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H I G H L I G H T S

• Implementation of LSTM neural network into the energy management system.
• Robust prediction of PV power generation accuracy and improved monitoring.
• Optimizing energy management, efficiency, and cost by deep learning.
• Simulation results demonstrate improvements in sustainable energy practices.
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A B S T R A C T

Installing photovoltaic (PV) systems in buildings is one of the most effective strategies for achiev-
ing sustainable energy goals and reducing carbon emissions. However, the requirement for effi-
cient energy management, the fluctuating energy demands, and the intermittent nature of solar
power are a few of the obstacles to the seamless integration of PV systems into buildings. These
complexities surpass the capabilities of rule-based systems, necessitating innovative solutions.
The research proposes a deep learning-based optimal energy management system designed
specifically for home micro-grids that incorporate PV systems with battery energy storage, En-
hanced Long Short-Term Memory (LSTM)-Based Optimal Home Micro-Grid Energy Management
(OHM-GEM). Integrating an improved type of LSTM neural network called LSTM into the energy
management system improves the reliability of PV power output predictions. The dependability
of PV power production forecasts is increased by including a refined version of the LSTM neural
network in the energy management system. The efficiency of the OHM-GEM system in maximiz-
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ing PV system integration into buildings is shown by the authors using simulated data. With con-
siderable gains in energy efficiency, cost savings, and decreased reliance on non-renewable en-
ergy sources, the results highlight the possibility of this approach to forward sustainable energy
practices.

Nomenclature and Abbrivation

Notations Description

PV Photovoltaic
OHM-GEM Optimal Home Micro-Grid Energy Management
WTs Wind Turbines
LSTM Long Short-Term Memory
DSM Demand Side Management
SMG Smart Islanded Microgrids
SVM Support Vector Machine
EHOA Elephant Herding Optimization Algorithm
ML Machine Learning
AI Artificial Intelligence
DL Deep Learning
MDP Markov Decision Process
CEBADR Collaborative Execute-Before-After Dependency-Based Requirement
ES Energy Storage
SIES Smart Integrative Energy System
HRES Hybrid Renewable Energy System
IU Individual User
l and nl Linear and Non-Linear Functions
tp Home's Total Power Usage (kWh)
ee Building's Expected Electricity
cc Correlation Coefficient
sc Information Sharing Coefficient
Tq The Total Quantity Of Labels
Lf Loss Function
(vr;θ) Tweak The Network's Parameter Vector
Mx and Mn Maximum and Minimum Value
cl and fr Closest and Farthest Points
LB and UB Lower and Upper Bound Functions,

1. Introduction
Due to the serious environmental pollution and fossil energy depletion, looking for alternative energy and fuels with clean and re-

newable characteristics is becoming an urgent issue for all countries in the world [1,2]. As reported in the literature, some renewable
energy sources are being efficiently exploited such as solar [3], biomass [4], biofuels [5], wind [6], geothermal [7], hydropower [8],
hydrogen [9], ocean energy [10]. Among these, solar energy is becoming increasingly popular as the globe seeks long-term energy so-
lutions [11,12]. However, the sporadic and unpredictable character of these sources, together with the large variation of domestic en-
ergy demands, constitute considerable obstacles [13,14]. The core of the problem is determining how to cleverly and adaptably maxi-
mize the energy flow within these microgrids [15]. Conventional methods sometimes fail to balance energy production and consump-
tion, leading to wasted energy, more expensive goods, and a lower ability to depend only on renewable sources [16–18]. By leverag-
ing deep learning and recurrent neural networks (RNNs), Optimal Home Micro-Grid Energy Management (OHM-GEM) can solve this
issue with its improved (Long Short-Term Memory) LSTM-based solution [19]. Importantly, LSTM networks have been incorporated
in such problems [20], since LSTM networks are effective at modeling sequences and time-series data [21,22]. They are capable of
predicting household energy use allowing quick distribution optimization and route modifications [23]. This enhanced micro-grid
management approach seeks to intelligibly store or sell back any energy surplus during peak production periods [24]. Moreover,
OHM-GEM is a robust and effective approach as it can adjust to changing user behavior, ambient circumstances, and various appli-
ance efficiency [25]. By addressing the difficulty of efficient micro-grid energy management, OHM-GEM considerably helps lower
carbon footprints and promotes energy sustainability in home environments by lowering energy costs [26]. By doing this, we can
open the path for the broad implementation of renewable energy and the construction of technologically sophisticated, ecologically
friendly homes of the future [27]. Fig. 1 shows a flexible microgrid system including photovoltaic (PV) panels, small-scale wind tur-
bines (WTs), and energy storage devices either grid-connected or autonomously.

