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Summary

The rise of deep learning has advanced the field of artificial intelligence with
numerous applications including but not limited to vision, language and game play-
ing. In real-life scenarios, using deep learning to address just one vision task is
inadequate for numerous industries and applications. Multi-task learning is a ma-
chine learning paradigm where a single model is trained to perform multiple related
tasks simultaneously and bears some resemblance to the human brain’s ability to
process and learn various tasks in parallel. Much like how humans can transfer
knowledge and skills learned in one domain to another, multi-task learning allows
a model to leverage information learned from one task to improve performance on
related tasks.

Until now, the scope of multi-task learning has been constrained to very spe-
cific visual tasks. Existing research predominantly centers on visual scene under-
standing tasks, with typically correlated task outputs. Consequently, both datasets
and architectures have primarily revolved around those specific tasks. While numer-
ous datasets have been proposed, they often lack labels for visual scene enhance-
ment tasks. Additionally, previous studies have been primarily focused on static
images, neglecting the valuable video data available in neighboring frames. Fur-
thermore, multi-task architectures tend to rely on manual design choices driven by
practitioner or researcher assumptions. Lastly, training these multi-task networks
typically demands computationally intensive optimization methods, often yielding
marginal benefits.

The goal of this thesis was to develop efficient video multi-task convolutional
architectures for a range of diverse vision tasks, on RGB scenes, leveraging i) task
relationships and ii) motion information to improve multi-task performance. The
approach we take starts from the integration of diverse tasks within video multi-task
learning networks. We present the first two datasets of their kind in the existing
literature, featuring frame-level annotations for both visual scene enhancement and
understanding. This thesis proposes novel architectures, capable of accommodat-
ing multiple tasks across various hierarchy levels. The second contribution of this
thesis extends those findings into the MOST (Multi-Output, -Scale, -Task) model
which exploits the inherent multi-scale nature of convolutional networks in a man-
ner that benefits video multi-tasking. Thereafter, we propose a principled pruning
approach inspired by NAS (Neural Architecture Search), named NSS (Neural Struc-
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ture Search). NSS discovers a more effective MOST network, which boosts per-
formance while simultaneously reducing computational requirements and parameter
count. Lastly, we introduce ATB (Adaptive Task Balancing), an efficient training
method that ensures tasks are trained at consistent rates with almost no additional
computational cost, enabling a more balanced multi-task training process.

The contributions of this thesis are experimentally verified and part of the ex-
perimental results supporting this thesis has been published in several scientific pa-
pers. Practically speaking, the results in this thesis can help practitioners, interested
in efficiently solving multiple tasks, by suggesting topological designs, architectural
components and multi-task training regimes.
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Streszczenie

Rozwój głębokiego uczenia się poszerzył dziedzinę sztucznej inteligencji o
liczne zastosowania, w tym między innymi widzenie i język. W rzeczywistych
scenariuszach wykorzystanie głębokiego uczenia się do rozwiązania tylko jednego
zadania związanego z wizją jest odpowiednie dla wielu branż i zastosowań. Ucze-
nie wielozadaniowe to paradygmat uczenia maszynowego, w którym pojedynczy
model jest szkolony do jednoczesnego wykonywania wielu powiązanych zadań i
jest w pewnym stopniu podobny do ludzkiego mózgu pod względem równoległego
przetwarzania i uczenia się różnych zadań. Podobnie jak ludzie mogą wykorzysty-
wać wiedzę i umiejętności nabyte w jednej dziedzinie do radzenia sobie z innymi
problemami, uczenie wielozadaniowe umożliwia modelowi wykorzystanie informacji
zdobytych podczas wykonywania jednego zadania w celu poprawy skuteczności w
przypadku powiązanych zadań.

Do tej pory zakres uczenia wielozadaniowego ograniczał się do konkretnych
kombinacji zadań. Istniejące badania skupiają się głównie na zadaniach związanych
ze zrozumieniem scen wizualnych, których wyniki są zazwyczaj skorelowane. W
rezultacie zarówno zbiory danych, jak i proponowane architektury sieci neuronowych
skupiały się głównie wokół tych konkretnych zadań. Chociaż zaproponowano wiele
zbiorów danych, często brakuje im etykiet dla zadań poprawy jakości obrazu. Pon-
adto poprzednie badania koncentrowały się głównie na obrazach statycznych, zanied-
bując cenne dane z sąsiednich klatek dostępne w przypadku wideo. Co więcej, ar-
chitektury wielozadaniowe zwykle opierają się na intuicyjnych wyborach opartych na
założeniach inżynierów lub badaczy. Wreszcie, szkolenie sieci wielozadaniowych za-
zwyczaj wymaga metod optymalizacji wymagających intensywnych obliczeń, często
przynoszących niewielkie korzyści.

W tej pracy badamy integrację różnorodnych zadań w ramach wielozadan-
iowych sieci przetwarzających wideo. Przedstawiamy dwa nowatorskie zbiory danych
zawierające adnotacje na poziomie ramki. W naszej pracy wprowadzamy innowa-
cyjne architektury, zdolne do obsługi wielu zadań na różnych poziomach hierar-
chii i rozszerzamy te ustalenia na model MOST (Multi-Output, -Scale, -Task).
Następnie proponujemy metodę redukcji modeli inspirowaną NAS (Neural Archi-
tecture Search), nazwaną NSS (Neural Scale Search). NSS odkrywa bardziej efek-
tywną sieć MOST, która zwiększa wydajność, jednocześnie zmniejszając wyma-
gania obliczeniowe i liczbę parametrów. Na koniec przedstawiamy ATB (Adaptive
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Task Balancing), wydajną metodę trenowania wielozadaniowych sieci neuronowych,
która zapewnia uczenie zadań ze stałą szybkością, niemal bez dodatkowych kosztów
obliczeniowych, umożliwiając bardziej zrównoważony proces treningu.

Wkład tej tezy został zweryfikowany eksperymentalnie, a część wyników ekspery-
mentów potwierdzających tę tezę została opublikowana w kilku artykułach naukowych.
W praktyce wyniki tej pracy mogą pomóc praktykom zainteresowanym skutecznym
rozwiązywaniem wielu zadań, sugerując projekty topologiczne, komponenty architek-
toniczne i procedury uczenia wielozadaniowego.
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List of abbreviations

The following abbreviations has been used throughout this thesis.

ML Machine Learning
DL Deep Learning
STL Single-task Learning
MTL Multi-task Learning
MTO Multi-task Optimization
MO Multi-output
MS Multi-scale
MOST Multi-output, -scale, -task
NAS Neural Architecture Search
NSS Neural Scale Search
ATB Adaptive Task Balancing
LS Linear Scalarization
DWA Dynamic Weight Averaging
RWL Random Weight Loss
Os

i Output at scale s∗ for task i

Ls
i Loss function for scale s∗ for task i

D Dataset
Cc,k×k convolution with c output channels & k × k kernel
CD
c,k×k deformable convolution with c output channels & k × k kernel

RBc residual block with c output channels
RDBc,g residual dense block with c output channels & growth g

RDMc,g residual dense module with c output channels & growth g

RDMMSc,g multiscale residual dense module with c output channels & growth g

E Multi-task encoder
Ds

task Task-specific decoder at scale s

GAP Global Average Pooling
MP Max Pooling
ECAk Efficient Channel Attention with 1× k kernel
MECAk Modulated Efficient Channel Attention with 1× k kernel
Bs

t Input corrupted frame at time step t and scale s∗

Rs
t Restored output at time step t and scale s∗

M s
t Segmentation output at time step t and scale s∗
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Hs
t Homography output at time step t and scale s∗

f s
t MTL features describing a (stack of) frame(s) at time step t and scale

s∗

f s
a,t Aligned MTL features describing a (stack of) frame(s) at time step t

and scale s∗

WH(ft−p)
s Homography-aligned MTL features describing a frame at time step

t− 1 and scale s∗, aligned to frame t

WOF (ft−p)
s Flow-aligned features MTL describing a frame at time step t− 1 and

scale s∗, aligned to frame t

F s
t Attended multi-task features describing a (stack of) frame(s) at time

step t and scale s∗

gst Shared decoder features at time step t and scale s∗

Gs
t Recurrent multi-task features at time step t and scale s∗

∗ Wherever the superscript s is missing throughout this dissertation, the highest scale is implied,
i.e. s = 1, but is ommitted for notational brevity.
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Chapter 1

Introduction

1.1 Foreword and Motivation

Recent years have seen tremendous progress in the application of machine
learning models to the real world. Biologically inspired neural networks, led to sig-
nificant improvements in various applications, including image recognition, natural
language processing, and speech recognition. Deep learning models achieved near
human-level performance in tasks such as image classification [1, 2, 3] and object de-
tection [4, 5] with applications in fields like medical imaging and autonomous driving.
Progress in Natural Language Processing led to the development of pre-trained lan-
guage models like BERT [6], GPT-3 [7], and GPT-4 [8], which showcased remarkable
language understanding and generation capabilities. Reinforcement learning algo-
rithms achieved impressive results in playing complex games like Go [9], chess [10],
and video games [11], outplaying human experts. Generative models [12] made it
possible to produce realistic images, videos, and audio. They have applications in
art, entertainment, and content creation. More recently, researchers tackled the
protein folding problem [13] with unprecedented accuracy, bypassing the efforts of a
whole research community and accelerating research in nearly every field of biology.

The emergence of AlexNet [2] in 2012 significantly accelerated the deep learn-
ing revolution in AI. This pioneering convolutional neural network (CNN) achieved a
groundbreaking leap in image recognition accuracy during the ImageNet Large Scale
Visual Recognition Challenge [14], fundamentally reshaping the landscape of com-
puter vision. While CNNs had already existed for decades [15], their full potential
remained unknown until AlexNet. The authors utilized multiple subsequent lay-
ers of convolutions, non-linear activations, pooling operations and dropouts, trained
with heavy data augmentation to reduce overfitting and enable the optimization of
a non-convex, highly parameterized, and highly non-linear function. What made
it feasible to train such a computationally intensive model, was AlexNet’s utiliza-
tion of GPUs to train the network, setting a milestone in the field. This was then
made possible with the utilization of the Caffe framework [16], setting the stage for
the subsequent rise of TensorFlow [17] and PyTorch [18], which have since become
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synonyms of the latest deep learning advancements.

Convolutional neural networks (CNNs) have achieved remarkable success since
then, in two crucial areas of computer vision, visual scene enhancement and visual
scene understanding, with huge industrial impact. In the domain of scene enhance-
ment, CNNs benefit numerous sectors where image quality and precision are im-
portant. In healthcare, for instance, CNNs assist radiologists by enhancing medical
images or by making diagnoses more accurate. In the satellite imaging industry,
they improve the clarity of remote sensing data, with applications in environmental
monitoring and disaster response. Even the entertainment industry benefits from
scene enhancement, where CNNs are used to upscale low-resolution video content,
providing viewers with a more immersive and enjoyable experience. Similarly, scene
understanding has brought automation and efficiency to numerous industries. In
manufacturing, CNN-based quality control systems can rapidly inspect and identify
defects on production lines, ensuring consistency and reducing errors. The retail
sector uses CNNs for shelf monitoring and inventory management, optimizing stock
levels and improving customer experiences. Furthermore, CNNs are deployed on
unmanned aerial vehicles in different industries, to reach hardly accessible areas
and inspect e.g. wind turbines for damage, or detect fire in forests. In both scene
enhancement and scene understanding, CNNs enhance visual data for human inter-
pretation and automate processes across industries, ultimately driving innovation
and efficiency.

In many fields, visual scene enhancement and understanding are simultane-
ously needed. In medical imaging, assisting doctors for minimally invasive surg-
eries requires the improvement of the image quality and segmenting the regions of
interest in operations such as colonoscopies and intra-oral interventions. Environ-
mental monitoring systems, such as satellite imagery or drone footage, use scene
enhancement to reduce blur or haze incurred by flying instabilities or the atmo-
sphere respectively. Simultaneously, visual scene understanding algorithms can be
applied to detect changes in landscapes, identify forest fires, assess crop health, or
monitor pollution levels. Interestingly, scene enhancement is capable of comple-
menting understanding by critically improving its performance, e.g. in road scenes,
illustrating a use case for autonomous driving. What is more, tasks like pedestrian
detection, lane recognition, and object tracking, which enable self-driving cars to
navigate safely, are easier in enhanced rather than low-light videos.

To address those issues, one could use multiple, individual single-task CNNs
for each specific task, however it would be rather limiting to do so. Unlike the
human brain, which models correlations between different functionalities of the pre-
frontal cortex, single-task approaches overlook the interrelationships between tasks.
This leads to reduced performance and inefficient utilization of model capacity, as
expressed by its parameters. Additionally, the training and deployment of per-task
neural networks is resource intensive. Handling multiple tasks necessitates multiple
forward passes through distinct networks, even when a foundational understanding
of image features is shared among these tasks.
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Another limitation of multi-task state-of-the-art CNNs is that they rely on
static image inputs, even when dealing with video streams. In such cases, individual
frames are often processed independently, which simplifies the analysis but is not
an optimal for the other tasks. Firstly, leveraging spatiotemporal information can
improve performance in both scene enhancement and understanding tasks. Secondly,
acquiring the ability to exploit information from neighboring frames enhances the
model’s adaptability to diverse data sources. Motion allows the networks to learn
how to reason more effectively about the scene spatial layout. Last, the capacity to
track object pixels across frames results in more robust features, leading to improved
image enhancement and recognition accuracy.

