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A B S T R A C T   

Waste pollution is one of the most significant environmental issues in the modern world. The importance of 
recycling is well known, both for economic and ecological reasons, and the industry demands high efficiency. 
Current studies towards automatic waste detection are hardly comparable due to the lack of benchmarks and 
widely accepted standards regarding the used metrics and data. Those problems are addressed in this article by 
providing a critical analysis of over ten existing waste datasets and a brief but constructive review of the existing 
Deep Learning-based waste detection approaches. This article collects and summarizes previous studies and 
provides the results of authors’ experiments on the presented datasets, all intended to create a first replicable 
baseline for litter detection. Moreover, new benchmark datasets detect-waste and classify-waste are proposed that 
are merged collections from the above-mentioned open-source datasets with unified annotations covering all 
possible waste categories: bio, glass, metal and plastic, non-recyclable, other, paper, and unknown. Finally, a two- 
stage detector for litter localization and classification is presented. EfficientDet-D2 is used to localize litter, 
and EfficientNet-B2 to classify the detected waste into seven categories. The classifier is trained in a semi- 
supervised fashion making the use of unlabeled images. The proposed approach achieves up to 70% of 
average precision in waste detection and around 75% of classification accuracy on the test dataset. The code and 
annotations used in the studies are publicly available online1.   

1. Introduction 

Environmental pollution related to solid waste mismanagement is a 
global problem. Massive production of disposable goods in the last years 
has resulted in significant increase in the produced garbage, which ac-
cording to the European household waste collection (Eurostat) report 
5.2 tonnes of waste were generated per EU inhabitant in 2018 (Eurostat, 
2018). Additionally, the World Bank (WB) report (Kaza et al. 2018), is 
expected to reach above 3 billion tons of waste per year by 2050. WB 
states that only 13.5% of global waste is recycled, while about 33% of 
garbage is thrown away openly without any preliminary classification 
(Kaza et al. 2018). This leads to the fact that different types of litter are 
freely scattered in a wide variety of environments. The biggest concern 
is plastic waste, as it is the most widespread and the long-term envi-
ronmental harm (Li et al. 2016). To prevent further pollution of the 
environment and, as a consequence, protect human and wild organisms’ 

life, immediate steps are needed to facilitate wise collection and segre-
gation of rubbish. 

One of the ways to support waste sorting is machine learning (ML). In 
recent years -ML-based systems that can support or fully cover sorting 
processes were implemented, accelerating this procedure as a result. The 
most commonly used solution includes smart self-sorting waste bins, 
which are capable of classifying one object located on a clear back-
ground at a time (White et al. 2020; Sheng et al. 2020). When a single 
compartment is used, the camera is usually located at the top of the 
upper container. The deep learning (DL) model assigns proper class 
based on the image and the garbage is moved to the appropriate bottom 
container (White et al. 2020). Another way is to mount a camera or a 
sensor above few separate bins, and direct the consumer handling waste 
to the correct one (Tavakoli et al. 2018). In this approach, the rubbish 
must be well exposed to the imaging device. On the other hand, artificial 
intelligence (AI) can even help with identification of illegal dumping 
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sites by tracking the undesirable behavior of residents (Lu 2019) or 
utilizing satellite data to locate agricultural plastic waste (Lanorte et al. 
2017). Recently, deep learning started to be used to detect and identify 
waste in natural environment with drones or cameras mounted on ve-
hicles (Kraft et al. 2021). 

The reported successes show that deep learning applications can 
speed up litter sorting and detecting. However, a question might arise: 
how can those approaches be compared? Garbage identification is 
ambiguous even for humans; as it is difficult to state whether an object is 
a garbage without any context. On top of that, trash can be atypical or 
deformed, or spotted under various uncontrolled natural conditions. 
This diversity of objects requires well-annotated data for comparison 
which distribution should match the target use case. Numerous waste 
datasets were introduced, yet each covers various types of waste, with 
different annotations and waste categories. Moreover, most of them 
usually do not provide a large enough number of annotated images, or 
they represent only a single type of waste (e.g. bottles or cigarette butts). 

The inconsistency in used data and metrics hinders fair and valid 
comparison of methodologies; the reported research uses, as a rule, 
different datasets and incoherent metrics and data splits. To authors’ 
knowledge, today, there are no representative and public benchmarks in 
waste detection. The current lack of benchmarks slows down the opti-
mization cycle of deep learning models and lowers the chances of con-
stant improvement and knowledge sharing in academics and industry. 
For beginners in the field, benchmarks summarize the best practices, 
showing the right direction to follow. For domain experts, it is a good 
baseline provider, giving a chance for relevant comparison. 

The article provides the first comprehensive review of existing waste 
datasets. Moreover, two benchmark datasets: detect-waste and classify- 
waste are introduced, which utilize the advantages of the existing open- 
source datasets to the fullest. The publicly available datasets of waste 
observed in different environments are unified, filtered, and merged. 
Inspired by waste segregation principles in Gdansk (Poland), the authors 
propose seven well-defined categories for sorting litter: bio, glass, metal 
and plastic, non-recyclable, other, paper, and unknown. The baselines for 
all reviewed datasets are provided, including the introduced classify- 
waste and detect-waste benchmarks. 

Additionally, a holistic approach is proposed to localizing and clas-
sifying waste in images in realistic scenarios that can be used as a 
baseline for future studies. A two-stage DL-based framework has been 
implemented for waste detection that consists of two separate neural 
networks: detector and classifier. The proposed framework is freely 
available and can be used for different purposes, such as monitoring 
changes in distribution of waste in nature. To the authors’ knowledge, 
the experiments presented in this article are the first that allow for such 
universal litter detection and classification. The main contributions of 
this article are: proposition of relevant benchmarks for litter detection, 
comprehensive review of the existing datasets, and presentation of 
baseline results with the two-stage framework for all datasets. 

An overview of the actual work for deep learning classification and 
detection, with an exhausting review of the existing waste datasets, is 
given in Section 2. Section 3 illustrates the applied framework to detect 
and classify waste from images. More specifically, the used data is 
described in detail, and the characteristics of the proposed waste 
detection system are identified. Section 4 provides training details of the 
chosen neural networks and reports the obtained results. Finally, con-
clusions are drawn, and future work is outlined in Section 5. 