The microgrid may run either grid-connected or stand-alone. When isolated from the main grid owing to power interruptions or
geographic isolation, the microgrid runs autonomously in standby mode [29]. The microgrid runs under one of many different condi-
tions, hence maintaining power balance [30]. Energy self-sufficiency is promoted in equilibrium mode by the electricity produced by
WTs and PV panels meeting local demand [31]. Second, while operating in surplus mode, the microgrid produces more electricity
than it needs and may either store the surplus for later use or, if authorized, sell it back to the main grid [32]. Finally, energy is re-
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Fig. 1. Utilizing renewable energy sources in a microgrid (adopted and modified from Ref. [28]).

leased from storage or extra power sources in shortfall mode since the microgrid's generating capacity is below demand. However, the
microgrid is fully integrated into the main power system while operating in grid-connected mode [33]. A single location termed a mi-
crogrid control center, manages the microgrid's operations. Real-time monitoring performed by this control center guarantees every
microgrid component's reliability and optimal performance [34]. It allows easy switching between grid-connected and off-grid
modes, improving power efficiency and stability [35]. This microgrid system may operate autonomously or in tandem with the larger
power grid, making it a vital asset in today's energy infrastructure, as recognized by its contribution to increased resilience, sustain-
ability, and agility in changing conditions. To overcome the obstacles to effective energy management in home microgrids, re-
searchers have turned to the field of Enhanced LSTM-Based Optimal Home Micro-Grid Energy Management (OHM-GEM). Control
methods relying on analog signals instead of computers were commonly employed to manage microgrids before developing sophisti-
cated deep-learning algorithms. These systems used Rule-based algorithms and heuristics to regulate power distribution [36]. Al-
though they were straightforward, they frequently had trouble adjusting to the ever-evolving requirements for energy and the unpre-
dictable nature of renewable power.

Early initiatives sought to better anticipate and regulate energy use by using basic machine learning models such as linear regres-
sion and decision trees [37,38]. These models, however, lacked the complexity of temporal correlations and patterns shown in energy
data. An important development in handling the time-series character of energy data was recurrent neural networks, widely popular
LSTM networks. LSTM networks in particular allowed the researchers to enhance prediction and sequence modeling [39]. Still, it has
challenges like controlling long-term dependence and adapting to rapidly changing settings [40]. Notwithstanding this development,
the OHM-GEM and associated techniques still run against various challenges. First of all, collecting high-quality data for effective en-
ergy management is not an easy task. Problems in model performance might arise from faulty data collecting techniques, inadequate
data, or absent background information. In addition, certain deep learning models, notably LSTM models, may drain power and com-
putational resources. This intricacy might make deployment impossible in settings with limited resources. The fast variations in
weather and energy consumption patterns call for microgrid management systems to be able to make decisions in real-time. Maintain-
ing LSTM-based models flexible and responsive is an ongoing challenge. To guarantee it can operate with microgrids as small as one
house or as big as a whole city, OHM-GEM must be scalable. The capacity of OHM-GEM to interact with and be included in already-
existing energy infrastructure and grid systems will determine its success. These challenges must be surmounted if OHM-GEM is to
fulfill its promise of revolutionizing home energy management and supporting sustainable energy habits, thus cutting costs, and so
mitigating environmental effects. Based on the above discussion, the objectives of this research are as follows.
• This research aims to find ways to simplify implementing PV systems in buildings while increasing energy efficiency and

sustainability.
• The research aims to use Long Short-Term Memory (LSTM) neural networks to improve the accuracy of predicting PV power

generation, hence increasing the likelihood that renewable energy sources will be adopted.
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• Importantly for sustainable property microgrids, the study seeks to establish the viability of the OHM-GEM system using
simulations, highlighting its advantages in energy efficiency, cost savings, and less dependency on non-renewable energy.
This paper is organized as follows: Section II provides a literature review on Renewable Energy Sources using Photovoltaics in

Buildings, highlighting the state-of-the-art and research gaps. Section III outlines the proposed enhanced LSTM-based OHM-GEM.
Section IV presents the results and analysis of the experiments, as well as debates and comparisons to earlier approaches. The ultimate
result is presented in Section V.

2. Literature survey
The study investigates many applications, including improving the sustainability and efficiency of energy systems and raising the

accuracy of predictions for renewable energy. Collectively, they highlight the diverse character of present projects aiming at acceler-
ating the dissemination of renewable energy. Abualigahet al. [41] invented computational intelligence methodologies to estimate re-
newable energy sources accurately, such as solar and wind power. The effectiveness of many DL and ML approaches is compared in a
present taxonomy. The results imply that while efficiency, robustness, accuracy, and generalization remain challenges, learning
methods can manage large datasets and parameters. For large datasets, learning techniques surpass conventional computer ap-
proaches. Theoretically, hybrid learning approaches—which include many approaches—which contain various methods—should be
used to tackle energy-generating issues owing to accuracy. The importance of enhancing learning-based renewable energy forecasting
techniques is underlined in the abstract.