1.2 Scope and Contributions

The goal of this thesis is to develop parameter- and runtime-efficient
convolutional neural networks for video multi-task learning that are ca-
pable of exploiting the spatiotemporal domain to learn better frame rep-
resentations, for RGB video scenes, and the multi-task interactions to
effectively accommodate diverse tasks of different hierarchies, encom-
passing both visual scene enhancement and understanding.

Multi-task learning has attracted significant research interest. It effectuates
synergic network topologies to increase performance among tasks and accelerates
inference by alleviating the necessity for multiple forward passes over dedicated
single-taskers. Many works attempted to leverage synergic information across tasks
to improve performance. MTAN [19] learnt a global multi-task feature pool and
employed soft attention mechanisms to query the pool and retrieve the features
mostly relevant to each of the task-specific decoders. PAD-Net [20] yielded a set
of initial multi-task predictions and refined them with an attention-guided message
passing mechanism for distillation. ATRC [21] enabled multi-task cross-talk by
learning different types of attention mechanisms for different tasks. MTI-Net [22]
propagated and distilled features and outputs to the decoders across tasks.

The aforementioned approaches are not suitable for quality enhancement be-
cause they are specifically tailored for scene understanding datasets and tasks like
segmentation, depth estimation, and surface normal estimation (e.g., [23, 24, 25]).
These tasks operate within a similar leve hierarchy, where information exchange-
ability is profound. In Fig. 1.1, we visualize the ground truth maps for semantic
segmentation and depth estimation from the Cityscapes [23] and NUYv2 [25] multi-
task labelled datasets. On Cityscapes, depth maps are associated with segmentations
via the contours. On NUYv2 segmentation maps can assist in estimating the depth
values. In both scenarios, the solutions for each task can straightforwardly comple-
ment and improve the performance of the other. A similar example is illustrated
in Fig. 1.2, where we visualize the results of UberNet [26], this time using the Pas-
calVOC dataset [27]. Another limitation of current multi-task networks is that they
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Cityscapes

Input image

Segmentation map

Depth map

NUYv2

Input image

Segmentation

Depth map

Figure 1.1: Ground truth labels for semantic segmentation and depth estimation on
the Cityscapes (top) and NUYv2 (bottom) datasets. On Cityscapes, depth maps are
associated with segmentations via the contours. On NUYv2 segmentation maps can
assist in estimating the depth values. In both cases, each task solution can facilitate
the other.
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make dense task predictions in static images, failing to exploit the potential bene-
fits of information aggregation across successive video frames within the temporal
domain.

The integration of diverse tasks into practical video applications, such as de-
blurring and denoising or segmentation, particularly, when the degradation artifacts
occur across the the whole image, remains largely unexplored in the existing liter-
ature. Initially, considering that deblurring and denoising are foundational tasks
for visual scene enhancement and occur in many settings together due to known
noise-vs-blur issue [28], we study them together. Notably, this doctoral thesis is
the first to consider deep multi-task learning for those tasks. Their combination is
challenging, since they involve relatively uncorrelated challenges – knowledge of one
task does not significantly assist the other. We propose a multi-task architecture
to efficiently address both these tasks. Subsequently, we extend our investigation
to include one visual scene enhancement task alongside a scene understanding task,
merging video deblurring and object segmentation. These inquiries give rise to our
primary, two-fold hypothesis:

First hypothesis: Visual scene enhancement tasks such video denois-
ing and deblurring can be effectively integrated through a lightweight,
deep multi-task network at improved performance and computation com-
pared to existing single-task approaches. Similarly, we assert that object
segmentation is capable of complementing video deblurring in a syner-
gic architecture. Our hypothesis is limited in the RGB domain, yet this
thesis progresses to explore video footage, instead of images, since both
scene enhancement and understanding tasks share benefits from mod-
elling inter-frame motion.

Motion information is naturally inherent in videos. It enables frame align-
ment, which in turn facilitates the concurrent tasks. In the subsequent hypotheses
explored in this dissertation, we further consider two more diverse tasks into our
task pool, homography estimation and low-light enhancement, as in color mapping.
Homography estimation serves as a proxy of the camera motion, while color mapping
learns brighter, more vivid colors for video scenes. However, the increasing diversity
and number of tasks introduce complexities onto the architectural design. We seek
answers to questions such as how multi-task architectures perform when dealing with
a broader and more varied array of tasks, how to allow for task interactions for bet-
ter multi-task learning, and what constitutes an optimal architectural design for this
purpose, comparing it against state-of-the-art single-task convolutional networks.

Second hypothesis: We posit that a multi-task network topology
exists, capable of exploiting the multi-scale nature of convolutional net-
works to accommodate visual scene both enhancement and understanding
tasks while allowing them to communicate. Such a network would scale
up to a multitude of both low- and higher-level tasks. We further as-
sume that such a deep video multi-task network, should be at minimum,
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Figure 1.2: UberNet [26] outputs on the PascalVOC dataset. Inter-task affinities
are high, and each task solution, again, facilitates the other.
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competitive with state-of-the-art systems of networks, at lower compute.

Throughout this doctoral study, two dental video datasets, with multi-task
labels, are recorded and processed. The first dataset is recorded in lab conditions
and is publicly available [29]. The second dataset consists of real intra-oral surg-
eries, performed by dental experts, and will also be made publicly available with an
upcoming journal publication.

Even with a topologically appropriate architecture, effective allocation of multi-
task resources is not guaranteed. Some tasks might require different parameter ca-
pacity at different parts of the architecture. Prior research [30] has demonstrated
significant performance enhancements in single-output, multi-task architectures. In
a similar line of thought, this thesis argues that not all scales are beneficial for all
tasks. The visual scene enhancement tasks operate better at higher scales while
scene understanding is typically performed at lower scales to benefit from larger
effective receptive fields. Instead of making rigid assumptions on the impact of the
scales at the tasks and their interactions, this thesis casts the architectural scales-
to-tasks structure into an optimization problem. It assumes it can discovered from
the data itself with simple back-propagation, in a NAS inspired approach [31].

Third hypothesis: We hypothesize that the multiple scales of a
multi-task convolutional network can be allocated to tasks, such that the
per-task intricacies and the across-tasks interactions are optimally ac-
commodated. Rather than manually designing such an architecture with
rigid assumptions on the impact of each scale on each task, we posit that
there are benefits to allowing the network to learn these relationships in
an end-to-end manner.

Despite their efficiency and – under conditions – improved performance, train-
ing multi-task networks involves the minimization of objectives exhibiting different
magnitudes (norms) or directions (angles) and training speeds resulting in the dom-
inance of some tasks over some others. Multiple multi-task optimization works
(MTOs) have been proposed to alleviate the issue of differences in the norms or the
angles of the multi-task gradients. Learnable balancing methods [32, 33, 34] involve
learning parameters to balance the gradients or the loss weights while adaptive bal-
ancing methods [19, 35] employ heuristics. Most MTOs, however, require access
to the per-task gradients to synthesize an enhanced weight update, but one major
drawback is that memory and, thus, required time grows linearly with the number of
tasks. This issue is shown in all [33, 36, 37]. Recent research [38, 39, 36] casts doubt
on the effectiveness of MTOs. [38] show that MTO methods fail to outperform tra-
ditional approaches despite the added complexity and computational demands. All
aforementioned methods with the exception of [19], attempt to address the different
magnitudes and/or directions of gradients but neglect the diverse multi-task train-
ing speeds. In contrast, this thesis addresses explicitly the latter, with a a focus on
training efficiency to facilitate its applicability on practical scenarios:

Fourth hypothesis: Tasks may exhibit varying training speeds, im-
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plying that the advancements achieved in task A during training may
significantly differ from those in task B. Efficiently aligning the training
progress of these tasks can yield more stable multi-task learning.

1.3 Thesis outline

The rest of this thesis is structured as follows. Chapter 2 provides essential
background information and explores the relevant prior research. It discusses single-
task learning architectures for a range of diverse, visual scene enhancement and
understanding tasks. Subsequently, it reviews multi-task architectures for different
tasks and discusses their limitations. Last, we discuss briefly multi-task optimization
challenges and the public datasets. The Chapter concludes with some literature gaps
this thesis attempts to answer.

Chapter 3 shows that solving two visual enhancement tasks i.e. denoising and
deblurring, in a unified, cascaded manner is better than solving them separately.
Akin to the physics model behind the degradation factors, a novel multi-task, cas-
caded network is proposed, enriched with components that enhance the feature
representations. We introduce deformable convolutions to align neighboring frames
efficiently, investigating the trade-offs between blur and various levels of noise. We
evaluate our architecture using a publicly available outdoor dataset and demonstrate
its applicability across different scenarios. An ablation study further investigates on
the proposed architecture and showcases that with minor performance drop, it is
even capable of handling both visual enhancement tasks in one go, i.e. without
allocating separate decoders for each task. Chapter 3 essentially confirms the first
part of our first hypothesis.

Moving on to Chapter 4, we merge video deblurring and segmentation. While
the former attempts to enhance the captured scene’s quality, the latter is a scene
understanding task that answers where something is. Each of the tasks bears dis-
tinct challenges, yet information from the one might be complementary to the other.
Moreover, visual cues from previous frames can facilitate their multi-tasking even
further. In this Chapter, we employ a dynamic kernel approach to leverage con-
secutive frame information, showcasing improved deblurring performance compared
to state-of-the-art, while achieving very good segmentation outputs. Given dental
video footage, we show that segmentation of the dental tooltip, in this scenario, as-
sists deblurring by improving its performance. Chapter 4 revolves around the second
part of the first hypothesis of this work.

In Chapter 5, we integrate video deblurring, denoising, color mapping, seg-
mentation, and homography estimation, introducing the first dataset with labels for
all these tasks. Notably, motion estimation through homographies is utilized for
frame alignment. We propose a multi-scale, multi-output, multi-task architecture
that propagates the outputs bottoms-up, from the lower to the higher image scale,
enabling task interaction and output refinement. Moreover, our approach provides
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insights on the impact each scale on each task’s performance. We demonstrate the
synergic capabilities of our general, MOST architecture and showcase that it outper-
forms multiple single-task networks on the newly-proposed dataset. MOST affirms
the second hypothesis of this work.

In Chapter 6, we combine MOST with Neural Architecture Search into a
framework dubbed Neural Scale Search, to learn the optimal resource allocation.
More specifically, we argue that not all scales are beneficial for all tasks. The visual
scene enhancement tasks operate better at higher scales while scene understand-
ing is typically performed at lower scales to benefit from larger effective receptive
fields. NSS discovers a more efficient and high-performing architecture compared
to the general MOST. Additionally, we showcase the effectiveness of Adaptive Task
Balancing over state-of-the-art, relevant optimization methods, achieving superior
performance and quicker convergence with enhanced training stability. The same
Chapter discusses the second dataset related to this dissertation. Consequently, it
validates the two last theses of this work.

Finally, Chapter 7 discusses the contributions reported in this thesis, which
provide discussion and directions for future work.
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Chapter 2

Background and related work

Deep learning has revolutionized the field of artificial intelligence by enabling
the creation of highly sophisticated models capable of learning intricate patterns
and representations directly from data. Within deep learning, several subcategories
exist, each tailored to different learning paradigms. In supervised learning [40],
models are trained on labeled datasets, learning to map input data to corresponding
output labels. Unsupervised learning [41], on the other hand, involves learning pat-
terns and representations from unlabeled data alone, without explicit supervision.
Semi-supervised [42] learning utilizes both labeled and unlabeled data, leveraging
the abundance of unlabeled data often available as regularization. Deep reinforce-
ment learning [43] focuses on training agents to make sequential decisions through
interaction with an environment, maximizing cumulative rewards.

Generally, supervised learning tends to be highly effective when labeled data
is abundant and the task is well-defined, allowing models to learn directly from ex-
amples with clear feedback. Reinforcement learning is powerful for tasks involving
sequential decision-making and dynamic environments, where agents must learn op-
timal strategies through trial and error. Semi- or unsupervised learning are valuable
for tasks where labeled data is scarce or unavailable, enabling models to discover un-
derlying structures and representations only from the data distributions. When the
training data are diverse enough and their labels are not noisy, supervised learn-
ing yields higher performance compared to learning from some lesser supervision
paradigm for single tasks. Following the same narrative, this thesis studies multi-
task learning in a supervised setup, where all labels are provided for all tasks.

In the following sections, we discuss some characteristic and well-studied com-
puter vision tasks, for both visual scene enhancement and understanding. Specif-
ically, in Section 2.1 we review supervised, single-task approaches, for the tasks
addressed in this thesis, i.e. video deblurring, denoising, low-light enhancement or
color mapping, semantic segmentation and homography estimation. Moving on to
Section 2.2, we discuss supervised, multi-task works, relevant to the aforementioned
tasks. In line with the scope of this thesis, we limit the reviewed literature to convo-
lutional architectures and do not consider transformers [44, 45]. As we hypothesize,
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that the nature of tasks typically addressed in multi-task learning is associated with
the availability of data testbeds, Section 2.3 sheds light on the publicly available
datasets. Finally, Section 2.4 lists the primary literature gaps detected, that this
thesis aims to fill in.