2. Related works 

ML and DL techniques empower many aspects of modern society, like 
recommendation systems, text-to-speech devices, or objects identifica-
tion in images (LeCun, Bengio, and Hinton 2015; Konovalenko et al. 
2020). The waste management problem has attracted a lot of interest, 
where the main goal was to create an ML-based image recognition sys-
tem to sort litter (White et al. 2020; Sheng et al. 2020; Glouche and 

Couderc 2013). The majority of the proposed approaches are based on 
deep learning algorithms utilized in the computer vision field. This 
section describes selected techniques used in classification and object 
detection challenges and presents several publicly available waste 
datasets. 

2.1. Classification 

Convolutional neural networks (CNNs) have had a massive impact on 
large-scale image classification tasks and made it possible to achieve 
significantly higher accuracy than solutions based on classical image 
processing. There has been a constant improvement in the quality of 
image recognition structures, and many new architectures were pre-
sented, among which, few were identified as suitable for the waste 
classification problem. 

In 2016 the ResNet family (He et al. 2016) was proposed that is based 
on residual connections that introduce no extra parameters or compu-
tational effort. Instead, this connectivity pattern facilitates the gradient 
flow, which enables effective training of network consisting of as many 
as 200 layers. 

Then, the DenseNet structure (Huang et al. 2017) has facilitated 
training and accuracy by using the feature maps of all preceding layers 
as inputs. Its main advantages are: minimizing the vanishing gradient 
problem, improving feature propagation, encouraging feature reuse, 
and reducing the number of parameters. 

The next architecture is EfficientNet (Tan and Le 2019) that consists 
of modules constructed by the neural architecture search process that 
optimizes accuracy and FLOPS. The main building block is mobile 
inverted bottleneck MBCon (Sandler et al. 2018). The mobile-size 
baseline model called EfficientNet-B0 was built by stacking those 
modules. Scaling of a convolutional neural network is most often per-
formed in one of the following dimensions: width, depth, or resolution. 
The compound scaling strategy is used to produce larger and more 
complex and accurate models EfficientNet-B1-7. This scaling strategy 
significantly improves the efficiency and accuracy of the model. 

EfficientNet-B2 consists of one input 3x3 convolution layer with 
input size of 224x224. Then, there are seven stages with mobile inverted 
bottlenecks MBCon with squeeze-and-excitation optimization that have 
jointly 16 layers. It ends with the 1x1 convolution layer with pooling and 
fully-connected layer. It is all scaled up with the compound coefficient ϕ 
= 2. The EfficientNet-B2 architecture was used in the present research 
without model modifications, therefore this article provides a brief 
description of this architecture, however it is recommended to read (Tan 
and Le 2019) for more information. 

EfficientNetv2 (Tan and Le, 2021) improves EfficientNet by elimi-
nating EfficientNet bottlenecks and thus providing faster training and 
better parameter efficiency. Neural architecture search is used to opti-
mize accuracy, training speed, and parameter size. Unlike standard 
EfficientNet, EfficientNetv2 uses non-uniform scaling of depth, resolu-
tion, and width. Moreover, to limit computational cost, the increase in 
resolution is limited. 

2.2. Object detection 

Object detection is a well-studied task in the computer vision field. 
This task is defined as localization of an Axis-Aligned Bounding Box 
(AABB) and classification - assignment of a single or multi-label (Zou 
et al. 2019). In many previous works, object detection was approached 
using two techniques, namely one-stage and two-stage detection. Two- 
stage detectors find class-agnostic object proposals first, and then clas-
sify them into the class-specific detections as the second stage. At the 
same time one-stage architectures provide both locations and classes for 
each object in a single step. 

Two-stage detectors were the first object detection methods. They 
used the sliding window approach in the image pyramid to generate 
object proposals in multiple scales. Then, in the second stage, a classifier 
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such as a cascade classifier (Viola and Jones 2001) was used. Over the 
years, several algorithms have been presented such as Histograms of 
Oriented Gradient (HOG) and Support Vector Machine (SVM) (Dalal and 
Triggs 2005), recognition using regions paradigm (Gu et al. 2009) and 
Selective Search algorithm (Uijlings et al. 2013), based on which new 
architectures were created. 

Selective Search was used in R-CNN (Girshick et al. 2014) to extract 
region proposals, on which CNN features were computed to classify 
regions using per class SVMs. Fast R-CNN (Girshick 2015) solved R- 
CNN’s main problems by computing convolutional features for the 
whole image in the first step and then integrating classification into the 
network architecture. In the Faster R-CNN (Ren et al. 2015) architecture 
the Region Proposal Network (RPN) State-of-the-art concept was used 
instead of the Selective Search algorithm. In the following years, many 
researchers used Faster R-CNN while replacing its backbone (feature 
extraction CNN) with newer architectures. Like its predecessors, Faster 
R-CNN is a two-stage object detection method. 

Single-stage detection was popularized in Deep Learning mainly by 
two detector architectures: Single Shot MultiBox Detector (SSD) (Liu 
et al. 2016) and You Only Look Once (YOLO v1, 9000, v3, v4, scaled V4, 
and later PP-YOLOv2, YOLOR: (Redmon et al. 2016; Redmon and Far-
hadi 2017; Redmon and Farhadi 2018; Bochkovskiy, Wang, and Liao 
2020; Wang, Bochkovskiy, and Liao 2020; Huang, Wang et al. 2021; 
Wang, Yeh, and Liao 2021)). In this method, many false detections need 
to be removed considering objectness or classification score and over-
laps between detections. 

Detection Transformer (DETR) introduced Transformers known from 
Natural Language Processing tasks (Vaswani et al. 2017) into object 
detection while preserving image processing with CNNs. DETR predicts 
a sparse, fixed number of objects in training matched with ground truth 
labels using bipartite matching. DETR’s main limitations were slow 
convergence and limited feature spatial resolution. In the following 
years, these limitations were mitigated in Deformable DETR (Zhu et al. 
2020) thanks to the introduced deformable multi-head attention 
module. 