To improve the performance of smart islanded microgrids (SMGs), Wang et al. [40] suggested demand-side management (DSM).
While lowering power costs, SMGs including batteries and distributed photovoltaics increase energy efficiency. To generate strong
battery operating choices, their research also used the Elephant Herding Optimization Algorithm (EHOA) and a Support Vector Ma-
chine (SVM). Using the EHOA-SVM approach thereby helped to lower the energy expenses by 11.2 % relative to the conventional ap-
proach. Customers gained from the cost reductions, and most crucially the demand was stabilized. Furthermore, the findings of the re-
search showed that using machine learning and optimization techniques might improve SMG decision-making for better energy man-
agement at less expense.

As stated by Yao et al. [42], the perspective essay emphasizes the importance of using machine learning (ML) techniques in energy
research to hasten the transition from fossil fuels to renewable energy sources. Emphasized for better renewable energy collecting,
storage, conversion, and management are innovative materials, tools, and systems. Indices for evaluating ML-accelerated energy re-
search strategies are presented in this study. These ML applications might considerably improve the efficiency of solar power systems.
The viewpoint emphasizes various energy-related fields of study that can profit from ML applications, therefore illustrating the multi-
disciplinary character of this approach for solving the worldwide challenge of switching to renewable energy. They offered sustain-
able approaches to energy transition, automation, and artificial intelligence (AI) in the energy industry. Presented sustainable ap-
proaches for AI, automation, and energy sector transformation. It exposes the social and financial costs of inadequate incentives and
bad energy industry decision-making policies. Examined are four primary elements of energy policy processes: decision-making dur-
ing policy formation, management of policy implementation, data science and machine learning integration in energy systems, and
sustainability needs. It looks at the difficulties of introducing artificial intelligence into the energy industry. Modern energy policies
aligned with society's goals of achieving net zero and carbon neutrality may be developed and executed using this structure. The
study offers a strategy for using artificial intelligence and automation to increase involvement in sustainable energy transitions with-
out compromising efficiency or social justice, hence accelerating their pace. Bhansali et al. [43] reported the effectiveness of Deep
Learning (DL) and Machine Learning (ML) methods, particularly those based on computational intelligence, which are used to de-
velop precise energy conversion procedures for renewable energy sources. It shows the many criteria of energy-related data sets and
their challenges. The advantages and disadvantages of many approaches to converting renewable energy are assessed in this study.
The research closely investigates many approaches in search of effective renewable energy system solutions. Energy conversion and
sustainability in renewable energy are raised using ML and DL methods. Yin et al. [44] recommended that integrated offshore wind
and PV power generation systems must be optimized in variable meteorological conditions. To maximize electricity output and qual-
ity, they propose a hybrid regulation scheme taking offshore wind farm generator torque and PV array tilt angles into account. Under
a partly observable Markov decision process (MDP), they simultaneously regulate the wind farm and PV array using a twin-delayed
deep deterministic policy gradient (TD3) method for integrated power system management. Tests reveal that the TD3 method re-
moves power fluctuation and increases power output. Through TD3 algorithm optimization, the integrated offshore wind and PV
power systems maximize power production and smooth fluctuations. This study may help to increase the reliability and performance
of renewable energy systems under demanding conditions. Awan et al. [45] provided solutions for the inherent systems connected to
the smart grid in the smart cities and green energy management framework. A novel machine learning method based on particle
swarm optimization, Collaborative Execute Before After Dependency-Based Requirement (CEBADBR), is presented to address the
problems of several intrinsic systems. Two steps comprise the CEBADBR method: first, PSO evaluates a randomly produced load pop-
ulation over 90 days; second, continual load profile tuning over 24 h. Regarding % cost reduction, peak-to-average ratio, and power
variance mean ratio, simulation results suggest that the proposed CEBADBR technique performs better than standard particle swarm
optimization and inclined block rate methods.

Collectively, the research studies herein highlight the revolutionary role that CI, ML, and AI play in fostering the development of
renewable energy technology, optimizing energy systems, and disseminating sustainable energy practices. The present study espe-
cially combines such multidisciplinary methods to hasten the transition towards environmentally friendly energy sources. Achieving
energy efficiency, economic reductions, and less dependence on non-renewable energy sources presents challenges for present solu-
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tions. The OHM-GEM system adds a sophisticated LSTM network to improve energy distribution real-time optimization. Offering a
more flexible and effective solution than conventional energy management techniques, this invention greatly increases forecasting
accuracy for both supply and demand.