2.1 Supervised learning

In this dissertation, we consider diverse tasks categorized into two overarch-
ing domains: visual scene enhancement and visual scene understanding. Visual
scene enhancement tasks aim at improving the quality and appearance of images.
At the low level, basic image processing techniques such as denoising or contrast
enhancement are employed to enhance image clarity and visual appeal. Moving to
mid-level tasks, efforts focus on enhancing specific aspects of scenes, such as edges or
textures for deblurring, to make certain features more aesthetically pleasing. High-
level tasks in visual scene enhancement include more complex operations, such as
super-resolution, to upscale the image resolution and detail, or image inpainting to
fill in missing parts and improve overall appearance. In subsection 2.1.1, we revise
important video deblurring, denoising and color mapping literature.

On the other hand, visual scene understanding tasks revolve around extracting
meaning and context from images. Low-level tasks involve fundamental operations
like optical flow, homography and depth estimation, providing the groundwork for
deeper analysis. Mid-level tasks delve into the scene spatial layouts, aiming to
understand where is what, such as in object detection and image segmentation.
Finally, high-level tasks in visual scene understanding include more sophisticated
operations such as scene classification, and image captioning. In subsection 2.1.2,
we review multiple homography estimation and semantic segmentation works.

2.1.1 Visual Scene Enhancement

Visual scene enhancement, commonly referred to also as restoration, refers to
a range of early vision tasks such as denoising [46, 47], deblurring [48, 49, 50] and
low-light enhancement [51]. In the deep learning literature, those tasks typically
addressed via encoder-decoder architectures. Recently, generic architectures were
proposed [52, 53], capable of successfully addressing multiple restoration tasks with
a single topology, optimized for task at hand. The underlying assumption is that
the challenges are similar, i.e. fusing local i.e. object-based and temporal context,
to learn some complex transformation of the input image. The first common char-
acteristic between architectures in this category, is that they retain a high number
of computations at higher feature resolutions (scales) to avoid the loss of spatial
information that would degrade the output image. When temporal context exists,
i.e. video frames are available, those architectures share a second characteristic;
they attempt to align frames or features to borrow visual cues by learning through
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implicit pixel trajectories. Below, we review various popular methods for the tasks
of deblurring, denoising and low-light enhancement.

Deblurring

Image deblurring aims to remove the blur from an input image, typically
without any knowledge on its type or level. While traditional approaches estimate
a blur kernel, deep learning methods bypass the ill-posedness of estimating the
blur kernel, by relying on the expressiveness of deep convolutional networks. Nah
et al. [54] deblur the input images at multiple scales in a coarse-to-fine manner,
utilizing three convolutional networks, each with several residual blocks [55] at a
fixed scale. Tao et al. [56] deblur the input images at multiple scales via a coarse-
to-fine but recurrent design. Different to [54], each scale utilizes an encoder-decoder
network and propagates both a memory state and the output image to the next one.
Yuan et al. [57] employ deformable convolutions [58] to estimate the blur kernel by
adaptively adjusting the kernel offsets to the input features, further supervised by
optical flow. Suin et al. [59] achieve faster runtimes compared to previous methods
by designing lightweight attention modules combined with adaptive kernels at three
different multi-patch hierarchies. Zamir el al. [60] employ a three-stage network
comprising of two multi-scale and one single-scale sub-networks where they allow for
feature communication between different scales and stages of the proposed solution.

To deal with dynamic scenes and exploit temporal context more effectively,
video deblurring methods further attempt to align the previous frames with the
current one. Su et al. [61] propose an encoder-decoder architecture to align the
input frames via its intrinsic multi-scale property and show that warping the in-
put frames with optical flow introduces negligible performance gains but significant
warping artifacts. In similar research lines, Zhou et al. [50] perform implicit frame
alignment on the feature level by learning alignment kernels to leverage spatiotem-
poral features and overcome inaccurate optical flow estimation. Wang et al. [62]
propose EDVR, a general purpose restoration network for multiple visual scene en-
hancement tasks including deblurring, denoising and super-resolution. The authors
perform feature-level alignment with a multi-scale cascaded module of deformable
convolutions. This work was pioneering since the authors addressed all tasks with
the same network, trained each time for the task at hand. Zhong et al. [48] introduce
a recurrent network that extracts the features frame-wisely and pre-processes them
with spatio-temporal attention module that emphasizes on the important ones to be
passed to the reconstruction decoder that generates the output image. Pan et al [63]
propose again to deblur using optical flow, but this time they estimate it dynami-
cally to reduce the artifacts. While their method comes with high performance, it
is computationally intensive to both train and evaluate.

Denoising

Image denoising aims to reduce noise from a noisy image. Deep learning ap-
proaches bypass the necessity for hand-crafted features and the manual optimization
of the various hyper-parameters with stacked convolutional layers followed by non-
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linear activation functions [64]. Santhanam et al. proposed a Recursively Branched
Deconvolutional Network (RBDN) [65], to learn a multi-context image representa-
tion using an efficient recursive branching scheme. This multi-context representation
is then inputted further to a convolutional neural network comprising of a series of
convolution filters at the same, or higher feature resolutions, to avoid loss of spa-
tial information. Interestingly, convolutional neural networks have shown to be
able to denoise different types and levels of noise with a single model. One of the
early, pioneering works pointed that out [66]. Zhang et al. showcased that con-
volutional networks were able to perform denoising regardless of the level, with a
single network. Their work further investigated on the design of the architectures
and incorporated residual learning and batch normalization into their DnCNN net-
work, to speed up training and increase performance. Following up their work, the
same authors proposed FFDNet [67] to accelerate DnCNN while retaining or even
improving performance.

Video denoising has similarly attracted vast research interest by the deep learn-
ing community. Here, one of the main challenges compared to image denoising, is to
effectively employ information from neighboring frames to restore the current. Prior
works rely on recurrent [68] and kernel-predicting [69] neural networks, however the
results were far from the current state-of-the-art. In terms of convolutional neural
networks, one of the first works was VNLnet [70], a non-local network that leverages
convolutions along with a self similarity search technique. Their network searches
for similar patches and their affinity is utilized to estimate the denoised output.
Tassano et al. proposed DVDNet [71], a method which warps neighboring frames
to the central one, and denoises it with two cascaded denoising stages. Despite
the very good performance, the method relied on optical flow to warp the images
and was impractical for real world application environments. In ViDeNN [72], the
authors again denoised the central frame with a two-stage approach, however, their
method does not compensate the motion, resulting in faster runtimes but lower per-
formance compared to DVDNet. Following a similar narrative, Tassano et al. [46]
kept the two-stage denoising structure, but employed a multi-scale, UNet-based [73]
architecture to compensate the motion implicitly, achieving remarkably high effi-
ciency and runtimes for the first time. In another work discussed earlier [62], Wang
et al. proposed a general purpose restoration network which successfully handles
video denoising, yet the introduced method is computationally intensive. Most of
the aforementioned works are generally expensive to compute and rely on future
frames, thus introducing latency on deployment environments. In a work support-
ing the findings of this doctoral thesis, Ostrowski et al. [47] proposed BP-EVD, a
more performant algorithm that caches the feature computations, achieving a two-
fold increase in FPS enabling real-time deployment for the first time on consumer
grade GPUs.

Low-Light Enhancement

Supervised low-light enhancement methods require paired training data con-
sisting of a low-light image and its corresponding well-lit version, known as the
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ground truth. This allows the network to learn the relationship between the two
and apply the necessary adjustments to enhance new low-light images. One exam-
ple [74] involves a two-branch network that separates the image into illumination and
reflectance maps. These maps are then used to train a separate UNet-based network
to generate the final enhanced image. Another approach [75] focuses on generating
realistic-looking dark images through specific transformations and noise addition.
This data is then used to train a deep learning architecture with multiple subnet-
works. The first subnetwork estimates the illumination, guiding the enhancement
process for underexposed areas. The second subnetwork removes noise, while the
third combines both tasks simultaneously. Finally, a fourth subnetwork refines the
contrast to address limitations caused by the pixel-wise adjustments. Self-supervised
learning methods, on the other hand, don’t require paired training data. They op-
erate under the assumption that low-light conditions can vary significantly across
environments. These methods [76, 77] leverage deep learning architectures to ana-
lyze the low-light image itself and estimate an image-specific curve. This curve acts
as a roadmap for adjusting the dynamic range of each pixel, ultimately enhancing
the image quality without the need for a reference ground truth image. This ap-
proach offers greater versatility as it can be applied to various lighting conditions
without requiring specifically paired data for each scenario. However, for applica-
tions where training data can be effectively synthesized, as with beam splitters, for
instance, supervised learning is preferable.

2.1.2 Visual Scene Understanding

Visual scene understanding tasks, include a wide range such as the low-level
optical flow or homography ones, for motion estimation and mid-level image seg-
mentation or object detection, for understanding of the scene spatial layout. Motion
estimation methods attempt to compute either the camera motion with a homog-
raphy matrix or the pixel-wise motion with dense, optical flow maps. As they are
low-lever tasks, they are crucial to a wide variety of downstream tasks such as
image registration, stitching and video stabilization. Moreover, motion estimation
is widely leveraged visual scene enhancement methods, implicitly or explicitly, as
discussed in the previous subsection. Segmentation or object detection similarly
allows for the identification of regions of interest to provide direct insights of the
visual scene. Notably, both segmentation and motion estimation methods, require
a coarse understanding of the image scene to reason i.e. in terms of salient objects.
In this subsection, we discuss widely known models for homography estimation and
semantic segmentation.

Homography Estimation

Recently, numerous deep homography estimation methods have been proposed
with remarkable success. De Tone et al. [78] proposed a VGG-based [3] network to
estimate the homography between two input images where the scene is assumed to
be static. Furthermore, its authors adopted the Direct Linear Transform to reparam-
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eterize the homography matrix into offsets and alleviate optimization issues related
to different magnitudes of the homography target components. In another work,
Chang et al. [79] employed the inverse compositional Lucas-Kanade [80] iterator
on the convolutional features of two input images. They estimate and compensate
the motion offsets iteratively, in a coarse-to-fine manner. Recently, Le et al. [81]
proposed HMG, which adopted the idea behind PWC-Net [82] for optical flow esti-
mation, to construct a cascade of networks operating at multiple scales, in order to
estimate and refine the motion at each scale, in a residual fashion. Their work ex-
tended homography estimation to dynamic, i.e. scenes with independently moving
objects. In a similar fashion, Cao et al. [83] extended the idea of RAFT [84] from
optical flow to homography estimation. The authors followed RAFT in that they
opted to refine the homography iteratively without performance divergence.

Semantic segmentation

Semantic segmentation has been enjoying immense progress since the rise of
deep learning with numerous applications. Initially designed for medical image seg-
mentation, UNet [73] was a pioneering work. Equipped with a symmetric pixel-
to-pixel architecture, and enhanced with skip connections to circumvent the loss of
spatial information, it was one of the first successful approaches in medical imaging
and followed as the pre-requisite building block in a vast pool of both enhancement
and understanding tasks. Several modifications have been proposed following its
success, augmenting the UNet core idea with nested skip connections [85], dense
connections [86], attention blocks [87] or its 3D counterpart [88]. One of its most
advanced extensions, UNet++ [89] redesigned the skip pathways in the UNet ar-
chitecture to enable better multi-scale information exchange and excelled at seg-
menting objects of different sizes. In 2018, Chen et al. introduced DeepLabV3+
(DLV3+) [90] another state-of-the-art segmentation network, highly performant on
multiple datasets. DLV3+ entailed spatial pyramid pooling modules with dilated
convolutions to encode multi-scale contextual information by probing the incoming
features with filters or pooling operations at multiple rates. Its inherently aug-
mented field-of-view and the fast runtimes renders DLv3+ the go-to architecture for
generic segmentation tasks. Conversely, when smaller objects are to be segmented,
the UNet variants are more effective.

2.2 Supervised multi-task learning

In this section, we review a series of largely influential supervised multi-task
learning works. In visual scene enhancement, multi-task learning is still an emerg-
ing paradigm. Tasks including image super-resolution, denoising, deblurring, dehaz-
ing, and colorization are important in enhancing visual scene quality. Collectively
addressing those tasks improves image clarity, reduces noise, restores details and
enhances overall visual perception. Visual scene enhancement further assists other
downstream vision tasks performed by computers. By improving inputs before feed-
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ing them to computer vision algorithms, performance in detecting and recognizing
objects increases [49] even under challenging conditions, such as low lighting, noisy
or blurry environments [91]. In subsection 2.2.1, we review supervised, multi-task
methods which consider multiple such visual scene enhancement tasks.

In the context of visual scene understanding, multi-task learning has been
heavily studied in tasks such as object detection, semantic or instance segmenta-
tion, depth, saliency and surface normal estimation, and scene classification. These
tasks collectively contribute to a more comprehensive understanding of visual data,
enabling intelligent systems to interpret their environment more effectively. In sub-
section 2.2.2, we discuss supervised, multi-task methods for visual scene enhance-
ment tasks. In subsection 2.2.3, we study a few multi-tasking methods addressing
low image quality and scene understanding of some sort, simultaneously. Subsec-
tion 2.2.4 and 2.2.5 discuss and review the multi-task optimization challenge and
the public datasets, while Subsection 2.2.6 closes with some points which we find
less discussed in related works.