EfficientDet (Tan, Pang, and Le 2020) is a single-stage object detec-
tor. It consists of an EfficientNet backbone, a weighted bi-directional 
feature pyramid network (BiFPN), and class and box prediction net-
works. Its main goal was to improve the efficiency of object detection 
models. The improvement consists in using a compound scaling method 
from EfficientNet (Tan and Le 2019) to jointly scale up the resolution/ 
depth/width for the backbone, the feature pyramid networks, and the 
box/class prediction networks. EfficientDet is proposed in eight variants 
referenced as D0-D7 with backbone networks EfficientNet B0-B7. Effi-
cientDet-D2 is based on the EfficientNet-B2, then, there are 5 BiFPN 
layers with 112 channels for feature selection and 3 box/class prediction 
layers. This approach reduces the number of parameters and latency in 
the object detection network, and simultaneously increases the Average 
Precision metrics. 

The EfficientDet-D2 architecture has been used in this research 
without model modifications. A brief description of this architecture is 
provided; however it is recommended to read (Tan, Pang, and Le 2020) 
for more information. 

Instance Segmentation is another task for automated image pro-
cessing. The goal of this task is to provide a segmentation mask for each 
object instance. Here, Mask R-CNN (He et al. 2017), being an extension 
of Faster R-CNN, was introduced. In the network, the instance mask 
branch is added parallel to the classification and bounding box regres-
sion branch. 

2.3. Deep learning for waste recognition 

In recent years multiple attempts have been made to detect, classify 
and segment waste using deep learning. However, the number of images 
or categories of the garbage used differed significantly between the 
approaches making them incomparable. Image-based litter classification 

of common waste categories has been attempted using a few pre-trained 
convolutional neural networks – AlexNet (Yang and Thung 2016; Chu 
et al. 2018), MobileNet, InceptionResNetV2, DenseNet, Xception (Bir-
canoğlu and Arıca 2018) – achieving average accuracy in ranges 22% 
(Yang and Thung 2016) and 98.2% (Chu et al. 2018) for pictures of 
waste on a plain background. Recently an accuracy of 99.95% was ob-
tained on the diverse waste dataset reconstructed with the AutoEncoder 
network (Toğaçar, Ergen, and Cömert 2020). However, in that study, 
waste types were split into only two classes (organic and recyclable). 
Moreover, many used images had misleading labels or contain both 
types of waste, making one-class classification studies ineffectual. 

Experiments have also been conducted on litter detection and seg-
mentation in the streets and homes, using different DL-based architec-
tures. In those experiments, use was made of typical neural networks, 
including Faster R-CNN (Awe, Mengistu, and Sreedhar 2017; Fulton 
et al. 2019; Hong, Fulton, and Sattar 2020), SSD (Fulton et al. 2019), 
different types of YOLO (even Tiny-YOLO) (Liu et al. 2018; Fulton et al. 
2019; Carolis, Ladogana, and Macchiarulo 2020; Kraft et al. 2021), 
EfficientDet (Kraft et al. 2021), Cascade R-CNN and ATSS (Liang and Gu 
2021) for detection, Mask R-CNN (Proença and Simões 2020; Hong, 
Fulton, and Sattar 2020) for instance segmentation, and DeepLab (Wang 
et al., 2020a; 2020b) for semantic segmentation. The calculated mean 
average precision (mAP) score varied between different datasets and 
architectures from 15.9% for TACO (Proença and Simões 2020) with 
Mask R-CNN, up to 81% for Trash-ICRA19 (Fulton et al. 2019) with 
Faster R-CNN. The above-mentioned research focused on detecting 
specific types of garbage (mainly one category – litter) in a single 
environment. The quality of detection in various environments was not 
tested. Table comparing results of described above experiments is pre-
sented in Supplementary Table 1. 

For the purpose of this research, over ten different datasets have been 
found in the literature which represent three main scenarios: outdoor 
(natural/urban environment) (Lynch 2018; “Waste Pictures” 2019; 
Foundation 2016; Proença and Simões 2020; Kraft et al. 2021), indoor 
(Yang and Thung 2016; Serezhkin 2020; Wang et al., 2020a; 2020b), 
and underwater (Fulton et al. 2019; Hong, Fulton, and Sattar 2020). A 
brief description of their main features is provided below. 

Open Litter Map. Open Litter Map (Lynch 2018) is a free, open, and 
crowd-sourced dataset with over 100k images taken by phone cameras. 
All images are provided with information such as type of presented 
litter, coordinates, timestamp, or phone model. The images come from 
all over the world, and were taken by different people. Therefore, they 
differ significantly from one another. 

Waste Pictures. The Waste Pictures dataset (“Waste Pictures” 2019) 
contains almost 24k waste images scraped from Google search, divided 
into 34 classes. The type of images is very diverse, including even x-rays 
and drawings of garbage. The sizes also differ significantly. Most of the 
photos are below the size of 2000x2000px. Due to the origin of images, 
they should be manually reviewed for use in a classification task. 

TrashNet. The TrashNet dataset (Yang and Thung 2016) contains 
over 2100 labeled images. Each image belongs to one of the six classes: 
glass, paper, cardboard, plastic, metal, and trash. The pictures were 
taken by mobile phone camera using sunlight and/or room lighting. The 
photographed objects were placed on a white background or fulfilled the 
whole view (cardboard). All images have the size of 512x384px. 

Extended TACO. Trash Annotations in Context (TACO) (Proença 
and Simões 2020) is a crowd-sourced dataset of waste in the wild with 
high-resolution mobile phone images. The TACO dataset contains 1500 
annotated images with almost 5000 objects. All trash has been assigned 
to one of 60 classes that belong to 28 super (top) categories, including 
Unlabeled litter for hard to recognize or heavily obscured objects. The 
annotations are provided in the well-known COCO format (Lin et al. 
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2014) on the instance segmentation level with an extra background 
description - Trash, Vegetation, Sand, Water, Indoor, Pavement. Addi-
tionally, TACO offers around three thousand unannotated images, which 
of over 3000 were annotated on the detection level2 achieving over 
14 000 instances in total. A great advantage is that TACO is character-
ized by various litter types and high diversity of backgrounds, from 
tropical beaches to London streets. However, due to the crowd-sourcing 
nature of the dataset, labels may contain some user-induced errors and 
bias, i.e., not all objects in TACO can be categorized strictly as litter as 
their category is often based on context. 

