accuracy and
F1 scores from the location-specific dataset, are presented
in Table 4. Detailed classification metrics are shown in the
supplementary material (‘‘Appendix.1 – models metrics’’).

A pivotal discovery was the model’s unparalleled abil-
ity to differentiate AD samples from gynecological can-
cers (OC_EC), with most models achieving an impressive

FIGURE 2. Performance results of the most-accurate RN9-implat model
on test samples from the cancer-specific dataset. Values are calculated as
a mean from all folds. (A) Accuracy and sensitivity were calculated for
detecting every class apart from all samples. (B) Confusion matrix for test
samples for each class. Numbers depict the percentage distribution of the
classification of samples.

99% balanced accuracy across training, validation, and
test sets. However, a decline in accuracy was observed
when the models tackled brain-related cancers and sarcoma
classifications. Further experiments with the cancer-type
dataset enabled deeper class-to-class comparisons. Classifi-
cation results are presented in Table 5. Detailed metrics are
shown in the supplementary material (‘‘Appendix.1 – models
metrics’’).

As previously, our classifier showed outstanding perfor-
mance distinguishing AD samples fromOC and EC, reaching
almost perfect scores on all tested data splits. Those two
cancer types were also easily distinguished from all other
cancer types except each other, which might be due to the
fact that both cancer types are related to close locations.

C. EXPLAINABLE AI
Next, we applied the XAI method based on SHAP values
on our trained models to get more insight into their perfor-
mance. This experiment used samples of all distinct classes
from the test split. The figure in the supplementary mate-
rial (‘‘Appendix.2 - XAI’’) shows the visualization of the
outcome of applying SHAP on images fed to the multiclass
model. Using the SHAP importance matrix for each pixel,
we extracted 2-D coordinates of the top 5 highest positive
values responsible for selecting the correct class and 2-D
coordinates of the lowest 5 negative SHAP accountable for
rejecting the incorrect class. Those coordinates were then
back-translated into genes’ names used to create input matri-
ces. First, we tested the performance of binary classification
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TABLE 4. Results of between-class classification of samples from the location-specific dataset. Numbers correspond to the mean balanced accuracy and
F1 from cross-validation of models trained on data from classes in the row and column only.

TABLE 5. Results of between-class classification of samples from the cancer-type-specific dataset. Numbers correspond to the mean balanced accuracy
and F1 from cross-validation of models trained on data from classes in the row and column only.

TABLE 6. Genes with the most discriminating potential in classifying samples from cancer types and asymptomatic donors on the RN9-implat model.
Arrows depict if the gene expression was higher or lower than the average for each gene from all samples.

models responsible for distinguishing between all the studied
disease types and AD to discover which genes might be
important when differentiating samples from healthy con-
trols. Results are shown in Table 6.

Results show that a few genes (GNB1, NF2, MLLT4)
were critical while displaying higher expression in healthy
donors, helping to distinguish them from cancer patients.
Genes correlating to detecting cancer were distinct for every
class. Most of those genes are described in The Human
Protein Atlas as prognostic markers or have strong evidence

of being pathogenic. The subsequent phase involved evaluat-
ing multiclass models, aiming to pinpoint genes pivotal for
accurate class identification. Results are shown in Table 7.

While there seem to be few exclusive genes in every
class, in most instances, our model based its decision on
combined information from the few most significant genes:
DIAPH1, ACER2, BDKRB2, MLLT4, NF2, which were
either upregulated or downregulated. Interestingly, MLLT4
was also substantial inAD sampleswhile discriminating them
from cancer patients.
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TABLE 7. Genes that significantly impacted choosing the suitable class (bold) and rejecting false class in multiclass classification on the RN9-implat
model. Arrows depict if the gene expression was higher or lower than the average for each gene from all samples.

IV. CONCLUSION
Developing a reliable, accessible, multiclass early cancer
detection test is the holy grail of cancer diagnostics. Aiming
to reach this goal, we compared common, convolution-
based deep-learning models. Based on preliminary data,
we selected ResNet architecture as the best solution to clas-
sify cancer using platelet RNA expression profiles. While the
highest overall balanced accuracy reached by our multiclass
models might still need to be improved for a standalone com-
mercially available test, it could support the decision-making
process of medical staff. We have observed that our model
occasionally confuses brain metastatic cancer with glioblas-
toma and non-small cell lung cancer, and endometrial cancer
with ovarian cancer. This is because these cancer types have
similar locations or origins (many of the BMs originated
from NSCLC) and may exhibit comparable RNA profiles in
platelets. Narrowing the experiment down to 4 cancer-site-
based classes showed a substantial increase in the model’s
performance, as the hardest-to-distinguish cancer types came
from close locations. Our findings not only highlight the
intricate interplay between platelets and cancer cells but also
reveal a distinctive imprint of the tumor microenvironment
and immune response within platelet RNA.