2.2.1 Visual Scene Enhancement

Only a few works attempted multi-task learning in visual scene enhancement.
Cui et al. [92], for instance, addressed low-resolution and motion blur in face images
simultaneously, with a multi-task approach that is based on two separate networks.
The two networks were employed concurrently, to alleviate the accumulation of errors
from one task to another. Furthermore, they were equipped with multi-scale feature
fusion, channel and spatial attention modules to increase performance. However, the
method only shared gradients and no parameters, as in soft-parameter sharing [93],
being thus inefficient. Yu et al. [94] addressed the absence of multi-task learning
methods in visual scene enhancement for medical image analysis and introduced an
approach to simultaneously tackle super-resolution and denoising in medical images.
The authors proposed a multi-task generator and integrated it with a discriminator,
to learn better reconstruction features. This study however considered only MRI
images.

In another line of research, a few works suggested to address multiple enhance-
ment tasks with single-task encoder-decoder architectures. Zhou et. al [91] tackled
the tasks of low-light enhancement and deblurring of real world videos. Despite
addressing two visual scene enhancement tasks, the authors here did not employ a
multi-task architecture but fused instead the two tasks into one dense prediction
output, and relied on the internal, convolutional network filters to learn both at
once. Xu et al. [95] presented a parametric representation called Deep Parametric
3D Filters (DP3DF), which incorporated local spatiotemporal information to enable
simultaneous denoising, illumination enhancement, and super-resolution.
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2.2.2 Visual Scene Understanding

Kokkinos [26] introduced a pioneering convolutional neural network, Uber-
Net, that jointly handles multiple, low- mid- and high-level scene understanding
tasks; boundary detection, surface normal estimation, saliency estimation, seman-
tic segmentation, human part segmentation, semantic boundary detection, region
proposal generation and object detection. The main contribution of this work was
the training of a deep architecture while relying on diverse training sets for each
task or group of tasks, and a limited memory budget. In [19], Liu et al. proposed
the Multi-Task Attention Network (MTAN). This architecture consisted of a shared
network, containing a global feature pool, and task-specific attention mechanisms
at different feature levels. The task-specific attention modules determined which
features are useful for which task by querying the global feature pool. However, the
method is constrained to a few visual scene understanding tasks, namely, semantic
segmentation and depth estimation.

In [96], the authors addressed depth estimation, surface normal prediction
and semantic segmentation jointly. The method is dubbed Pattern-Affinitive Prop-
agation network (PAPNet), where initially a shared feature extractor acted as the
encoder. Three task-specific decoders followed to yield the initial predictions. To
enhance multi-task interactions, the authors proposed to learn an affinity matrix
to represent the pairwise multi-task relationships. A diffusion layer was introduced
to refine the features using the affinity matrix as input. Thereafter, the refined
per-task features were upsampled via three reconstruction networks to produce the
task-specific outputs. Similarly to the previously discuss works, the authors ad-
dressed image segmentation, depth and surface normal estimation. In a similar
approach [22], the authors investigated on semantic and human parts segmentation,
and depth, saliency and surface normal predicton. This work argued that multi-
task relationships are not scale agnostic. They demonstrated that tasks with high
affinity at some scale do not necessarily retain their affinity at some other scale and
vice versa. Using a standard feature extractor [1], the proposed network yielded
the initial predictions at each image scale (resolution). Next, the authors employed
spatial attention to distill knowledge from other tasks and refine the features of the
initial predictions, across scales. Finally, the task-specific distilled features from all
scales are aggregated to yield the final task outputs. Likewise, they addressed issues
such as the limited effective receptive field of convolutional architectures at higher
scales, by propagating information from the lower scales.

Recently, multi-task methods leveraged the potential of Neural Architecture
Search to learn the optimal allocation of resources across tasks. Sun et al. [30]
proposed Adashare, to address multi-task resource allocation by learning a select-
or-skip policy for each task and each residual block of the network architecture.
Following the common NAS paradigm, Adashare assumes independent blocks that
can be skipped by some task should they not substantially contribute to its loss
minimization. However, the method relies on an intensive bi-level optimization
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scheme and a form of curriculum learning to learn the optimal architecture topology
and its weights. The experimental results, again, revolved around similar, scene
understanding tasks, i.e. semantic segmentation, surface normal, depth, keypoint
and edge prediction. For the same tasks, but more recently, Bruggemann et al. [21]
proposed ATRC, a convolutional multi-task architecture that enables cross-talk by
learning different types of attention mechanisms for different tasks. The authors
assumed that different pairs of tasks require different types of attention granularity
i.e. some tasks might require global attention while for others local attention might
be more optimal. In contrast to Adashare [30], ATRC trained with single-level
optimization, i.e. both the architectural topology and model weights are trained
with a single backward pass.

2.2.3 Visual Scene Enhancement and Understanding

Notably, only a very few works consider both enhancement and understanding
tasks in the same architecture. Drawing on the relationship between motion and
blur, Jung [97] introduced a motion-aware feature learning framework for dynamic
scene deblurring using multi-task learning. Their approach simultaneously estimated
a deblurred image and a motion field, leveraging a shared encoder architecture to
effectively distinguish between various types of blur and improve motion estimation.
However, motion estimation acted only as auxiliary task and the experiments were
focused on deblurring. In another approach, Guo et al. [98], proposed a multi-
task convolutional network, dubbed D3-Net, to perform deblurring, dehazing, and
object detection within a single network. D3-Net employed image reconstruction
and detection feature modules, to enhance image quality while detecting obstacles
simultaneously. The authors adopted the visual scene enhancement tasks to improve
the image quality and achieved higher obstacle detection performance. This work
addressed obstacle - such as ships and bridges - detection for intelligent navigation
in water scenes. Very recently, Nazir et al. [99] proposed to learn deblurring and
depth estimation jointly with an adversarial multi-task network but did not consider
video inputs.

2.2.4 Optimization

Despite their efficiency and – under conditions – improved performance, train-
ing multi-task networks involves the minimization of objectives exhibiting different
magnitudes, angles and training speeds resulting in the dominance of some tasks
over some others. A relevant optimization routine is illustrated in Fig. 2.1. How-
ever, when tasks are heterogeneous, with various objective functions, different tasks
usually exhibit different gradient angles and magnitudes, resulting in suboptimal
weight updates and uneven training rates across tasks.

Multiple multi-task optimization works (MTOs) have been proposed to allevi-
ate the issue. Learnable balancing methods [32, 33, 34] involve learning parameters
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Figure 2.1: Linear scalarization, a typical multi-task optimization scheme in most
relevant works, scales each per-task loss component with a weight.

to balance the gradients or the loss weights while adaptive balancing methods [19, 35]
employ heuristics. Most MTOs require access to the per-task gradients to synthesize
an enhanced weight update, but one major drawback is that memory and, thus, re-
quired time grows linearly with the number of tasks. This issue is shown in [33] and
[37]. To further emphasize the MTOs inefficiency, [38] and [36] show that these
methods can train up to 35 times slower than scalarization methods, all while failing
to improve multi-task pareto curve trade-off. Simple baselines [39, 36], claim com-
parable performance without computational overhead. Recent research [38, 39, 36]
casts doubt on the effectiveness of MTOs. [36] defends unitary scalarization with
sufficient regularization. [39] propose random weight sampling to escape bad local
optima, while [38] show that MTOmethods fail to outperform traditional approaches
despite added complexity and computational demands.

2.2.5 Datasets

Several general-purpose datasets have been developed to facilitate research
in various areas, including object detection, classification, and semantic segmenta-
tion. The Common Objects in Context (COCO) dataset [100], for instance, con-
tains a sizable collection of diverse images, with over 300,000 images spanning 80
object categories. This dataset is useful for tasks such as object detection, seman-
tic segmentation, keypoint detection, and image captioning. However, not all im-
ages in COCO are annotated with both segmentation and keypoints, resulting in
an asymmetrically annotated dataset. Another dataset that supports research in
object detection, segmentation, and classification is PASCAL-VOC (Visual Object
Classes) [101]. PASCAL-Context [24], a split of the larger, PASCAL-VOC dataset,
provides a diverse collection of images in different scenes, with a total of over 10000
images labeled for semantic segmentation, human parts segmentation and boundary
detection. Due to the research interest in multi-task learning, the dataset has been
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augmented with saliency maps and surface normal labels [102], which are utilized
in recent multi-task works [21]. NYUv2 [25] is another widely used dataset that
provides labels for semantic segmentation, depth prediction, surface normal estima-
tion, and boundary detection. It consists of over 1400 images of indoor scenes, each
labeled with 13 classes of different objects. The dataset includes RGB images and
corresponding depth maps recorded from the Microsoft Kinect. NYUv2 offers large
variability in object sizes, occlusions, and lighting conditions, making it a valuable
resource for the researche community.

More datasets have been proposed for multi-task learning, originating from
the automotive domain and looking towards autonomous driving. The Cityscapes
dataset [23] is a popular benchmark for depth estimation and semantic understand-
ing of urban street scenes. It includes high-quality pixel-level annotations from
high-resolution street-view images, recorded in 50 cities across different countries.
It contains 5000 images, including people and vehicles, segmented across 30 different
categories. The images are captured from different perspectives, with varying scenes,
background and weather conditions. Later work [103] distilled the dataset with ad-
ditional labels to detect whether objects are static or moving. Simiarly, The KITTI
dataset [104] is a popular dataset used in the field of computer vision and machine
learning, intended for autonomous driving and named after Karlsruhe, Germany,
the city where it was collected. The dataset has contributed significantly to the
advancement of the field since it comes with annotations for several tasks [105, 106]
including but not limited to semantic segmentation, depth estimation, optical flow.
However, these annotations were done separately for each task and the input is not
always common across the tasks. In another such work, the Berkeley DeepDrive
Industry Consortium introduced the BDD100K dataset [107], which represents a
large-scale diverse driving video dataset with rich annotations. It consists of 100000
videos, with diverse weather and time-of-day conditions, and GPS/IMU informa-
tion. This diversity is essential for testing the robustness of perception algorithms
under various real-world scenarios. The dataset includes annotations for image tag-
ging, object bounding boxes, drivable areas, lane markings, and full-frame instance
segmentation. It is suitable for studying various aspects of autonomous driving,
such as object detection, lane detection, and drivable area prediction.

2.2.6 Literature Gaps

While multi-task learning has attracted significant research interest, there ex-
ists a notable bias towards visual scene understanding compared to its enhancement
counterpart. This bias can be attributed to various factors, such as the perceived
financial viability of automating tasks related to scene understanding. Unlike en-
hancement, which is often seen as a facilitator for human decision-making, such
as medical image diagnosis, or as a preliminary step to optimize performance for
subsequent tasks, scene understanding promises direct automation and operational
efficiency gains. However, similarly to the versatility of the human brain in pro-
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cessing various types of visual information, the next generation of large-scale vision
models should be capable of addressing a comprehensive set of vision tasks, including
both understanding and enhancement ones. Such models will be capable of offering
more holistic solutions, and address diverse application scenarios.

Although numerous successful single-task approaches have been developed for
visual scene enhancement tasks such as dynamic video deblurring and denoising,
there remains a notable gap in addressing both tasks concurrently. This thesis at-
tempts to address this gap, by considering the simultaneous mitigation of blurring
and noise in various settings, from lower to heavier levels. To tackle this challenge,
we propose the first multi-task learning framework for video deblurring and denois-
ing, that exploits the information present in video footage to enhance performance.
Thereafter, we merge video deblurring with semantic segmentation to address en-
hancement and understanding tasks jointly. Extending our work further, later in
this thesis, we merge deblurring and denoising with color mapping, homography
estimation and semantic segmentation. Effectively, our work accommodates a mul-
titude of diverse tasks in competitive and runtime-efficient architectures.

Although numerous datasets exist for multi-task learning, they mainly focus
on tasks related to understanding visual scenes, with similar tasks across datasets,
differing only in size and scene content. During this doctoral dissertation, we inves-
tigated existing datasets and label generation processes. As a result, we constructed
two new datasets, one available to the public now and one under review, soon-
to-be released. These datasets are unique since they cover a wide range of vision
tasks, spanning from video denoising, deblurring and color mapping to homography
estimation and semantic segmentation. Situated in the field of medical imaging,
our datasets are accompanied by very competitive and efficient multi-task methods,
rendering them invaluable testbeds for evaluating algorithmic performance of other
works.