Wade-AI. The Wade-AI dataset (Foundation 2016) contains images 
of waste in the wild, provided by Google Street View. It consists of nearly 
1400 images with 2200 manually labeled instance masks annotations in 
COCO format with only one class, called rubbish. The environment and 
size of the images vary due to the source of the images. Most images are 
less than 1000x1000. 

UAVVaste. Another publicly available dataset, which also provides 
instance segmentation masks in COCO format, is the UAVVaste (Kraft 
et al. 2021) dataset. It contains 772 hand-labeled aerial images of waste 
with over 3700 objects of one class - “rubbish”. The data was collected in 
the cities and nature, e.g., streets, parks, and lawns using Unmanned 
Aerial Vehicles (UAV). The annotated litter is usually relatively small 
(the median of object shape is 76x68px, while the median of image 
shape is 3840x2160px). 

Trash-ICRA and TrashCan. Trash-ICRA19 (Fulton et al. 2019) and 
TrashCan 1.0 (Hong, Fulton, and Sattar 2020) are both the datasets 
containing underwater images. They are video frames of trash, undersea 
flora and fauna, from the perspective of remotely operated underwater 
vehicles (ROVs). Both datasets are sourced from the JAMSTEC E-library 
of Deep-sea Images (J-EDI) dataset (J. A. 2012) curated by the Japan 
Agency of Marine-Earth Science and Technology (JAMSTEC). The im-
ages were recorded in real-world environments, providing a variety of 
objects. The clarity of the water and the quality of the light varies 
significantly between images creating a diverse dataset. The image sizes 
in these datasets are 480x270px and 480x360px. The provided anno-
tations are in COCO format. The TrashCan dataset is annotated on the 
instance segmentation level (7212 images and 6214 annotations) with 
16 classes for Material Version or 22 for Instance Version. On the other 
hand, the Trash-ICRA19 dataset is annotated on the detection level 
(7668 images and 6706 annotations). It contains seven categories based 
on the material of the objects. 

Drinking Waste. The Drinking Waste dataset (Serezhkin 2020) 
contains over 4800 images of drinking waste belonging to 4 classes: 
Aluminium Cans, Glass bottles, PET bottles, and HDPE. The provided 
bounding box annotations are in YOLO format. The dataset was created 
with a 12 MP phone camera. The images look similar – there is usually 
one object in the center on the indoor, plain background. Most of the 

images have the size of 512x683px. 
MJU-Waste. The MJU-Waste dataset (Wang et al., 2020a; 2020b) is 

comprised of 2475 indoor trash images manually annotated in the form 
of an instance mask in COCO format. It allows two-class semantic seg-
mentation of waste and background. For each color image, the co- 
registered depth image captured using an RGBD camera is provided. 
The objects are hand-held and situated mostly in the center of the image. 
In most cases, there is only one object per image. The only image size is 
640x480px. 

Places. The Places dataset (Zhou et al. 2018) is a repository of 10 
million scene photographs, labeled with 434 scene semantic categories, 
comprising a large and diverse list of types of locations encountered in 
the world. The images were downloaded by online image search engines 
using Google Images, Bing Images, and Flickr. The minimal size of im-
ages is 200x200px. Although this is not a trash dataset, it can be used to 
identify natural and urbanized places without trash. 

Additionally, the crucial statistics of images, classes and instances for 
each dataset used in the research are presented in Table 1, considering 
its purpose, type of annotations and environment. 

3. Methodology 

This section proposes new waste detection and classification 
benchmarks and presents their statistics. The details behind the pro-
posed two-stage waste detection framework are outlined. Finally, the 
methodology behind the training procedure of the proposed model is 
described. 

3.1. Proposed waste benchmarks 

For the past few years, considerable attempts have been made to-
ward the development of various waste datasets, yet each is presented 
with different annotations and ambiguous waste categories. Moreover, 
most of them usually do not provide a large enough number of annotated 
images, or they represent only a single type of waste (e.g. bottles or 
cigarette butts). Furthermore, there is no unified and commonly- 
followed experimental protocol. This inconsistency in used data and 
metrics hinders fair and valid comparison of methodologies; reported 
research uses different datasets, and incoherent metrics and data splits. 

Thus, there is an urgent need for a complete and comprehensive suite 
of real-world benchmarks that combine diverse datasets of different 
sizes from diverse environments. Evaluation procedure and consistent 
data splits are essential for measuring progress in a reproducible way. 
Last but not least, benchmarks need to provide different types of tasks, 
such as localization, detection, and classification. 

Considering those limitations a new benchmark datasets detect- 
waste for litter detection and classify-waste for litter classification 
were proposed. It addresses the above-mentioned limitations not only by 
simply raising the number of data instances but additionally by evening 
the distribution of waste locations and, most importantly, waste types. 
Proposed combination of different datasets is open and accessible, 

Table 1 
Statistics of selected public waste datasets used for object detection and classification.  

Type Dataset # classes # images # instances Annotation type Environment 

Classification Open Litter Map >100 >100 k >100 k multilabels outdoor 
TrashNet 5 2194 2194 labels indoor 
Waste Pictures 34 23,633 23,633 labels outdoor 
Places 205 2.5 M 2.5 M labels background 

Detection Drinking waste 4 4810 5058 bounding box indoor 
Extended TACO 7 4562 14,286 bounding box outdoor 
MJU-Waste 1 2475 2532 instance masks indoor 
TrashCan 8 7212 6214 instance masks underwater 
Trash-ICRA 7 7668 6706 bounding box underwater 
UAVVaste 1 772 3718 instance masks outdoor 
Wade-AI 1 1396 2247 instance masks outdoor  

2 Only the primary part (about 1.5k images) of the dataset is annotated with 
instance masks, the authors provided bounding box annotation for the rest. 
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clearly addresses the task, names suitable prediction error evaluation 
methods, comes with a baseline and sample solution, and is well 
documented. 