3. Model development
Integration of PV systems into buildings has lately attracted great interest as a sustainable approach to meet energy requirements

[46]. A branch of artificial intelligence, deep learning has become a powerful tool for maximizing the efficiency of linked systems.
Deep learning algorithms might be used by PV systems to maximize energy collecting in all types of conditions to predict solar irradia-
tion and generation patterns [47]. Therefore, carefully managing the flow of electricity may reduce waste and dependency on the tra-
ditional power grid at the same time it can maximize storage and use [48]. The interconnected components of a solar PV power plant
are illustrated in Fig. 2.

3.1. Components of home micro-grid energy management system
PV Panels, or Photovoltaic Cells: A solar power plant depends critically on PV panels as they use semiconductor materials such

as silicon to collect sunlight and generate direct current (DC) electricity. Monocrystalline, polycrystalline, and thin-film PV panels
are among its many forms; each has a unique cost and efficiency profile. The needed energy output and available space determine
the panel count and size.

Inverter: Although most appliances and the power system run on alternating current (AC), PV panels provide DC electricity. By
separating DC from the grid during failures (anti-islanding), an inverter improves system safety and transforms DC into AC elec-
tricity. By use of maximum power point tracking (MPPT), it also maximizes power output. String inverters for several panels, mi-
croinverters for single panels, and central inverters for large-scale projects are a few of the many kinds of inverters.

Devices for storing energy: Excess solar-generated power is stored in batteries for use on cloudy days or at night. This storage
lowers grid reliance, raises solar energy self-consumption, and offers backup power during outages. In solar systems, common bat-
tery kinds include lead-acid and lithium-ion.

Voltage Regulator: Overcharging or too strong discharge causes battery damage; charge controls stop this They control the power
flow from PV cells to batteries, therefore guaranteeing effective charging and improving battery lifetime. Other controls include tem-
perature compensation.

Balancing of the System: Proper wiring, cabling, and mounting frameworks are essential for the reliability and efficiency of the so-
lar power plant. Durable and adjustable mounts help maximize solar energy capture."

System for monitoring and controlling: Analysis tools and sensors allow one to monitor system performance in real time. This
guarantees consistent maintenance, improves energy economy, and helps troubleshoot. Disconnect switches and surge protectors,
which guard the system from power surges and lightning strikes, are part of safety equipment. When solar production is inade-
quate, backup generators - usually run on diesel or natural gas - may be included in solar power plants to guarantee ongoing en-
ergy delivery. PV panels for energy collection, inverters to translate DC to AC, energy storage systems, charge controllers for bat-
tery management, and balancing components to guarantee dependability, efficiency, and safety define a solar power system. By
means of solar power management, battery storage, and building energy consumption optimization, the system seeks to lower
dependency on non-renewable energy sources and increase energy efficiency. Solar panels transpose solar energy into electricity.

Fig. 2. Components of solar PV power plant.
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Although energy obtained fluctuates with cloud cover and time of day, rooftop solar panels are a reasonable choice for using re-
newable energy. Fig. 3 shows utilizing deep learning how the “Enhanced LSTM-Based (OHM-GEM)" technology combines solar
PV panels into structures.

3.2. LSTM neural network
To meet the challenges of forecasting solar power generation, this approach uses deep learning using a Long Short-Term Memory

(LSTM) neural network. A kind of Recurrent Neural Network (RNN), LSTM networks are ideal for detecting patterns and temporal
links in data [49–51]. Handy for managing temporal patterns and variations in photovoltaic (PV) power output, this specialized LSTM
model uses past solar power data, the LSTM network forecasts future PV power production, therefore enabling the system to predict
solar energy availability [52]. Effective energy management depends on this aptitude for anticipating. Based on expected PV power
generation and energy consumption, the Optimal Home Micro-Grid Energy Management (OHM-GEM) system combines these projec-
tions to make educated choices about energy storage and utilization, therefore optimizing total energy management.

3.3. Energy Demand Prediction
Energy Demand Prediction: The OHM-GEM system forecasts PV energy production and building energy consumption. This projec-

tion takes the time of day, current building occupancy, and previous energy usage patterns among other factors. Batteries are a
component of an energy storage system designed to solve the output-to-consumption gap in solar power. The system monitors bat-
tery status and decides whether extra solar energy should be kept on hand or released to meet building demands. Maximizing solar
power usage and storing extra energy when the sun isn't out is very crucial. Building load is the whole energy consumption of a con-
struction, including that resulting from heating, cooling, and lighting systems. Maximizing efficiency and lowering dependency on
non-renewable energy sources depend on good load management. Fig. 4 shows the overall suggested system's design LSTM. The
suggested architecture is grounded on a methodical approach to researching information on energy generation.