While exploiting multi-task interactions proves advantageous for multi-task
learning, extending this approach to the spatiotemporal domain offers even richer
information sharing among tasks. Despite its potential, only a handful of studies
have explored the use of video footage for multi-task learning. In the one of the
few works published while authoring this doctoral thesis, Chennupati et al. [108]
introduced a siamese encoder that aggregates features from various layers and assigns
them to different tasks using separate decoders. However, this method of frame
fusion has limitations. Specifically, it disregards feature alignment and fuses frames
directly, i.e. with simple concatenation of their features. Earlier works, especially
on the visual scene enhancement domain, used optical flow [71, 109, 110]. However,
more recent research [50, 62, 111] has highlighted the drawbacks of optical flow
methods when not jointly trained with restoration tasks. In this thesis, we propose
multi-task learning architectures that employ learnable kernels [112, 50] for feature
alignment, deformable convolutions [58, 113, 62], and homographies [114, 115, 116].
All our methods incorporate feature alignment modules trained end-to-end with
primary tasks. Additionally, within the scope of this thesis, we conducted another
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study focusing solely on video denoising, i.e. in a single-task manner. There, we
utilize multi-scale features to implicitly address motion-related challenges.
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Chapter 3

Video Multi-task Learning of
Low- and Mid-level Tasks for
Visual Scene Enhancement

3.1 Introduction

In this Chapter, we address the first component of our first hypothesis. We
jointly address two visual scene enhancement tasks in RGB video scenery, Videos aim
at faithfully reflecting the motion in dynamic scenes but concurrent motion blur and
noise can severely obscure scene perception. To reduce artifacts, one could calibrate
the camera sensor. Proper calibration requires adjustment of the exposure time.
While a longer time of exposure increases the number of photons and thus allows
the sensor to capture scenes with less noise, it increases the risk of motion blur when
the camera shakes and objects move. However, a small exposure time causes noise.
Therefore, the two degradation factors are interrelated. As follows naturally, this
relationship can be leveraged in concurrent video denoising and deblurring. Despite
the well-studied noise-blur trade-off introduced on the optics level, and the affinities
between the tasks, the two visual scene enhancement tasks have not been addressed
jointly. In this Chapter, we investigate the first component of our first hypothesis,
i.e. the optimal approach to merge two foundational visual enhancement tasks such
as video denoising and deblurring,

The problem at hand raises questions. Should different models be tailored to
individually address denoising and deblurring tasks or is a single, multi-task model
a more efficient approach? How robust are current deep video restoration methods
with increasing noise levels? Is there an architectural topology capable of leveraging
i) motion and ii) the inter-task affinities to efficiently address joint video denoising
and deblurring?

Improving visual outputs finds applications in visualization environments where
the user can assess the scene more accurately and react. Moreover, enhanced video
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processing facilitates downstream computer vision tasks and improves performance
in general video understanding. Although algorithms should address hardware lim-
itations and account for adversarial physical phenomena by enhancing the video
output, satisfying the objectives of a real-world application is a demanding task in
practice. Numerous methods have been proposed to address the deblurring task,
ranging from spatially invariant [117, 118, 119, 120, 121, 122] to spatially variant
blur [123, 54, 110, 50, 124, 48]. Meanwhile, many approaches have been proposed
for denoising with remarkable results [46, 71, 125, 126]. However, deeply learnt, dy-
namic scene video denoising and deblurring have been addressed only as independent
tasks. The problem of spatially variant motion blur in the presence of noise, has not
yet been addressed in the deep learning literature. In this Chapter, we use real-world
blurry dataset of [48] and the realistic Poisson-Gaussian noise model [127, 128]. Our
application focuses on real-world outdoor scenes but further tests our findings on a
novel, dental dataset.

This Chapter discusses the first, deeply-learnt network that leverages the
feature-sharing potential of multi-task learning (MTL) to increase model efficiency
and jointly address dynamic video denoising and deblurring. Intially, we propose
R2-D4, a novel, MTL-inspired, cascaded convolutional architecture utilizing two
decoders to denoise and deblur input frames in stages. R2-D4 uses an alignment
module that leverages deformable convolutions at the feature level. Thereafter, we
introduce multiscale residual dense modules to learn coarse-to-fine, dense represen-
tations, enhanced by MECA, a novel extension of the efficient channel attention
module [129] to further modulate deformable convolutions and increase restoration
performance while retaining the number of FLOPs. We extensively benchmark ex-
isting deblurring approaches under different levels of noise on a real, publicly avail-
able dataset and show that state-of-the-art deblurring networks bear noise-removing
capacity, yet R2-D4 performs consistently better.

3.2 Method

Let us assume a video camera, which streams frames Bt at each time step t.
For each frame Bt, let x correspond to pixel location. Given pixelwise blur kernels
kt of size K, the degraded image is generated as:

Bt = σn(Rt ∗ kt)(x) + ηn (3.1)

Here, ∗ denotes the convolution of Rt with the blur kernel kt at x, ηn represents
additive noise, and σn stands for signal-dependent noise. However, we can view the
convolution of Rt with kt as the inner product of Rt with k̃t translated by x. This
is equivalent to:

Bt = σn⟨Rt, Txk̃t⟩+ ηn, (3.2)
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where k̃t denotes the involution with k̃t = kt(−x) and Tx refers to the aforemen-
tioned translation component. However, the kernel weights of convolutional neural
networks are learnable and thus the cross-correlation is typically utilized for nota-
tional convenience. Then, a simple inner product can be used, without involution:

Bt = σn⟨Rt, Txkt⟩+ ηn (3.3)

If we limit the operations locally, the translation component Tx is ommited.
Now, (Rx,t)

− refers to a window of size K centered around pixel x in the image Rt

and Bx,t is the resultant window on the blurry image. Likewise, the convolution at
each input pixel location is defined as:

Bx,t = σn⟨(Rx,t)
−kx,t⟩+ ηn, (3.4)

In this Chapter, we are interested in obtaining the noise- and blur-free frames,
sequentially. Following the inverse of Equation 3.4, we approach the problem by
removing the noise first to obtain R̂

′
t, and subsequently the blur, to obtain the

predicted clean frame R̂t.

3.2.1 Architecture

Overview

The proposed architecture is illustrated in Figure 3.1. Given N consecutive
corrupted frames B[t−N :t] and N − 1 previously restored frames R̂[t−N :t−1], our
method obtains R̂t via a cascaded, two-stage restoration. The proposed R2-D4
network consists of a shared, dense, deformable (D2) feature alignment module, fol-
lowed by a convolutional feature fusion and two decoders performing denoising and
deblurring sequentially (D2) to restore the frames via a two-stage (R2) cascaded
process, as illustrated in Figure 3.1. The shared D2 module processes the frames at
time steps. For each incoming frame at time step t, to predict R̂t, it takes as inputs
current and past information. From the current timestep it requires the corrupted
frame Bt, whereas for the past N-1 time steps, it accesses, in pairs, both the past
corrupted B[t−N :t−1] and restored frames R̂[t−N :t−1]. At each time step t it extracts
features f[t−N :t]. Subsequently, the asymmetric offsets are estimated to align the
neighboring frame features f[t−N :t−1] with the reference frame features ft. There-
after, two aligned sets of features are fused before the two decoders leverage the
shared features to denoise and deblur the current frame sequentially in a cascaded
manner.

Our D2 alignment module, employs modulated deformable convolutions[113]
for feature-level frame alignment. Notably, it does not estimate optical flow, which
is particularly challenging under strong noise and can introduce computational in-
efficiencies and motion artifacts. Feature alignment is further improved using our
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Figure 3.1: The proposed R2-D4 architecture restores the reference frame (R2) via
cascaded denoising and deblurring (D2) after aligning its features with the neigh-
boring ones via the dense deformable (D2) alignment module.

multiscale residual dense modules (MS-RDMs). These modules leverage dilated
convolutions to capture longer-range context, enhancing feature alignment by ag-
gregating features with larger receptive fields. This helps address the deformable
offset estimation issue[62, 130]. Furthermore, MS-RDMs are enhanced with our
modulated efficient channel attention blocks, as explained in Sec. 3.9.

The R2-D4 restoration process, consisting of denoising and deblurring de-
coders, operates sequentially under an efficient multi-task framework. Accurate fea-
ture alignment benefits both denoising and deblurring tasks. Additionally, channel-
wise expansion of features upon fusion increases the model’s capacity at lower reso-
lutions, effectively accommodating both tasks. This two-stage cascaded restoration
process has shown improved performance across various restoration tasks, leading
to its integration into R2-D4 through the proposed feature-sharing scheme. As
depicted in Figure 3.1, we incorporate additional residual connections from Bt to
the first-stage output R̂t

′ and from the latter to the second-stage R̂t to facilitate
training.

Proposed Block: Modulated Efficient Channel Attention

First, we propose a novel channel attention block to integrate within R2-
D4. Self-supervised channel attention blocks have become ubiquitous since they
highlight informative and suppress non-relevant features. Wang et al. [129] proposed
an efficient 1D convolution (ECA) on globally averaged input channels to determine
the attentive weights, as illustrated in the top half of Figure 3.2. Formally, using
the “composition” ◦ notation, ECA is denoted as follows:

ECAk = σ ◦ Cc,1×k ◦GAP (3.5)
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where σ is the sigmoid function and Cc,1×k is a 1D convolutional operation with c

output channels a kernel of size k, no bias, and padding to retain the dimensionality.
GAP denotes the global average pooling operation. Formally, let us assume some
feature cube f s

t , for some time step t and feature resolution s, the channel-wise
attention weights are derived as follows:

w̃att = ECAk(f
s
t ) (3.6)

Then, w̃att is multiplied by the input features f s
t to obtain the attended F s

t as follows:

F s
t = w̃att × f s

t (3.7)

Figure 3.2: Proposed modulated efficient channel attention.

Despite the success of channel attention modules, they are often difficult to
optimize and converge to uniform distributions of the channel weights. To alleviate
such issues and facilitate the gradient flow during the backward pass, we propose to
complement globally averaged features with max-pooled features as in CBAM [131],
under the efficient 1D convolution configuration of [129]. The modulated efficient
channel attention module, termed MECA, is illustrated in the bottom half of Fig-
ure 3.2. In contrast to ECA, we perform both global average and max pooling (MP)
on the features f s

t channel-wise to obtain w̃att, and we denote the concatenation of
GAP and MP channels as MGAP. By adopting the notation in Equation 3.5, MECA
is defined as:

MECAk = σ ◦ Cc,2×k ◦MGAP (3.8)

The attended weights are derived similarly to Equation 3.6,

w̃att = MECAk(f
s
t ) (3.9)

and multiplied by the input features to obtain the attended features:

F s
t = w̃att × f s

t (3.10)
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Notably, MECA retains the efficiency of 1D convolution in capturing the local cross-
channel interactions but learns an essentially more effective projection, utilizing two
channels of informative cues instead of solely the globally averaged ones. MECA
is an easy-to-plug module that can be integrated into all standard architectures for
any vision task.

Proposed Block: Multiscale Residual Dense Module

Subsequently, we propose multiscale residual dense modules to learn better
feature representations. Residual blocks (RBs) [55] have been a popular choice [50,
126, 132, 133] in image and video restoration. More recently, residual dense blocks
(RDBs) [134] exploited dense connections between layers to extract richer hierarchi-
cal features while instantiating a contiguous memory (CM) mechanism to further
enhance the learned representations.

Figure 3.3: The proposed Multiscale Residual Dense Module learns enhanced hier-
archical representations via its coarse-to-fine design. The MS-RDB (a) block mines
coarser features with increasing dilation rates whereas the second RDB (b) block
learns finer details.

RDBs typically consist of l convolutional kernels and a “growth factor” hy-
perparameter g. As shown in Figure 3.3b, each layer receives the feature maps from
the previous stage, convolves them with a 3×3 kernel that yields g additional chan-
nels and concatenates them with the previous ones before passing them to the next
layer. Each block is then followed by a 1×1 convolution to aggregate the signal and
stabilize the training before the residual summation. Formally, a single RDB with
3 layers can be denoted as follows:

RDBc,g =Cc,1×1 ◦ CAT c+3g ◦ Cg,3×3◦
CAT c+2g ◦ Cg,3×3 ◦ CAT c+g ◦ Cg,3×3 (3.11)

where Cc,k×k and CAT c are the k × k convolution operation and the concatenation
function respectively. The subscript c denotes the number of output channels after
each convolution and concatenation. Stacking b such residual dense blocks gives rise
to RDB cells [48], where the output of each block is sequentially processed by the
next block. For clarity, we term them residual dense modules (RDMs). In RDMs,
all subsequent RDB outputs are concatenated and fed into another 1×1 convolution
before the residual summation at the module level.
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In this Chapter, we propose multiscale residual dense modules (MS-RDMs) to
efficiently increase the effective receptive field by spatially augmenting the hierarchi-
cal features in a coarse-to-fine manner. As illustrated in Figure 3.3, MS-RDMs are
designed via an MS-RDB that captures a hierarchically coarser context via kernel
dilation followed by a simple non-dilated RDB to complement hierarchical features
with fine details. Regarding the MS-RDB, layers are progressively enhanced with
larger dilation rates to hierarchically capture a longer-range context. As depicted in
Figure 3.3a, the MS-RDB block is defined as:

RDBMSc,g =Cc,1×1,0 ◦ CAT c+3g ◦ Cg,3×3,2◦
CAT c+2g ◦ Cg,3×3,1 ◦ CAT c+g ◦ Cg,3×3,0 (3.12)

where Cc,k×k,d denotes, again, the convolution, but dilated with a rate of d. Upon
concatenation of the coarse and fine block features and before the 1 × 1 convolu-
tional aggregation, we perform channel-wise attention via the proposed MECAk.
Similarly, the resultant RDMMS is defined as:

RDMMSc,g =Cc,1×1 ◦MECA7◦
CAT 2c ◦ RDBc,g ◦ RDBMSc,g (3.13)

The proposed MS-RDM reformulation enlarges the effective receptive field, which
in turn renders the CM mechanism spatially more aware. The coarse-to-fine hier-
archical features mine spatially aware representations and serve as a preprocessing
step for deformable offset estimation.