Data preparation. Firstly, all subset data annotations were unified to 
one standard style. Segmentation and instance segmentation masks, 
bounding boxes, were converted to standardized COCO bounding box 
annotations. The annotations have been cleaned and fixed; bounding 
boxes with coordinates outside the scope of the image were normalized. 
Next, the dataset was examined in terms of labeling consistency. It was 
decided that each object should be annotated with a separate bounding 
box, including closely neighboring trash. Hence, inconsistent samples 
were identified and corrected, or removed (e.g., piles of garbage with a 
single bounding box, graffiti annotated as waste). 

Moreover, according to household waste segregation principles in 
Gdansk, the annotation guidelines were prepared, making it an excel-
lent, unambiguous tool to compare new solutions of waste classification 
in real-life applications. All waste labels of all subsets were modified to 
match the categories proposed in the article. Each dataset split was done 
carefully, following the distribution of each subset. Then, resulting 
training, validation and test subsets were concatenated into detect-waste 
and classify-waste datasets. The distribution of classes in the dataset is 
connected to the actual distribution of the waste types produced by 
humans. Although it is imbalanced, there are still many representatives 
of each class. Finally, appropriate metrics were selected and proposed 
making it measurable and allowing valid comparison of methodologies. 
Proposed datasets come with a baseline described in the next section. 

Detect-waste. The proposed detect-waste benchmark is a merged 
collection of Extended TACO (dataset extended by the authors) and 
publicly available datasets with detection annotations: Wade-AI, UAV-
Vaste, TrashCan, Trash-ICRA, Drinking-Waste, and MJU-Waste. It was 
ensured that detect-waste contains over 28 000 images and over 40 000 
objects with a unified bounding box annotation and a single label litter. 
The main advantage of the created detect-waste is its diversity provided 
by a combination of existing datasets. The images come from three main 
environmental categories: indoor, outdoor (urban and natural), and 
underwater. Moreover, the images were taken in various lighting con-
ditions, using different instruments, and with a wide range of object 
sizes lowering the chances of bias in data. The collected data is repre-
sented by various waste types gathered from around the world, which 
ensures that models trained on this dataset will have satisfying gener-
alization ability. For the complete comparison, the authors suggest 
testing models on proposed datasets and every subset separately. The 

detect-waste subsets are presented in Fig. 1 
Classify-waste. The proposed classify-waste benchmark is a merged 

collection of publicly available datasets with eight classification labels. 
The first six are based on the recycling rules in Gdańsk, Poland. The 
categories with corresponding examples are as follows:  

– bio: food waste such as fruit, vegetables, herbs, used paper towels and 
tissues,  

– glass: glass objects such as glass bottles, jars, cosmetics packaging,  
– metals and plastic: scrap metal and non-ferrous metal, beverage cans, 

plastic beverage bottles, plastic shards, plastic food packaging, or 
plastic straws,  

– non-recyclable: residual rubbish such as disposable diapers, pieces of 
string, polystyrene packaging, polystyrene elements, blankets, 
clothing, or used paper cups,  

– other: construction and demolition, large-size waste (e.g. tires), used 
electronics and household appliances, batteries, paint and varnish 
cans, or expired medicines,  

– paper: paper, cardboard packaging, receipts, newspapers, catalogues, 
and books,  

– unknown waste: (highly decomposed and hard-to-recognize litter),  
– and extra class background label without any litter: a sidewalk, a 

forest path, a lawn. 

The proposed annotation type unification is based on household 
waste categories and can be applied in real-life solutions, making it a 
substantial advantage over the existing datasets. Contrary to the existing 
datasets, all waste types are covered in the dataset, with particular 
attention to recyclable waste. They are similar to other proposed 
household waste categories (Slagstad and Brattebø 2013; Sahimaa et al. 
2015, Zorpas et al. 2015). The classify-waste dataset contains over 
21000 waste instances coming from Extended TACO, drinking-waste, 
waste-pictures, Google search, TrashNet, and Places. Most of the trash 
comes from metal and plastic or an unknown category which is closely 
related to the distribution of the waste types produced by humans. 
Nevertheless, it provides a wide range of trash and it will ensure the 
generalization ability of a model trained on this dataset. Some samples 
were rejected manually due to their poor quality. Adding Places dataset 
was considered as a virtue, because it ensures a good distinction be-
tween trash and its surroundings. The details behind the dataset cate-
gories and removed samples are provided in the open-source repository. 
As in the case of detect-waste, it is suggested to test models on proposed 

Fig. 1. Numbers of images in individual datasets included in the detect-waste dataset used for detection tasks.  
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datasets and every subset separately. The dataset is presented in Table 2. 

3.2. Proposed detection framework 

Despite many advantages, object detectors still require huge 
amounts of data with proper annotations. Such data is often hard to 
collect, especially when most available datasets do not meet the re-
quirements of having both bounding box annotations and rich-enough 
classification labels. As presented in the literature review, some data-
sets provide only classification labels without bounding boxes. Hence, a 
decision was made to train localization and classification models sepa-
rately, to fully utilize the available data. 

In this study the problem of incomplete data annotations is addressed 
by dividing the detection process into two separate stages: litter locali-
zation and litter classification. At first, the object detector searches for 
possible regions with litter. Then, the proposed regions are cropped and 
forwarded to the classifier. The classifier is used to determine the 
recyclable litter type. Additionally, except for seven main litter types 
defined in this research, an additional class background is proposed to 
eliminate false positive predictions. Finally, the user is presented with 
the image showing all detected litter and its type. The region classified 
as background is excluded from the visualization. The developed pipeline 
is presented in Fig. 2. 

The training procedure is as follows. In the first stage, the neural 
network is trained to detect regions with litter. Afterward, the trained 
object detector is used to find waste in the images with only classifica-
tion labels. The provided region proposals from the images without 
detection annotations are cropped and saved as the classification data-
set. The instances with already provided bounding boxes are cut out 
using ground-truth annotations to provide more stable training. Next, in 
the second stage, the classification model is trained to assign a proper 
class to the detected litter. 