First, power generation data is gathered from numerous sources. The second step is comprehensive pre-processing, which includes
fixing any data peculiarity and ensuring consistency [53]. The next phase involves extracting critical features from the processed
data, essential for identifying important patterns and dependencies. In the last step, these inputs feed an LSTM network. The LSTM
network produces outputs at this step using these characteristics. The performance of the network in generating correct and consis-
tent solutions for different natural language tasks is improved by its capacity to record contextual information from past and next se-
quences. Especially bidirectional LSTM networks are good at deciphering intricate temporal patterns [54]. This design provides
strong insights and prediction powers in energy production data analysis, therefore supporting more exact decision-making and sys-
tem optimization. Electricity is produced by renewable energy sources (RES) including wind, hydroelectricity, geothermal, solar,
tidal, and biomass. Smart grids and other distributed generating systems provide this energy to companies and residences. With sen-
sors placed in smart grids to track and document power output and consumption, the suggested method analyses wind and solar
power generating data using LSTM networks.

3.4. Deep learning model development through LSTM network
To forecast future power production and consumption, DL models are trained using past data including energy generation and

consumption. Issues like noise and missing numbers during data collection create some unknowns in the data. These deviations are
eliminated by pre-processing techniques. Normalizing data to fit for model training benefits from an average filter. Dealing with miss-
ing data benefits from the replacement technique, in which values from the past replace missing values. Deep learning models allow

Fig. 3. Optimal home micro-grid energy management.
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Fig. 4. Process flow of Long Short Term Memory (LSTM).

one to map desired outputs from input data. Input data comes with many variables in different forms and sizes [45,53]. Representing
a problem with varying magnitude and distribution of the input variables might be challenging. Consequently, DL models learn rather
high values for weights when the values of the input variables are big and vary much.

The model becomes unreliable and produces subpar results because of this. Similarly, a model with high weight values performs
worse across the board and has a larger generalization error. Also, the learning process becomes unstable, and the error gradient be-
comes substantial when the output variable has a wide range of values. Because of this, scaling the data from input to output is crucial
when training DL models. The abovementioned issues can be addressed by normalizing the data in the input and output variables to a
range between 0 and 1. The system performance analysis is expressed in Eq. (1) [55,56]:


Ete+2,

Ete+2,… , Ete+24


= LSTM


Pte−k+1,… ,Pte−1,Pt


(1)

The LSTM network is an enhanced version of the RNN that adds memory cells and many control gates that overcome the restric-
tions. Using memory cells, LSTM networks can take advantage of the persistence of temporal dependencies and guarantee the dissem-
ination of data through successive time steps within the same network architecture using Eq. (1).

The sigmoid activation function generates a number between 0 and 1 for each gate value. The activation function of the hyper-
bolic tangent is used to forecast the cell's output. The forecasting accuracy of various applications is negatively impacted by the fact
that the unidirectional LSTM algorithm analyses the input sequence information at every time point based on the knowledge con-
tained in the past and ignores future input by applying Eq. (2). The efficiency metrics analysis is expressed in Eq. (3) [55,56].

Af = fg.fa−1 +


1 − fg


.tanh


Wti


cste−1


+ te


(2)

Prte = 𝜎 +

(
Wti

[
cste−1

]
+ te

)
+ mi

)
+ tanh

(
Wti

[
cste

]
(3)

This study aims to improve typical LSTM networks by use of a bidirectional learning method. This approach lets the network use
past and future data within the sequence, hence enhancing performance. Demand response modeling seeks to reduce costs while
guaranteeing customer satisfaction by the use of minimums. The advancement of renewable energy systems, energy storage methods,
and energy conservation depends critically on the design of smart, active buildings. Good management and design techniques help
smart buildings to maximize the usage of renewable energy sources (RES) [57]. Furthermore supporting the development and useful-
ness of smart, active buildings are sophisticated building energy analysis and forecasting methods.
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3.5. Building energy model based on environmental conditions
The three main types of building energy simulations are supply-side models, demand-side models, and hybrids of the two. Build-

ing modeling of energy is a multi-criteria problem that requires taking into account both energy use and generation at the same time.
Variables such as consumption patterns, climate (e.g., humidity and cloudiness), atmospheric conditions (e.g., wind and pressure),
and ES capacity are critically important to the modeling process. Buildings have seasonal fluctuations in energy consumption and sup-
ply per hour weekly [58,59]. However, putting environmentally friendly solutions into practice is difficult. For instance, solar radia-
tion and heat levels play a role in the unpredictability of PV outputs [60].

Wind energy is considered a promising clean energy based on its advantages such as no pollution, abundance, and low cost. The is-
sue of capturing wind energy comes from the fact that its speed and direction are always shifting. Hybrid renewable energy systems
(RES) combine two or more RES to produce electricity and have distinct benefits. Combining wind power with solar PV, for example,
can greatly boost the sustainability of the environmentally friendly energy supply system, as wind energy can be found even during
overcast hours and at night [58,61]. The successful incorporation of RES and the reduction of energy conversion losses are two of the
biggest obstacles to creating smart active buildings, even though energy efficiency, energy costs, and environmental concerns are dri-
ving forces. A smart integrative energy system (SIES) that considers energy production and use systems is necessary to face and over-
come these obstacles. Smart integrated energy systems are depicted in Fig. 5.