Cascaded Restoration: Dense Deformable Alignment

The proposed architecture is illustrated in Figure 3.1. At each new time
step t, R2-D4 takes as input the current corrupted frame Bt and N − 1 previously
corrupted B[t−N :t−1] and restored frames R̂[t−N :t−1]. Leveraging previously restored
frames encourages temporal coherence by reducing flickering and has been shown
to yield improved performance [50]. At each time step, the respective features are
computed using the following block:

E = RDMMS32,32 ◦ C32,3×3,2 ◦ RDMMS16,16 ◦ C16,3×3,1 (3.14)

where Cc,k,s denotes a k × k convolution with a stride of s, and c output channels
and RDMMSc,g is the multiscale residual dense block with a growth factor g and,
again, c output channels. As illustrated in Figure 3.1, R2-D4 contains two identical
blocks: E for the current Bt and E ′ for each past {Bt−N , R̂t−N}. Likewise,

ft = E(Bt), ft−N = E ′(Bt−N , R̂t−N ) (3.15)
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where N is experimentally set to 2 past frames. Weight sharing for past frame
features increases the training efficiency and accelerates inference by reusing ft−2 at
each time step.

The current and previous frames are then aligned using deformable convolu-
tional layers. A deformable module enables the modeling of geometric transforma-
tions through asymmetric kernels so that output features can capture object-specific
contexts that assist blur kernel estimation. The leveraging of deformable convolu-
tions under the proposed scheme has three advantages. First, it discards the neces-
sity for erroneous and computationally expensive optical flow estimations. Second,
it performs alignment on the deeper feature levels instead of the image level. This
has been shown to improve performance [50, 62] because the layers prior to the
deformable modules encode features that are tailored to the alignment. Third, esti-
mating deformation offsets on the coarse-to-fine features extracted from MS-RDMs
assists in modulated offset estimation and improves performance.

Each modulated deformable layer consists of two convolutions. The first layer
learns the offset displacements and the modulating scalars that determine the am-
plitude of the output features. The second layer employs the modulated offsets and
learns the filter weights, as in ordinary convolution. The deformable convolution is
denoted as

DC = CD
128,3×3,1 ◦ C27,3×3,1 (3.16)

where C3k2,k×k,s is the k × k convolutional kernel with a stride of s, estimating the
2k2 offsets and respective k2 modulation scalars from the concatenated c frame fea-
tures and CD

c,k×k,s denotes the actual deformable convolution with c output channels.
Correspondingly, the aligned features are defined as follows:

fa,t−N = DC(ft, ft−N ) (3.17)

The fusion of the aligned features is then performed via:

Fuse = RDB32 ◦ RDB32 ◦ C128,3×3,2◦
RDB32 ◦ RDB32 ◦ C128,3×3,1 (3.18)

Note that simple RDBs without dilation rates are employed for fusion because a
spatially wider context does not strengthen the feature representations at smaller
scales. Because the number of past frames is N = 2, the output and shared features
are defined as

Fshared = Fuse(fa,t−1, fa,t−2) (3.19)

Cascaded Restoration: Decoders

The decoders share identical architectures. They are optimized to upsample
the shared features and yield denoised and deblurred outputs (D2) sequentially. As
shown in [135], transposed convolutions often generate checkerboard artifacts. To
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overcome these problems during feature upsampling, many studies have resorted to
bilinear upsampling followed by convolution [136, 60]. Although we confirm that
bilinear upsampling eliminates artifacts, it leads to a loss of spatial information.
Therefore, we resort to convolutional channel-wise expansion followed by pixel shuf-
fling [137] to reduce gridding artifacts and preserve spatial details. Denoting the
upsampling layers as PS, each decoder can be expressed as follows:

D = C3,3×3,1 ◦ RDB32,16 ◦ PS32 ◦ C128,3×3,1◦
RDB64,32 ◦ PS64 ◦ C256,3×3,1 (3.20)

Assuming two such instantiations for denoising and deblurring as Dden and
Ddeb, the intermediate denoised and restored output frames are defined as:

R̂
′
t = Dden(Fshared)

R̂t = Ddeb(Fshared) +Dden(Fshared)

(3.21)
(3.22)

We further utilize skip connections from the encoder to the decoders to pre-
serve spatial information and facilitate training, as is common in UNet-based [73]
methods. Instead of concatenating the encoding channels with both decoders, we
restructure the gradient flow by dissecting the former, say F ∈ RH×W×C , in two
groups Fden, Fdeb ∈ RH×W×C/2, each specialized for the decoder’s task, as illustrated
in Figure 3.1. Likewise, Fden and Fdeb receive task-specific gradients in addition to
the shared gradients. As a result, Fden focuses on the global noise distribution,
whereas Fdeb is specialized in recovering the blur-free frame.

3.2.2 Loss Function

The R2-D4 parameters are derived by optimizing the following objective,
where L is a weighted sum of ℓ2 squared norms, i.e.

L = Lblur + λ1Lnoise + λ2Lperceptual, (3.23)

where
Lblur =

1

CHW
||Rt − R̂t||2, (3.24)

Lnoise =
1

CHW
||R′

t − R̂
′
t||2, (3.25)

and
Lperceptual =

1

CϕHϕWϕ
||ϕV GG(Rt)− ϕV GG

ˆ(Rt)||2. (3.26)

R̂
′
t and R̂t are the “only denoised” and “fully restored” cascaded model outputs,

while R′
t and Rt are the respected ground truth labels. The definition of Lperceptual is

adopted from [138], where ϕV GG denotes the VGG-19 features [3] extracted from the
3th layer and Cϕ,Hϕ,Wϕ denote the corresponding feature dimensions. The scalar
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values C, H, and W refer to the image channel, height, and width, respectively, and
the weights are experimentally set to λ1 = 0.6 and λ2 = 0.01.

3.3 Experiments

3.3.1 Dataset

All experiments use the “3ms24ms” version of BSD that has the strongest level
of blur. The evaluation protocol contains 60 training (30K pairs), 20 validation (10K
pairs) and 20 test (15K pairs) sequences with a resolution of 640 × 480. The BSD
dataset therefore already contains the pairs of blurry and clean frames (R′

t, Rt). We
need to further generate noise on top of R′

t and obtain the both noisy and blurry
frames Bt. Following Equation 3.1, we generate Poisson-Gaussian noise directly on
the blurry frames of the BSD dataset. Specifically, for each input blurry pixel z, we
generate noise as x = az(y/a) +w where x denotes the both blurry and noisy pixel.
Here, a is a scaling parameter which controls the Poisson noise while w ∼ N(0, σ2)

dictates the strength of Gaussian noise. The aforementioned, pixel-wise operation
is applied on whole frames to generate the corrupted frames Bt. Consequently,
we obtain the triplets (Bt, R

′
t, Rt) required to train the cascaded deep network for

sequential restoration.

To simulate different noise levels we generate noise under three different sets
of parameters {α, σ} equal to {0.5, 0.9}, {1.9, 1.7} and {7.1, 3.3} for low, moderate,
and severe noise, respectively. The generated shot noise distribution is typical for
bright, dark, and low-light images for α equal to 0.5, 1.9, and 7.1, respectively.

Last, we further assess the transferability of our model and showcase qualita-
tive results of the proposed model on an in-house dataset of natural teeth.

3.3.2 Setup

In this section, we outline the experiments designed to achieve the following
objectives: (i) demonstrate the effectiveness of a deep learning model cascade, (ii)
compare the performance of R2-D4 with state-of-the-art video deblurring methods
across various noise levels, (iii) evaluate the impact of the proposed architectural
enhancements in R2-D4, (iv) assess the influence of the multi-task learning config-
uration, and (v) analyze the effects of model pruning on performance. To address
these goals, we conducted the following experiments:

• Sequential Methods Comparison: Initially, we evaluated the performance of a
basic system in which two methods operated sequentially. We trained FastD-
VDNet [46] for denoising, followed by STFAN [50] for deblurring.

• Comparison with State-of-the-Art Models: We compared R2-D4 against state-
of-the-art models, including STFAN [50], ESTRNN [48] with 15 blocks using
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only past frames, and CDVD-TSP [63].

• MTL Ablation Study: To assess the effectiveness of our multi-task learning
setup, we compared it with R2-D3, which uses a single decoder.

• Impact of Proposed Blocks: We examined the influence of the proposed blocks
on our feature alignment module by considering R2-D4−, which involves: (i)
replacing MECA with ECA, and (ii) substituting MS-RDB modules with sim-
ple RDB modules while retaining GFLOPs.

• Model Pruning: We explored reduced variants of R2-D4 by reducing the num-
ber of channels in the decoders and the fusion module, resulting in ”small”
and ”medium” R2-D4 variants that are more computationally efficient.

Our experiments were conducted using PyTorch on an Nvidia Tesla V100
GPU, spanning 250 epochs. The weights were set to λ1 = 0.6 and λ2 = 0.01. The
Adam optimizer [139] was employed, with a learning rate initialized at 1.5 × 10−4

and decayed to 10−6 using the cosine annealing strategy [140]. The networks were
trained on sequences of 30 frames with a batch size of 1. For consistency, experi-
ments involving state-of-the-art methods adhered to their official publicly available
implementations, and followed the same data augmentation strategies [50] within a
unified codebase. We evaluate performance with PSNR and SSIM [141], as the most
widely adopted metrics for visual scene enhancement.

3.3.3 Results

The naive approach is not trained end-to-end and thus oversmooths the input
frames achieving a PSNR of 28.40 and an SSIM of 0.850 for the severe noise set-
ting. The results of the end-to-end methods are listed in Table 3.1. Interestingly,
our experiments show that deblurring methods bear some noise-removal capacity,
although R2-D4 performs better than STFAN and ESTRNN in both PSNR and
SSIM. Moreover, it performs higher in PSNR and on par in SSIM with the compu-
tationally expensive, cascaded version of CDVD-TSP (2), which performs two passes
over the corrupted frames and uses five input frames. As shown in Table 3.1, the
performance increased over the compared methods across all levels of noise. The
second decoder and the proposed blocks clearly contribute to performance gains,
increasing mean PSNR by 0.19 dB and 0.15 dB compared to R2-D3 and R2-D4−,
respectively. Last, Figure 3.5 shows that while the small R2-D4 variant has 30%
fewer GFLOPs in comparison to ESTRNN, it performs better than both STFAN
and ESTRNN.

R2-D4 benefits from accurate feature alignment under strong noise and re-
covers fine-grained frame details (see Figure 3.6). One can observe that STFAN
often fails to align features producing hallucinations, as seen in the gas tube (top
row) and in the fence (middle row). For the same examples, the ESTRNN tends to
oversmooth the output. CDVD-TSP performs better but tends to yield piecewise
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Architecture N # P(M) ↓ GFLOPs ↓ Low ↑ Moderate ↑ Severe ↑
STFAN 2 5.4 188.9* 29.23 29.06 28.57

0.875 0.868 0.858
ESTRNN 3 2.3 142.9 30.52 29.90 29.07

0.905 0.892 0.872
CDVD (1) 5 16.2 - 30.40 29.92 29.06

0.906 0.894 0.875
CDVD (2) 5 16.2 - 30.53 30.12 29.17

0.911 0.900 0.880
R2-D3 3 4.4 216.9 30.82 30.19 29.17

0.905 0.886 0.870
R2-D4− 3 5.1 270.7 30.93 30.22 29.18

0.907 0.890 0.870
R2-D4 3 5.1 270.7 31.10 30.32 29.33

0.910 0.894 / 0.876

Table 3.1: Results of the proposed methods compared to state-of-the-art single-task
solutions on the test. PSNR (top) and SSIM (bottom) results at three noise levels
are illustrated. GFLOPs* for STFAN did not include their FAC layers. The bold
and underlined results indicate the first and second rank, respectively.

(a) Input Bt−2 (b) Input Bt (c) Output R̂t (d) Offsets t− 2 (e) Offsets t

Figure 3.4: Visualization of deformable offsets. R2-D4 adapts the offsets for inde-
pendently moving or uniform motion scenarios.
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Figure 3.5: Mean PSNR versus GFLOPs for three R2-D4 variants compared to
ESTRNN and STFAN.

constant artifacts despite its larger complexity, which is visible in the fence exam-
ple. R2-D4 performs implicit feature alignment and dynamically adapts offsets over
time, as illustrated in Figure 3.4. The top row illustrates the scenario of indepen-
dently moving objects, whereas the bottom row depicts the uniform motion caused
by camera movement. The offset variance is higher for the former; R2-D4 mines the
spatio-temporal boundaries and aggregates the object-specific context. The spatial
responses for the second case show a smaller variance as the learned offsets exhibit
similar directions. R2-D4 dynamically adapts offsets in the case at hand.