In contrary to the object detector, the classifier is trained in a semi- 
supervised fashion. Here, advantage is taken of thousands of unanno-
tated data by applying the pseudo-labeling technique (Lee 2013). The 
main concept of pseudo-labeling is to use a model to label data without 
annotations to take advantage of it as a ground truth. Hence, firstly, the 
unlabeled data is pseudo-labeled by the model trained on target data. 
Then, pseudo-labels are merged with target data and used as ground- 
truth in further training. Both steps can be repeated after every batch 
or epoch. This procedure provides a considerably larger, yet pseudo- 
annotated, dataset. Moreover, it exposes the model to more diverse 
data, which could not be used in fully-supervised training. 

Three popular object detection networks have been analyzed: Effi-
cientDet (Wightman 2020), DETR (Carion et al. 2020), and Mask R- 
CNN (Ren et al. 2015). The first two architectures allow for object 
detection, whereas the third one also implements segmentation. All 
models were trained for waste detection. The average precision of litter 
detection obtained using the detect-waste dataset with one class ranged 
from 28.0% for Mask R-CNN with ResNet-50 backbone to 65.5% for 
EfficientDet-D2. Due to a significant gap observed between EfficientDets 
and other tested architectures, the remaining experiments were limited 
to this network family. It is noteworthy that some more complex net-
works from this family (i.e., EfficientDet-D3) which were also tested 

exhibited a similar performance. Since the EfficientDet-D2 network 
reached the best evaluation results, and taking into consideration that 
this network has fewer parameters and requires less computing power, a 
decision was made to proceed with it exclusively. Table comparing re-
sults from previous studies is presented in Supplementary Table 2. 

For classification, EfficientNet-B2 was used as it achieved the best 
results compared to ResNet-50 and EfficientNet-B4. Results from our 
previous studies are presented in an open-source repository (Miko-
łajczyk et al., 2021). 

4. Experiments and results 

This section presents the conducted experiments and shows the re-
sults of the proposed methodology. Various architectures and numerous 
hyperparameters have been compared to ensure the efficiency of the 
solution. 

4.1. Data 

The detect-waste dataset was used as a primary litter detection 
benchmark. Additionally, the object detector was trained and tested on 
all detect-waste subsets: Extended TACO, UAVVaste, TrashCan, Trash- 
ICRA, MJU-Waste, drinking-waste, and wade-ai. 

For the classifier, the classify-waste dataset was used. Moreover, 
around 55k unlabeled images from Open Litter Map (Lynch 2018) were 
used to train the classifier in a semi-supervised fashion. It is worth 
noticing that the data instances were not passed straightforwardly to the 
classifier. Instead, each image was passed through the object detector to 
find regions with litter. Then, the predicted bounding boxes were cut 
from the input image and used to feed the classifier. 

80% of the original images were randomly selected as the training 
set, 10% as validation, and 10% as the test set. To avoid data leakage, 
each subset of detect-waste and classify-waste was split separately, as 
described in the Methodology section. The same split was preserved for 
the common subsets between detect-waste and classify-waste. Addi-
tionally, training and test data distributions were ensured by preserving 
the percentage of samples for each class. 

4.2. Performance metrics 

The Mean Average Precision (mAP) was used for detection evalua-
tion. Mean Average Precision metric shows how well the predicted box 
fits the Ground Truth (localization), and whether the class label is 
correctly predicted (classification). For each bounding box, the inter-
section over union (IoU) between the predicted bounding box and the 
Ground Truth was calculated; if the Area of Overlap to the Area of Union 
was higher than the threshold, the prediction was estimated as correct. 
The mAP score was averaged for all categories. 

The mAP with IoU threshold 0.50 (mAP50) was used as a basic 
evaluation metric in the detection task. Additionally, the mAP with 0.75 
IoU threshold level (mAP75) and the mAP integrated over IoUs were 
also used in the range from 0.5 to 0.95 with step 0.05 (AP). For better 
evaluation of how different-sized objects are detected, AP was used for 
small (APS), medium (APM), and large (APL) objects. 

Table 2 
Number of images per class in classify-waste and its subsets. Only the proposed subsets (Extended TACO, additional images from Google search) contain images from 
more than two waste categories.  

Dataset Background bio glass Metals and plastic Paper Non-recyclable Other Unknown 

Extended TACO – 69 592 6057 601 2802 154 3258 
Drinking waste – – 1162 3604 – – – – 
waste-pictures &         
Google search – 92 49 – 203 – 366 – 
TrashNet – – 501 – 801 – – – 
Places 1017 – – – – – – – 
Classify-waste 1017 161 2304 9661 1605 2802 520 3258  
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For classification, the F1 score was mostly used, as it balances Pre-

cision and Recall metrics 
(

F1 = 2 × Precision×Recall
Precision+Recall

)

. Precision shows how 

accurate predictions are, while Recall shows how many samples from 
this class were correctly predicted. The F1 score is a widely used measure 
for uneven class distribution, which is the case in most waste datasets. 

Fig. 2. The pipeline of two-stage framework to detect and sort litter.  

Table 3 
Results obtained on different datasets using EfficientDet-D2. The achieved results can be compared with those previously reported in literature mAP50 equalled to 
15.9% for TACO with Mask R-CNN (Proença and Simões 2020), or 55.4% for TrashCan with Mask R-CNN (Hong, Fulton, and Sattar 2020).  