3.6. Smart hybrid integrative energy system
A Smart Integrative Energy System (SIES) plans to create an optimal energy supply bundle using non-renewable energy sources. A

SIES regularly assesses energy demand and supply levels to reduce the amount of energy supplied by non-renewable resources. High
resolution of consumption of energy and energy generation datasets, such as an hour or half-hourly datasets, must be present to allow
SIES for intelligent, active building energy management. Energy modeling for the smart building that includes RE sources is highly
complex and non-linear. Because of the varying nature of weather data and the unpredictability of daily and seasonal energy produc-
tion patterns inherent to renewable energy [62]. Energy storage, solid biomass-fueled micro-combined Heat and Power (micro-CHP)
systems and solar technologies are all part of a Hybrid Renewable Energy System (HRES) that Fig. 6 demonstrates the compelling
need for hybridizing RES and provides valuable insights into achieving. The search for long-term energy solutions that can satisfy the
wide range of building energy demands without reducing efficiency or dependability motivates this strategy.

Micro-CHP systems powered by solid biomass are central elements of the HRES. These systems are well-suited to satisfying the
varied energy needs of buildings since they provide a sustainable and efficient means of producing electricity and heat. Two forms of
renewable energy are used in this HRES by integrating micro-CHP systems with solar technology. Micro-CHP systems, which enhance
the power and thermal energy supplied by solar PV panels and solar thermal systems, produce electricity and heat from solid biomass
fuels. This mix ensures a consistent energy supply even with low solar output and improves energy generation [63,64].

Dynamic HRES design and operation depend critically on multi-objective optimization methods. These methods strike a mix of
system dependability, environmental impact, and economy. The HRES can adjust to different conditions by using real-time meteoro-
logical data, therefore optimizing energy output and storage to satisfy the energy consumption of the building. This data-driven ap-
proach makes the system more dependable and efficient, therefore rendering it a long-term, sustainable energy source. To satisfy elec-
tricity, space heating, and domestic hot water demand, the study emphasizes the requirement of buildings combining solid biomass-

Fig. 5. Deep learning-based optimal energy management system.

Case Studies in Thermal Engineering 61 (2024) 105115 

8 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


M. Arun et al.

Fig. 6. Thermal storage of renewable energy in buildings.

fueled micro-CHP systems with solar technologies, like photovoltaic-thermal (PVT) systems. When combined with micro-CHP sys-
tems, PVT systems may produce hot water and thermal energy as well as power, therefore offering space heating. This complimentary
strategy guarantees complete energy coverage and increases the general HRES' efficiency. More system-specific measurement data is
thus required if the goal is to maximize HRES' dependability and performance. System modifications and maintenance may be in-
formed by real-time monitoring of elements like energy production, storage levels, and building energy use. Furthermore offered is a
stochastic optimization approach for energy management. This approach incorporates these variances into the optimization process,
therefore allowing for the inherent uncertainties in energy output and consumption. Stochastic optimization helps the HRES to be-
come more robust and adaptable, therefore allowing it to react sensibly to changing operational and environmental situations.

4. Results and discussion
4.1. Performance analysis for OHM-GEM and LSTM

This research compares the OHM-GEM system to a standard LSTM approach in domestic energy management. Fig. 7a and b depict
the building energy system performance analysis in a comparative manner for OHM-GEM and LSTM, respectively. In the case of sus-
tainable and cost-effective home energy management, OHM-GEM offers an effective solution by optimizing solar energy utilization,
management of varying loads, and grid power exchange. OHM-GEM allows informed decision-making for consumption and decision-
making by precisely projecting solar power production using sophisticated deep-learning approaches. The system's capacity to effi-
ciently utilize solar energy is a critical factor in the evaluation. The OHM-GEM system additionally demonstrates its load optimization
abilities. It does this by determining how much energy a home will need and comparing that to the amount of power generated by so-
lar panels and stored in batteries. By doing so, it reduces energy costs by decreasing the consumption of the central grid and other sup-
plied non-renewable energy sources. In addition, this OHM-GEM system is capable of monitoring the dependency on the storage bat-
tery and how well it is working. OHM-GEM effectively regulates the battery's state of charge (SOC), allowing its potential to be consis-
tently realized. This feature likewise improves power dependability and extends the battery's service life [45,65]. The system's relia-
bility stems from its response to shifting conditions and flexibility in accommodating varying load requirements and weather pat-
terns. The simulation results reveal that OHM-GEM and LSTM could work in practice, highlighting potential benefits like increased
energy efficiency, monetary gains, and a minor environmental impact. Comparing the system performance between OHM-GEM and
LSTM yields, OHM-GEM gives a higher value of performance rating of about 96.3 %, whereas LSTM gave about 94.8 % efficiency.
The small deviation in the performance between OHM-GEM and LSTM represents accuracy in the analysis and feasibility for real ap-
plications.