Moreover, we employ a in-house dataset with paired, noisy and blurry video
sequences, and showcase how our R2D4 model not only denoises and deblurs but
also transforms the image colors so that they are vivid and visually more pleasant.
As shown in Figure 3.7, our model is able to effectively not only remove the noise
and change the color, but also significantly reduce the amount of blur present in the
input frames.

3.4 Discussion and Conclusion

In this Chapter, we studied two visual enhancement tasks, dynamic scene video
deblurring and denoising under strong noise. Although such acquisition settings
arise frequently in practice, the problem is challenging and new in the deep learning
literature. The main challenges lies in the fact that their outputs are less correlated.
While the noise map is omnipresent on the whole image, deblurring in dynamic
scenes with diverse depths is heavily space-variant. We demonstrated that state-
of-the-art deblurring methods have some denoising capacity. Yet, the proposed
R2-D4 method outperformed them owing to a multi-task, cascaded yet efficient
architecture, enhanced with multiscale residual dense modules. We showed that we
can achieve state-of-the-art performance on this challenging combination of visual
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(a) Input (b) Patch (c) STFAN (d) EST (e) CDVD (f) R2D4 (g) GT

Figure 3.6: Qualitative Results of R2D4 against compared methods. In zoomed
areas, red and green rectangles highlight artifacts and more accurate reconstructions,
respectively. The first, second, third and fourth rows were generated with severe,
severe, moderate and low noise.
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Figure 3.7: Qualitative results on an in-house dental dataset. Clearly, R2D4 gen-
eralizes across scenes and is able to restore video frames in multiple application
environments.

scene enhancement tasks, even with very high levels of noise.

The performance improvement over compared methods originated from the
architectural design as we show that even with lesser number of parameters and
floating point operations, R2-D4 still performed better than end-to-end, single task
networks. To a large extend, we posit the success of this architecture to the de-
formable offsets which function as accurate and robust motion predictors. The
strong supervision from the multi-task signal was in itself enough to learn pixel dis-
placements, align frames and effectively borrow context from neighbouring ones to
restore even heavily degraded frame regions. This Chapter answers the first com-
ponent of our first hypothesis; the proposed architecture can tackle both tasks with
higher performance and reduced compute compared to single-task networks. Last,
we verified that our proposed model is robust to various channel pruning config-
urations and capable of generalizing across different video scenes. This Chapter
includes in part work published in [142]
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Chapter 4

Video Multi-task Learning of
Mid-level Tasks for Dental
Scene Enhancement and
Understanding

4.1 Introduction

In this Chapter, we investigate the second component of our first hypothesis
and study two diverse tasks, i.e. video motion deblurring and object segmentation.
The tasks of video deblurring and segmentation are more closely interconnected.
Motion blur is particularly noticeable, especially at the edges of moving scenes and
objects. Furthermore, the process of deblurring a video frame can significantly en-
hance the accuracy of object segmentation. Since motion blur serves as a vital
visual cue, detecting blur can offer valuable insights into the segmentation layers
within dynamic, moving scenes [143]. Previous research has demonstrated that blur
detection can provide partial information about the segmentation process in mov-
ing scenes [144],[145],[146],[147]. Additionally, image segments can play a pivotal
role in guiding the estimation of blur kernels, which model the varying motion pat-
terns. These segments indicate object boundaries that should remain sharp during
the deblurring process. Accordingly, we investigate an architecture capable of ac-
commodating both tasks jointly without performance degradation and at reduced
compute.

In this configuration, we address a dental application. Specifically, we receive
a stream of observations, i.e. frames, from a dental microscope. Dental microscopes
are very important in any modern dental clinic. Their integration increases the
quality of patient care and improves ergonomics for dentists. Despite their high
magnification, dental microscopes are constrained by limited depth of field, leading
to blurred images of moving dental instruments when focusing on intricate dental
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structures. Moreover, the ability to identify the precise location of these instruments
within videos holds significant potential for advancing medical video analytics. This
Chapter explores the application of automated video deblurring and instrument
segmentation in dental scenes.

We propose a deep multi-task learning architecture to explore simultaneous
dental video deblurring and instrument segmentation. We posit that these two tasks
are inherently interconnected, sharing common features tied to the motion dynam-
ics within videos. Since spatially-variant blur kernels are formulated on the basis of
moving objects, we adopt filter-adaptive kernels [148], proposed for motion deblur-
ring, to mine the inter-frame spatio-temporal object boundaries. Consequently, we
demonstrate the benefits of utilizing deblurring spatio-temporal features to enhance
dental instrument segmentation. This approach not only outperforms state-of-the-
art deblurring methods in terms of deblurring quality but also maintains robust
segmentation performance, all while operating efficiently in terms of computational
resources.

4.2 Method

We address the problem of dental instrument segmentation and deblurring
from a multi-task learning perspective. Again, we assume that a camera streams
frames at each time step t. We follow the notation of Chapter 3, and Equation 3.4.
Let Rt and Bt be the full-resolution, sharp image and its blurry counterpart, respec-
tively such that:

Bx,t = ⟨(Rx,t)
−kx,t⟩, (4.1)

where (Rx,t)
− refers to a window of size K centered around pixel x in the image

Rt, kx,t denotes the spatially variant blur kernel and Bx,t is the resultant window on
the blurry image. Estimating a blur-free frame R̂t requires computing the inverse,
that is an inherently ill-posed problem. Neural networks have proved successful in
image and video deblurring due to implicit blur kernel approximations that bypass
solving for the inverse of Equation 4.1. Simultaneously, the dental instrument mask
is inferred from each blurry input frame. Likewise, we attempt to learn a non-linear
function of parameters θ comprising E ,Ddeb and Dseg. The deblurring and segmen-
tation processes are defined as composite functions of E and Ddeb or Dseg, i.e.

Deb = Ddeb ◦ E (4.2)

Seg = Dseg ◦ E (4.3)

In our multi-task setting, E is shared among both tasks, where Ddeb,Dseg are
task-specific.

To complement the input with informative cues from the past, in this work
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we further employ the previous blurry and deblurred frames, as well as the previous
segmentation output, i.e.

R̂t = Deb(CAT 10(Bt, Bt−1, R̂t−1, M̂t−1)) (4.4)

M̂t = Seg(CAT 10(Bt, Bt−1, R̂t−1, M̂t−1)) (4.5)

where R̂t and M̂t denote the estimated deblurred frame and segmentation
mask at the t-th time step, respectively.

4.2.1 Architecture

Figure 4.1: Overview of the proposed method. The top figure illustrates a higher
level scheme whereas the bottom one contains depicts the architectural details.

In our proposed network, illustrated in Figure 4.1, we consider video streams,
consisting of frames denoted as Bt, as the input to a contracting block resembling
the U-Net architecture [73]. Within this block, two residual blocks [55, 148] follow
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each strided convolution, resulting in output features denoted as It. Simultaneously,
the current frame Bt is concatenated with the blurry and restored frames from the
previous time step, resulting in CAT 9(Bt, ˆRt−1, Bt−1). This concatenated input un-
dergoes a second contracting block with an identical structure, generating features
termed as Tt. These features, denoted as Tt, are then processed by a spatiotem-
poral block to learn two essential components: alignment and deblurring kernels,
represented as Ka and Kd, respectively. Specifically, Ka is responsible for align-
ing features from the previous time step, Gt−1, in a recurrent manner, while Kd

focuses on deblurring the current frame on the feature level (It). Convolution oper-
ations using these kernels, applied to Gt−1 and It, produce the transformed features
Fa and Fd, respectively. These transformed features are further concatenated and
passed to task-specific decoders. Finally, the concatenated features undergo a 3× 3

convolution operation to create the memory state Gt.

The shared features are then fed into the decoders to accomplish the two pri-
mary objectives: restoring the blurry frame and predicting the segmentation mask.
This is achieved through two U-Net-like expanding blocks, i.e. decoders Ddeb and
Dseg, where upsampling is performed using transposed convolutions, each followed
by two residual blocks. Consequently, the restored, blur-free frame is obtained via:

R̂t = Ddeb(C128,3×3(CAT 256(Fa, Fd))), (4.6)

whereas, for the segmentation branch we incorporate It and the mask predicted at
the previous time frame, by stacking the channels as (Fa, Fd, It, M̂t−1) and trans-
forming them by one 3× 3 convolution, from 385 (3× 128+ 1) to 128 feature maps.
Likewise, the dental instrument at t is segmented as follows:

M̂t = Dseg(C128,3×3(CAT 385(Fa, Fd, It, M̂t−1))), (4.7)

where M̂t is the two-channel (instrument vs background) pixel-wise segmentation
scores followed by a softmax to transform the latter into probabilities.

4.2.2 Loss Function

To train the proposed network we resort to a linear combination of the task-
specific loss functions. For video deblurring we employ the pixel-wise L2 loss, dubbed
content loss, further augmented by a perceptual regularization term [138] that forces
the learnt features to be close to the VGG-19 [3] ones, i.e.

Lcontent =
1

CHW
||R̂−R||2 (4.8)

and

Lperceptual =
1

CϕHϕWϕ
||ϕ(R̂)− ϕ(R)||2 (4.9)
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where C, H, W refer to the image channel, height and width dimensions re-
spectively, ϕ denotes the VGG features and Cϕ,Hϕ,Wϕ denote the corresponding
feature dimensions.

For the semantic segmentation task, we utilize the binary pixel-wise cross-
entropy loss function, i.e.

Lseg = −
∑HW

i Milog(p̂i) + (1−Mi)log(1− p̂i)

HW
, (4.10)

where p̂i denotes the probability that pixel i is predicted as part of the dental
instrument segment and Mi the actual label. Therefore, the final loss function is
defined as

L = Lcontent + λ1Lperceptual + λ2Lseg (4.11)

where λ1 ∈ R, λ2 ∈ R are weighting scalar values.

4.3 Experiments

4.3.1 Dataset

The dataset utilized in this research comprises actual dental treatment sessions
recorded under a microscope. Initially, we amassed a collection of 12 FullHD video
clips, capturing eight distinct dental treatment sessions. Subsequently, meticulous
manual scrutiny of the intraoral snippets led to the removal of frames that were
either blurred or devoid of informative content (e.g., instances of inactivity during
the intraoral procedure). As a result of this curation process, the refined dataset
consists of 67 video snippets, encompassing a total of 50241 frames.

For the purpose of labeling tooltip masks, a team of experts conducted manual
annotations. To ensure diversity in the scenes and variations in instrument appear-
ances, we uniformly sampled frames across the sequences. This effort resulted in
1,691 frames that were meticulously annotated with polygonal masks. To establish
consistent segmentation labels throughout the sequences, we employed the MaskR-
CNN [149] algorithm to interpolate these annotations. In our application, we treat
different tooltip instances as a single entity.

To create realistic blur kernels, accommodating independent motion trajecto-
ries of various objects, we adopted a technique from [61]. This method involved the
use of high-fps cameras to record videos, which were subsequently temporally aver-
aged to generate blur. Given the constraint of our microscopic dataset, which was
recorded at 29 fps, we employed each FullHD frame to generate multiple cropped
(400× 400) frames. The process entailed tracking the dental tooltip between frames
t−1 and t, generating a path connecting the tooltip coordinates at these consecutive
frames, and then moving a fixed-sized patch along that path. Each pixel coordinate
along this path contributed to a patch. Finally, we averaged every 30 frames to cre-
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ate the blurred frame and selected the middle frame within each window as the sharp
frame. This workflow resulted in 67 sequences, each consisting of 97677 triplets of
frames: Bi (blurred), Ii (sharp), and Mi (mask). The dataset was subsequently
partitioned into training and test sets, comprising 56 sequences (83,390 frames) and
11 sequences (14,287 frames), respectively.

4.3.2 Setup

• Comparison with State-of-the-Art Models: We compared against state-of-the-
art models, including STFAN [50] for deblurring and DLV3+ [90] with a
ResNet50 encoder for tooltip segmentation.

• Ablation Study: To assess the effectiveness of our multi-task learning setup,
we compared our network, MTL-AD-MPGT, with MTL-AD-MPP to inves-
tigate the optimal mask propagation policy. Furthermore, we compare its
predecessor, MTL-AD, with MTL-A and MTL-V to investigate the optimal,
multi-task sharing pattern.

All experiments were conducted using an Nvidia Quadro RTX 5000 GPU and
implemented in PyTorch [18]. We utilized the Adam optimizer [139] with a learning
rate of 1e-4 and a batch size of 4 for all multi-task learning (MTL) networks. The
training process for MTL networks consisted of 40 epochs, with a multiplicative
learning rate decay factor of 0.5 applied every 10 epochs. Data augmentations
incorporated random horizontal and vertical flipping, color jittering, and additive
white Gaussian noise sampled with a variance of 0.14 to enhance the robustness of
the models.

Regarding the linear scalarization of loss weights, we set λ1 and λ2 to 0.01 and
0.001, respectively. This choice was made to ensure that the contributions of the
respective losses during training were balanced and had similar magnitudes. For the
deblurring task, we followed the configurations provided by the authors for training
the STFAN model. In the case of segmentation, we trained the DeepLabV3+ [149]
model with a ResNet50 [55] backbone. The optimization process for segmentation
was consistent with that of the MTL networks, including a learning rate decay by a
factor of 0.1 in the 10th epoch. Training for segmentation also spanned 20 epochs and
employed the same data augmentations and batch size as in the MTL experiments.