Train subset Test subset # mAP mAP50 mAP75 APS APM APL 

Drink waste Drink waste 4  85.6  99.4  98.3  –  79.4  86.3 
Extended TACO Extended TACO 7  11.9  16.2  13.0  6.4  9.4  15.0 
Extended TACO Extended TACO 1  39.7  55.7  42.7  18.9  37.3  50.2 
MJU-Waste MJU-Waste 1  82.2  97.9  95.4  71.3  81.8  87.6 
TrashCan TrashCan 8  66.0  91.3  74.9  52.9  70.6  69.3 
Trash-ICRA Trash-ICRA 7  3.9  7.3  3.9  –  7.4  5.9 
UAVVaste UAVVaste 1  40.5  74.1  38.6  9.2  42.8  74.2 
Wade-AI Wade-AI 1  46.8  71.5  52.9  14.8  41.1  55.9 
detect-waste Drink waste 1  85.2  99.1  98.4  –  78.1  85.8 
detect-waste Extended TACO 1  45.4  62.4  49.9  20.8  41.5  58.1 
detect-waste MJU-Waste 1  78.2  97.3  89.0  61.3  78.3  85.5 
detect-waste TrashCan 1  64.5  94.8  72.2  57.0  66.7  70.5 
detect-waste Trash-ICRA 1  32.3  58.2  31.8  –  37.5  39.8 
detect-waste UAVVaste 1  25.9  56.1  20.6  3.7  26.3  55.9 
detect-waste Wade-AI 1  18.1  35.3  16.2  4.7  11.4  25.7 
detect-waste indoor subset 1  84.6  99.0  97.8  60.0  78.0  85.8 
detect-waste outdoor subset 1  37.5  55.4  39.8  15.6  31.6  52.3 
detect-waste underwater subset 1  42.1  68.0  44.9  5.9  50.9  47.3 
detect-waste detect-waste 1  45.8  65.5  50.2  5.9  49.1  59.7  

S. Majchrowska et al.                                                                                                                                                                                                                          

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Waste Management 138 (2022) 274–284

281

4.3. Waste localization in various environments 

In the first stage, the proposed framework localizes litter in the image 
without recognizing its class. The results of a comprehensive study using 
EfficientDet-D2 and selected datasets altogether and separately are 
summarized in Table 3. 

The table is divided into two distinctive groups depending on the 
applied train and test procedure. In the first group, the model was 
trained and tested on each subset separately, while in the second group, 
the model was trained on the detect-waste dataset and evaluated on 
individual waste subsets. The presented results were obtained on the 
indoor, outdoor, and underwater subsets coming from different 
environments. 

The mAP50 calculated per dataset was the highest for images pre-
senting indoor scenarios, namely the datasets Drink-waste (cans, plastic 
and glass bottles) and MJU-Waste (one hand-held waste object per 
image). Moreover, EfficientDet-D2 also reached a very high score, 
mAP50 above 90%, for TrashCan with selected 8 underwater waste 
categories. The worst result, with mAP50 below 10%, was achieved for 
the blurred underwater images from the Trash-ICRA dataset, which 
could be related to poor quality of the images. That is the reason why 
this dataset was excluded from the classify-waste dataset. On the other 
hand, the detection performance for images taken in natural or urban 
background ranged from 16.2% for Extended TACO (trash in various 
environments) to 74.1% for UAVVaste (small objects constituting over 
80% of the dataset shown from a bird’s eye view), which proved that 
precise detection of garbage in different environments is possible. The 
corresponding sample predictions are shown in Fig. 3. 

The achieved results have confirmed the importance of data quality 
in the learning process of DL-based systems. Apart from different quality 
of images and different environments, the number and kind of waste 
classes varied depending on the analyzed dataset. Moreover, the anno-
tated trash objects differed in shape and size. In the case of images 
presenting waste in an indoor scenario, using the detect-waste dataset 
for training slightly worsened the results. On the contrary, the same 
procedure for a more diverse background improved the detection ac-
curacy by almost 50 pp in the case of Trash-ICRA dataset. High results 
illustrating the average detection precision for three different environ-
ments suggest that one-class detection outperforms multi-class 
detection. 

Similarly, an experiment on seven waste classes was also performed 

to detect trash in natural and urban environments. However, this 
significantly reduced mAP in the analyzed evaluation metrics, reaching 
almost a 4 times smaller value than the result achieved while training on 
the detect-waste dataset. Regarding the size of the detected objects, for 
tiny objects the multi-label detector trained on the Extended TACO 
dataset reached better results (6.4%) than that trained on the detect- 
waste dataset with one class (5.9%). This may be because in Extended 
TACO, approximately 45% of instances are small (area < 322), while for 
detect-waste it is only about 25% of the whole dataset. It is worth 
emphasizing that a single stage, 7-class detector demonstrated a 
significantly lower mAP score than a one-class model. It achieved a 
similar score of AP50 equal to 43.3% only for one category – metals and 
plastic – leaving the rest with scores between 0.1% for bio and 8.9% for 
unknown class. For that reason, it was decided to perform classification 
in a separate stage. 

4.4. Classification results using the CNN 

At the second stage of the proposed approach, semi-supervised, 
multi-class classification for seven waste categories was performed. As 
for the supervised part, the classification networks were trained on the 
classify-waste benchmark. For the unsupervised part (pseudolabeling), 
unlabeled litter from the openlittermap dataset was used. To imitate the 
two-stage system, the trash was cut-out with previously trained waste 
localizer, described in the previous subsection. The boundaries of the 
cropped litter were established using bounding boxes for annotated 
images and objects detected with the trained detection model - Effi-
cientDet-D2 (Tan, Pang, and Le 2020). Combined waste instances were 
applied as input images to solve the classification problem. 

The experiments have shown that updating pseudo-labels every 
batch can slightly increase the accuracy. When analyzing the confusion 
matrices of each training, it was noticed that applying a weighted 
sampler provides more balanced results for each class. As a result, the 
accuracy of 73% has been achieved (and 86.7% on the training set), 
while almost 25% of the used dataset were test images. 

Although the confusion matrix clearly shows that most of the pre-
dictions are accurate (see Fig. 4, and Table 4), it also indicates a sig-
nificant data imbalance. The metals and plastic class was predicted with 
the highest precision of 87%, which is connected to the large repre-
sentatives of this class. Still, it also resulted in a relatively low recall, 
which means that many objects were misclassified as metals and plastic. 

Fig. 3. Example EfficientDet-D2 predictions for diverse waste datasets. The images were taken in different locations such as a beach, pavement, indoor, and un-
derwater. The detected objects vary in size and number – the images show from one to five small, medium, or large objects. 
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There was a noticeable problem with identifying the unknown and non- 
recyclable classes, in which precision was equal to 52%. The other classes 
were recognized with higher precision but still not fully correct due to 
data imbalance. 