4.2. Power generation analysis for OHM-GEM and LSTM
To guarantee the effective use of renewable energy sources, the system makes accurate predictions of solar energy generation us-

ing cutting-edge deep learning techniques. These exact projections provide homes with a solid basis from which to make wise choices
about distribution, storage, and energy usage. OHM-GEM shines in matching the changing energy use of individual residences with
the power-producing capability. It maximizes real-time energy use to match expected solar output, therefore lowering dependence on
grid power during peak demand. Along with reducing the related environmental effects, this method helps to minimize energy ex-
penses. Effective battery management is fundamental to OHM-GEM's power control. Through rigorous monitoring and regulation of
the state of charge (SOC), the system guarantees the effective use of stored solar energy all day. This lets the system maximize solar
energy retention for use during low or nonexistent sunshine, hence improving the household's energy independence [66].
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Fig. 7. Building Energy System Performance Analysis is compared with (a) OHM-GEM; and (b) LSTM.

In addition, OHM-GEM allows two-way energy flow between the microgrid and the main grid employing flawless grid connectiv-
ity. When generation outpaces demand, homes may sell extra power; when needed, they can buy electricity from the grid. This recip-
rocal communication serves to save expenses and improve the dependability of the power source. The system's versatility in changing
load profiles and response to diverse environmental circumstances helps it to effectively control power generation. As shown in Fig.
8a and b, simulations illustrate how well OHM-GEM and LSTM might be used in the actual world to provide significant gains in envi-
ronmental impact, cost savings, and energy economy. With a 97.3 % accuracy in power-generating forecasts, the system beats a regu-
lar LSTM model with 95.8 % accuracy. Promoting cleaner, more efficient, and reasonably priced energy solutions, OHM-GEM models
sustainable energy management in household microgrids.

4.3. Energy cost analysis
Energy cost analysis within the OHM-GEM system shows a notable movement towards reasonably priced, eco-friendly residential

energy consumption. The sophisticated predictive features of the technology let homeowners maximize the usage of solar energy
sources, therefore lowering their energy costs. Forecasting peak solar output allows OHM-GEM to assist homes plan energy-intensive
chores for maximum solar output or less expensive grid power during off-peak hours. Further cost reductions come from the bidirec-
tional connection connecting OHM-GEM to the grid. Should the production of a house surpass its use, the system may sell the extra
back to the grid. On the other hand, it may purchase energy when prices fall, therefore maximizing cost-effectiveness. OHM-GEM low-
ers home energy expenses by dynamically changing energy use to match real-time price swings.

OHM-GEM and LSTM adjust to changing energy costs and real-time usage patterns by executing power-hungry activities when
electricity is least costly as depicted in Fig. 9a and b, respectively. This method of adaptive cost control aids in reducing household en-
ergy use. OHM-GEM lets homes choose reasonably priced energy by combining grid interaction, battery storage, and renewable en-
ergy sources. This study shows how OHM-GEM may help to provide affordable, environmentally friendly energy sources for domestic
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Fig. 8. (a) - Power Generation Analysis is compared with OHM-GEM; (b) - Power Generation Analysis is compared with LSTM.

uses. Having a 98.9 % efficiency over OHM-GEM and a 95.7 % efficiency above ordinary LSTM models, the Energy Cost Analysis
shows that OHM-GEM maximizes energy expenses. (For clarity, more specifics on these measures should be included).

4.4. Analysis of efficiency
The degree to which microgrid controls and distributes produced energy for domestic use determines its level of efficiency. Em-

ploying accurate solar power projections and optimal demand-response, OHM-GEM increases efficiency, therefore minimizing energy
waste and maximizing the use of produced electricity. By controlling the State of Charge (SOC), its battery management technology
prevents overcharging and too strong discharge, therefore lowering energy losses and increasing battery life. Effective grid interac-
tions are vital as OHM-GEM constantly moves between grid and microgrid power depending on real-time energy needs and market
pricing, therefore lowering the total energy costs. The ability of the system to adjust to load profiles and weather circumstances im-
proves efficiency even further via real-time energy use optimization [67,68]. OHM-GEM regularly changes its energy management
techniques to maximize efficiency and reduce waste both during and off-peak hours. Examining the performance of OHM-GEM as
shown in the Efficiency Metrics reveals its efficiency in residential microgrid energy management optimization. Through optimal uti-
lization of solar power, energy storage management, and grid interface optimization, both OHM-GEM and LSTM help to create a more
cost-effective, ecologically sustainable energy future Fig. 10a and b, respectively. This all-encompassing method for efficiency fits
more general objectives of lowering carbon emissions and advancing more environmentally friendly household energy sources. Com-
paratively to LSTM's accuracy rating of 97.7 %, OHM-GEM shows a dependability rate of 99.4 % in the efficiency metrics study.