By reaching 66.51% balanced accuracy and 89.76% top-2
balanced accuracy for 6 types of cancer, we have established
reliable competitors to other known research in terms of pan-
cancer classifiers. Best et al. achieved comparable results
with 71% accuracy and 89% top-2 accuracy when discrim-
inating between healthy donors, glioblastoma, non-small cell
lung cancer, colorectal cancer, pancreatic cancer, breast can-
cer, and hepatobiliary cancer [17]. However, samples from
cancer location classes used in this research were collected
frommore diverse sites of origin. Aswe proved in this article -
distinguishing between them is not as challenging. The latest
pan-cancer study in platelets reported by [21] yielded 68%
accuracy and 85% top-2 accuracy while classifying tumor
sites of origin of 5 cancerous sites. Taking into account the
number of classes used in research, our model proved more
accurate and additionally allowed for further investigation
with XAI methods.

Applying SHAP enriched our understanding of cancer’s
molecular intricacies, spotlighting the determinants influenc-
ing the classifier’s decisions. A majority of these high-impact
genes have been echoed in prior cancer studies, with many
earmarked in The Human Protein Atlas as prognostic indi-
cators for a plethora of cancers. The DIAPH1 has its role in

VOLUME 12, 2024 311

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


M. A. Jopek et al.: DL-Based, Multiclass Approach to Cancer Classification on Liquid Biopsy Data

regulating the chromosomal instability of cancer cells as a
growth inhibitor [35] and its overexpression was proven to
be a predictive factor in breast cancer [36], and colorectal
cancer [37]. The ACER2, as a key regulatory enzyme, pro-
motes cancer cell survival [38] and can be used to predict
molecular subtypes in bladder cancer [39]. The BDKRB2
role in cell angiogenesis was proven in cervical cancer [40],
and breast cancer [41], and it was used as an epithelial-
to-mesenchymal transition biomarker in glioma [42]. The
MLLT4 was used among other genes in the prognosis of
glioblastoma (downregulated) [43] and leukemia (upregu-
lated) [44].While XAI unveils potential avenues for classifier
enhancement, it simultaneously validates their efficacy, rein-
forcing that their predictions are anchored in previously
identified features, thus paving the way for personalized
medicine.

One of this study’s most significant limitations is the data
availability. Whereas liquid biopsies are increasingly gaining
popularity, Tumor Educated Platelets are an upcoming field
with a limited amount of publicly available datasets. This
scarcity, particularly for rarer cancer forms, is amplified in
the context of deep learningmodels that voraciously consume
data, potentially leading to overfitting as a smaller number of
samples can result in an overly simplified representation and
may lack generalization. Thus, we had to implement various
sampling approaches and training on data split by a random
seed to overcome this obstacle. As platelet RNA is gaining
popularity in the liquid biopsy setting, it is likely that more
datasets will be made publicly available in the future. It is
also important to emphasize that each type of liquid biopsy
material provides us with slightly different information on the
patient’s status. The use of a particular sample will be highly
dependent on laboratory equipment used in a given unit and
the expertise of its personnel. While circulating tumor cells
(CTCs) might allow for in-depth analysis of multiple cancer
cell clones, circulating tumor DNA (ctDNA) will be easier
to obtain. However, while ctDNA, in certain circumstances,
allows for more detailed profiling of the genetic properties
of the tumor, its sensitivity may be lower as its abundance
varies significantly, depending on the type of malignancy
and the stage of the disease. Given the recent developments
in the multiomics era, in the ideal scenario, liquid biopsies
could combine different types of material (CTCs, ctDNA,
TEPs, etc.). Unfortunately, most of the publicly available
datasets are limited to only one type of material suitable for
liquid biopsies.

Another obstacle rests in the fragmented nature of com-
parative analysis in the domain – many studies use dif-
ferent types of cancer classes, and we see the lack of
a reliable reference dataset for machine learning clas-
sification algorithm development. Hence, our approach,
beyond just multiclass classification, encompassed individ-
ual class performance analysis, setting the stage for future
researchers to evaluate the performance of each class sep-
arately. In the evolving landscape of cancer diagnostics,
our work carves a niche, blending state-of-the-art AI with

crucial biological insights, and we believe it lays a solid
foundation for further exploration and innovation in the
domain.

SUPPLEMENTAL MATERIAL
Supplementary material includes: Detailed model metrics for
all experiments (‘‘Appendix.1 – model metrics’’) and, visual-
ization of the outcome of applying SHAP on images fed to the
multiclass model (‘‘Appendix.2 - XAI’’). Data, Python code,
R-script for input image generation, and multi-class classifi-
cation model weights used in the project are available at:

https://gitlab.com/jopekmaksym/deep_learning-based_
multiclass_approach_to_cancer_classification_on_liquid
_biopsy_data.git. The authors are happy to send the binary
classification model weights upon request.
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