The biggest confusion was observed between the categories metals 
and plastic and unknown. Probably this was because of partly degraded or 
destroyed trash. All the classes were rarely mistaken for glass, evidenced 
by the high recall value − 82%. The F1-score metric for this class ach-
ieved the utmost result − 83%, balancing between false positives and 
negatives. It is worth noticing that eliminating the background from the 
rest of the waste was extremely successful - at the level of 97% for 
precision and 97% for recall. Adding a separate class for background 
improved the performance and, as assumed, reduced the number of false 
positives. 

Training details: Both EfficientDet-D2 (Tan, Pang, and Le 2020) and 
EfficientNet-B2 (Tan and Le 2019) were implemented in PyTorch. 
EfficientDet-D2 was trained with Adam optimizer with the decay rate set 
to 0.95. The EfficientDet-D2 training stage started with the learning rate 
of 1e-3 and lambda scheduler, and continued for 20 epochs with a batch 
size of 16. During all experiments with EfficientNet-B2, the learning rate 
was set to 1e-4 and the batch size to 16, and each network was trained 
for 20 epochs. The input images were normalized and resized to 
260x260. Additionally, the data augmentation techniques such as crop, 
flip, rotate, brightness/contrast, and cutout, were randomly applied. 

Inference time: The inference time was studied as the function of 

the localized object count, assuming that all detected objects can be 
classified in a single batch. The experiments were conducted using the 
EfficientNetB2 model with input resolution 260, single precision com-
putations FP32 and FP16 on Nvidia Tesla T4 GPU and batch sizes 
varying from 1 to 120. 100 inference times were averaged to fit the 
linear function 4.429 ms ∙ batch +44.2 ms with MSE = 17.42 (FP16: 
0.071 ms ∙ batch + 260.7 ms with MSE = 2.37). The average time 
needed to classify 120 objects was 576 ms (FP16: 269.2 ms) which made 
it possible to classify up to 208 (FP16: 445) detected objects per second. 
The proposed two-stage method can be used at 30fps with the limit of 7 
(FP16: 15) objects per image. The performance can be further improved 
by using INT8 quantization. 

5. Conclusions and future work 

There is a visibly increasing demand for artificial intelligence in 
numerous human activities. Following that, one of the first benchmarks 
to classify litter into seven household waste categories, observed in the 
wild environment, with accuracy up to 75% are presented. That 
addressed the need for objective comparison between different ap-
proaches, consequently accelerating the optimization cycle of deep 
learning models, increasing the chances of constant improvement and 
knowledge sharing in academics and industry. Also, a DL-based frame-
work that can localize trash in the image and then identify its class using 
two separate neural networks is proposed. Achieved results for trash 
localization on mixed datasets outperform previous studies reported for 
used datasets separately. The two framework’s modules were tested 
individually by conducting exhausting studies on publicly available 
waste data in diverse environments: inside houses, in natural or urban 
environment, and underwater. A wide range of baseline results obtained 
by the authors regarding these environments and various object sizes 
will help other researchers in future experiments in the field. 

The presented framework shows the great potential of the DL-based 
methodology for waste management in households by determining the 
right waste category using a mobile application. In the future, with the 
assistance of DL models, it would be possible to mount robotic arms in 
waste management plants to automatically distinguish between 

Fig. 4. Evaluation of the classification accuracy of a form of confusion matrix for EfficientNet-B2, weighted sampler, and pseudo-labeling per batch.  

Table 4 
Summary of precision, recall, and F1-score per category on classify-waste.  

Class name Precision Recall F1-score  

background  0.97  0.97  0.97 
bio  0.62  0.51  0.56 
glass  0.83  0.82  0.83 
metals and plastic  0.87  0.70  0.78 
non-recyclable  0.52  0.65  0.58 
other  0.71  0.74  0.72 
paper  0.62  0.76  0.68 
unknown litter  0.52  0.65  0.58  
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different classes of objects and sort garbage without human interven-
tion. This could lead to automation of waste recycling in both waste 
sorting plants and households using DL algorithms. However, it is 
important to mention that industrial waste sorting is often more 
complicated than household one (Wilts et al. 2021), therefore regarding 
the application, it is required to define more specific classes like 
different types of plastic (Bobulski and Kubanek 2019), metal alloys 
(Díaz-Romero et al. 2021), batteries (Sterkens et al. 2021) or combus-
tible waste to produce energy from waste (Brunner and Rechberger, 
2015). Proposed work can be a baseline in waste detection and classi-
fication for further research. Additionally, high precision of litter 
localization in a large variety of environments shows the possibility of 
using neural networks for waste monitoring in cities or detecting illegal 
dumps in nature, for example, with drones. This will allow for envi-
ronment monitoring by automated measurement of the environmental 
pollution level, even underwater. Special robots equipped with waste 
detection and classification modules could be sent to the most polluted 
places (also inaccessible for humans) to clean them. All this will lead to 
minimizing the cost of maintaining the cleanliness of our surroundings. 

As Artificial Intelligence is required to be more accurate than a 
human, the main future direction for the proposed system will be to 
improve its performance. Selected detectors work well when localizing 
medium and large objects, but recognition of small litter is still chal-
lenging. For that reason, exploring different state-of-the-art approaches, 
such as Deformable DETR (Zhu et al. 2020), seems to be a good idea. On 
the other hand, a more balanced dataset and the use of the latest Effi-
cientNetv2 (Tan and Le, 2021), could also boost the classification ac-
curacy. Moreover, further reductions in predictive time are worth 
exploring since they continue to be a challenge. 
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defect classification using deep residual neural network. Metals 10 (6), 846. https:// 
doi.org/10.3390/met10060846. 

Kraft, M., Piechocki, M., Ptak, B., Walas, K., 2021. Autonomous, onboard vision-based 
trash and litter detection in low altitude aerial images collected by an unmanned 
aerial vehicle. Remote Sens. 13 (5) https://doi.org/10.3390/rs13050965. 
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