4.5. Grid Power Exchange Analysis
The transforming impact of the Grid Power Exchange analysis on family energy supply and consumption is shown in the Optimal

Home Micro-Grid Energy Management (OHM-GEM) system. By effectively managing power exchange between the microgrid and the
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Fig. 9. (a) - Energy cost analysis is compared with OHM-GEM; (b) -Energy cost Analysis is compared with LSTM.

main grid, OHM-GEM offers homes a flexible and reasonably priced energy source. One of OHM-GEM's main characteristics is its ca-
pacity to export extra energy during times of abundant generating. The technology returns the extra solar power produced by the mi-
crogrid back to the main grid when it creates more than the residence needs, therefore enabling homeowners to get credits or pay-
back. This grid interaction improves financial returns as well as environmental ones.

On the other hand, OHM-GEM allows flawless energy import under poor solar output or great demand. When required, the system
automatically moves to grid power to provide a continuous supply of household electricity. Furthermore, OHM-GEM maximizes en-
ergy imports employing real-time energy pricing, therefore reducing household expenditures. It automatically reacts to grid circum-
stances and energy rates, therefore modifying energy consumption patterns to benefit from reduced power costs. This method mini-
mizes energy procurement, therefore lowering power costs. Additionally, by balancing supply and demand, the bidirectional power
flow enabled by OHM-GEM helps to maintain grid stability [41,67]. In addition, OHM-GEM and LSTM enable the microgrid to oper-
ate in islanded mode during grid disruptions or emergencies, as illustrated in Fig. 11a and b, respectively. By utilizing energy storage
and distributed generation, the system maintains power to critical loads, enhancing the resilience and reliability of the household mi-
crogrid.

By skilfully controlling the flow of power between the microgrid and the main grid, OHM-GEM lowers costs and maximizes resi-
dential energy supplies. This interaction improves home energy efficiency and independence. With a grid power exchange efficiency
of 98.4 %, OHM-GEM beats conventional LSTM models with an efficiency of 94.7 %. The sophisticated ability of the system to predict
solar power output and optimize energy use gives homes a lower environmental impact, more energy efficiency, and cost savings. Its
efficiency is improved even further by smart battery management, flawless grid integration, and condition-oriented adaptation
[19,67]. Overall, OHM-GEM is a convincing model for cleaner, more cost-effective home energy management in the future.
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Fig. 10. (a) - Efficiency Metrics Analysis is compared with OHM-GEM; (b) - Efficiency Metrics Analysis is compared with LSTM.

4.6. Mean absolute error, mean square error, and R2 coefficient
With the system obtaining a mean absolute error (MAE) of 0.5 kWh, Fig. 12a depicts the MAE and indicates robust forecast accu-

racy in balancing energy supply and demand. Reflecting a low mean squared error (MSE) of 0.35 kWh2 shows the model's dependabil-
ity in controlling energy flows, as depicted in Fig. 12b. In Fig. 12c the R2 coefficient ratios are depicted for all models. An R2 value of
0.92 indicates that the model is highly predictive, accounting for 92 % of the variability in energy consumption and output. These cal-
culations demonstrate how well the OHM-GEM system promotes sustainability in smart buildings and increases the energy economy.

5. Conclusion
Advancing sustainable energy targets and lowering carbon emissions depend on innovative solar power harvesting techniques be-

ing developed. One practical answer is to install photovoltaic (PV) systems in construction. Still unresolved, though, are issues includ-
ing efficient energy management, different energy needs, and the sporadic character of solar energy. Many times, conventional rule-
based systems fall short in handling these complications; thus, fresh ideas are required. This work presents the Optimal Home Micro-
Grid Energy Management (OHM-GEM) system based on Enhanced Long Short-Term Memory (LSTM). Designed for household micro-
grids featuring PV panels and battery storage, it is Trained with deep learning methods, OHM-GEM takes advantage of an advanced
LSTM neural network. This increases the projections of PV power output accuracy. The LSTM network efficiently manages variations
in PV output and challenging temporal dependencies. The results of simulations show the system's promise. OHM-GEM lowers costs,
improves energy efficiency, and raises dependence on renewable energy sources. This study reveals how deep learning technologies
might help to support sustainable energy targets, promoting a more ecologically friendly and energy-efficient future.
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Fig. 11. (a) - Grid Power Exchange Analysis is compared with OHM-GEM; (b) -Grid Power Exchange Analysis is compared with LSTM.
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Fig. 12. (a) MAE, (b) MSE, and (c) R-square coefficient.
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