4.3.3 Results

Deblurring and segmentation performance are evaluated in PSNR and IoU,
respectively, and runtimes are measured in frames per second (fps). Deblurring per-
formance is consistent over all setups and in line with or higher than its single-task
counterpart in all experiments (see Table 4.1). Best IoU performance on instru-
ment segmentation is 87.1%, achieved by DeepLabV3+ which introduces, however,
expensive computations. Our MTL-AD-MPGT version achieves an IoU of 81.5%

60

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Figure 4.2: Qualitative results of the proposed method. From left to right: Input
blurry frame (B), deblurred output frame (R̂), GT sharp frame (R) and GT with
overlaid mask (M̂). Green, yellow and blue pixels correspond to TP, FP, FN, re-
spectively. Best-viewed when zoomed in.

Table 4.1: Results of the proposed method compared to own baselines and state-of-
the-art single-task solutions on the test set.

Architecture PSNR ↑ IoU ↑ FPS ↑ #P(M) ↓
STL Deblurring 38.91 - 31.2 5.4
STFAN [148]
STL Segmentation - 87.09 32.2 26.7
DLV3 [61]
STFAN + DLV3 38.91 87.09 16.1 32.1
MTL-V 39.06 68.14 21.3 6.8
MTL-A 38.90 75.66 21.3 7.2
MTL-AD 38.87 76.27 20.8 7.6
MTL-AD-MPP 38.90 76.33 20.8 8.2
MTL-AD-MPGT 39.14 81.46 20.8 8.2
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improving performance over the MTL-V baseline by 13.3%. Simultaneously, MTL-
AD-MPGT runs at 21 fps whereas the combined STL models run at 16 fps for the
same workload. The qualitative results of the proposed method are illustrated in
Figure 4.2. Clearly, the proposed method produces visually pleasant results restor-
ing fine-grained image details while successfully segmenting the dental instrument.

4.4 Discussion and Conclusion

In this Chapter, we leverage the representational capacity of spatiotemporal
features to address microscopic video deblurring and dental instrument segmen-
tation in a multi-task learning configuration. We recurrently utilize the previous
frame blur-free and mask model estimations as a guidance to predict the current
ones. Likewise, the proposed method achieves higher PSNR performance than its
single-task counterpart, yields a reasonably high IoU score for dental instrument
segmentation and runs at 21 fps compared to the 16 fps of the combined single-task
solutions. The multi-task network further achieves a ×4 reduction in parameters
compared to the system of the single-taskers, facilitating the deployment of networks
on edge devices.

To conclude, the experiments conducted here reaffirm that low- and mid-
level visual scene enhancement and understanding tasks such as the likes of video
deblurring and segmentation are capable of being efficiently combined under an
effective architecture. The results obtained in this Chapter allowed to experimentally
prove the first hypothesis of this thesis. The proposed method and some results
presented in this chapter were published in [150].
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Chapter 5

Generalizing Diverse Vision
Tasks with a Multi-output,
Multi-scale, Multi-task
Architecture

5.1 Introduction

In this Chapter, we investigate the second hypothesis of this dissertation and
tackle a comprehensive range of video tasks spanning from low- to mid-level. Build-
ing upon the insights gained in our previous Chapters, we unify color mapping [151],
denoising, and deblurring [62, 48, 142] into a single dense prediction task. Addition-
ally, we incorporate homography estimation [81] and teeth segmentation [90, 89]
as auxiliary tasks. These tasks are intricately interconnected; for example, align-
ing video frames aids in the process of deblurring and denoising [48, 50, 142, 62],
while denoising and deblurring unveil image features that facilitate motion estima-
tion [81] and further confirmed in the experimental offset visualization of Chapter
3. Moreover, semantic segmentation contributes positively to video deblurring, as
demonstrated in Chapter 4, and Le et al. [81] highlight its contribution to homogra-
phy estimation too. This Chapter represents the first study to jointly address color
mapping, denoising, deblurring, motion estimation, and segmentation in a unified
framework. The experimental part of this Chapter focuses again on RGB video
scenes, addressing this time a medical application for multi-task video enhancement
in dental videos.

The field of computer-aided dental intervention and macro-visualization, as
discussed in previous works [152, 153, 154], presents a context where the tasks men-
tioned earlier find extensive applications. In modern dental practice, dentists utilize
a range of tools to enhance their view of teeth, aiming to reduce the time required
for procedures while improving their quality [155]. Maintaining a close and un-
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interrupted view of the tooth being operated on is crucial for performing dental
bur maneuvers effectively and safely, particularly when removing caries, in order
to minimize the risk of exposing the pulp tissue to infection. To achieve this, a
microcamera, attached securely to a dental handpiece near the dental bur, allows
dentists to closely and continuously inspect the tooth during drilling through a dis-
play. However, the need for miniaturization of vision sensors and optics introduces
imaging artifacts. Macro-view magnifies the slight movements of the bur, result-
ing in significant image displacement. Continuous camera shakes can lead to eye
fatigue and image blurring. Additionally, handpiece vibrations, rapid changes in
lighting conditions, and the presence of splashing water and saliva further compli-
cate the imaging of intra-oral scenes. This study is the first to address the effectively
compromised quality of videos of phantom scenes with an algorithmic solution to
integrate cost-effective microcameras into digital dental workflows.

In this Chapter, we propose MOST-NET (multi-output, multi-scale, multi-
task), a network designed to model and harness task interactions across various scale
levels within the encoder and decoder. MOST-NET is a new multi-task, decoder-
focused architecture [156] for video processing. The proposed network has multiple
heads at each scale level. Provided that task-specific outputs amend themselves to
scaling, the network propagates the outputs bottom-up, from the lowest to the high-
est scale level. It thus enables task synergy by loop-like modeling of task interactions
in the encoder and decoder across scales. Different than state-of-the-art multi-task
networks such as MTI-Net [22], that propagates the task features in scale-specific
distillation modules across scales to the encoder, our network simultaneously propa-
gates task outputs to the encoder and to the task heads in the decoder. Furthermore,
all previous works make dense task prediction in static images while we our network
is the only method explicitly applicable to video scenes.

5.2 Method

We address the video enhancement tasks in dental interventions. In this spe-
cific scenario, we set T = 3, and O1, O2, and O3 are used to represent the outputs
for video restoration, segmentation, and homography estimation, respectively. The
video stream produces observations {Bt−p}Pp=0, where t serves as the time index, and
P > 0 represents the number of preceding frames. The objective here is to predict a
clean frame, generate a binary teeth segmentation mask, and estimate inter-frame
motion using a homography matrix. This information is encapsulated within the
triplet denoted as O3,S

1,1 = {Rs
t , M s

t , H
s
t−1→t, }Ss=1.

The degradation problem is similar to that of Section 3.2. Let x correspond
to pixel location. Given per-pixel blur kernels kx,t of size K, the degraded image at
s = 1 is generated as:

∀x ∀t Bx,t = σn⟨(Rx,t)
−kx,t⟩+ ηn, (5.1)
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Here, ηn represents additive noise, and σn stands for signal-dependent noise. Addi-
tionally, (Rx,t)

− refers to a window of size K centered around pixel x in the image
R1

t . Next, we make an assumption that multiple independently moving objects are
present within the scenes we are considering. However, our primary task is to esti-
mate the motion related to the specific object of interest (in this case, teeth), which
is confined to the region indicated by non-zero values in the mask M :

∀t ∀x xt = Htxt−1 s.t. Mt(x) = 1 (5.2)

5.2.1 Architecture

The architecture, presented in Figure 5.1, follows a U-shaped [73] structure
for feature extraction. These features are aligned with the previous frame’s features
through homographies from preceding scales. Thereafter, the per-scale encoder fea-
tures are used to estimate the dense outputs and the homograpy, at each scale, in a
bottoms-up manner. This proposed bottoms-up output propagation facilitates the
feeding of lower-scale outputs as inputs to higher scales, across tasks. The proposed
multi-task, multi-output, multi-scale (MOST) design fosters interaction to enhance
overall multi-task performance.

Figure 5.1: Our MOST-NET instantiation addresses three tasks for video enhance-
ment: video restoration, teeth segmentation, and homography estimation.

Encoders: Feature Extraction

At each time step, MOST-NET independently extracts features f s
t−1 and f s

t

from two input frames, Bt−1 and Bt, at three different scales. To achieve downsam-
pling in a U-shaped manner [73], features are obtained through 3 × 3 convolutions
with strides of 1, 2, 2 for s = 1, 2, 3, followed by ReLU activations and augmented by
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five residual blocks [49] at each scale. These residual connections are enhanced with
an additional branch of convolutions in the Fast Fourier domain [157] as shown in
Figure 5.1. The output channel dimension for features f s

t is set to 2s+4.

Encoders: Feature Alignment

At each scale, features f s
t and WH̃s

(f s
t−1) are concatenated, and a channel

attention mechanism is applied following the approach described in [48], resulting
in F s

t . To warp encoder features from the previous time step, MOST-NET employs
homography outputs from lower scales, denoted as WH̃(f s

t−1). Here, H̃s represents
an upscaled version of Hs+1 for higher scales and the identity matrix for s = 3.

Decoders: Dense Outputs

The attended encoder features F s
t are passed onto the expanding blocks scale-

wisely via the skipping connections. At the lower scale (s = 3), the attended features
F 3
t are directly passed on a stack of two residual blocks with 128 output channels.

Thereafter, transposed convolutions with strides of 2 are used twice to recover the
resolution scale. Moving to higher scales (s < 3), the features F s

t are initially
combined with the upsampled decoder features and convolved using 3 × 3 kernels
to reduce the number of channels by half. Following this, they are passed through
two residual blocks, each with 64 and 32 output channels, respectively. The outputs
of these residual blocks form scale-specific shared backbones. Lightweight, task-
specific branches follow then to estimate the dense outputs. Specifically, one 3 ×
3 convolution is used to estimate Rs

t , and two 3 × 3 convolutions, separated by
ReLU activations, produce M s

t at each scale. The architecture of MOST-NET,
as illustrated in Figure 5.1, facilitates the refinement of lower scale segmentations
through upsampling and their input to the task-specific branches at higher scales.

Decoders: Homography Outputs

At each scale, the homography estimation modules calculate four offsets, which
have a one-to-one correspondence with homographies through the Direct Linear
Transformation (DLT), as demonstrated in [78, 81]. The motion gated attention
modules then perform element-wise multiplication between the features f s

t and the
segmentations M s

t , which helps filter out context that is not relevant to the motion
of the teeth. Subsequently, a 3 × 3 convolution is used to reduce the channel di-
mensionality by half, while a second convolution extracts features from the restored
output Rs

t . The combination of these two streams results in the formation of fea-
tures hst . At each scale, these features, denoted as hst and WH̃s(hst−1), are utilized
to predict the offsets using shallow downstream networks. Predicted offsets at lower
scales are then converted back to homographies and cascaded in a bottom-up fash-
ion, following a similar approach to [81]. In a manner similar to [78], we employ
blocks of 3 × 3 convolutions, coupled with ReLU activations, batch normalization,
and max-pooling, to reduce the spatial dimensions of the features. Just before the
regression layer, a dropout of 0.2 is applied. For s = 1, the convolution output
channels are set to 64, 128, 256, 256, and 256. For s = 2 and s = 3, the network
depth is cropped from the second and third layers onwards, respectively.
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5.2.2 Loss Function

In our context, the multi-task dataset is denoted as D = {{B}j , {Os
i }j}

T,S,N
i,s,j=1,

where {Os
i }j is a label related to task i at scale s for the j-th training sample {B}j ,

while N denotes number of samples in training data. The optimal set of parameters
θ for MOST-NET is derived by minimizing the objective below:

L(θ) =
T∑
i

S∑
s

λiLi

(
Os

i , Ôs
i (θ)

)
, (5.3)

where λi is a scalar weighting value, Ôs
i (θ) is an estimate of Os

i for j-th sample in
D, and Li is a distance measure. Please note that we are ommitting the subscript
j for notational brevity; the loss values across scales and tasks are summed on the
batch-level. In this Chapter, we adopt the Charbonnier loss [158] as L1, the binary
cross-entropy [159] as L2 and the Mean Average Corner Error (MACE) [78] as L3.

5.3 Experiments

5.3.1 Dataset

Figure 5.2: A flowchart of dataset preparation.

We present the acquisition and generation process of the Vident-lab dataset,
denoted as D, which includes frames B and labels R, M , and H for the purposes
of training, validation, and testing (refer to Table 5.1). These labels are generated
at full resolution, as visualized in Figure 5.2. For the lower scale labels Os

i , we
derive them with downsampling (bilinear interpolation) for R and M , as well as
downscaling for H. The dataset is publicly available [29].

Data acquisition

In our setup, a miniaturized camera labeled as C1 exhibits lower image quality
compared to the intraoral cameras designated as C2, benefiting from larger sensors
and advanced optics. Our objective revolves around training C1 to image the dental
scene with the same level of quality as achieved by C2. Both cameras are firmly
coupled through a 50/50 beam splitter, allowing them to simultaneously record
videos of the identical dental scene. We employ Dynamic Time Warping (DTW) to
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synchronize the videos, followed by the use of SimpleElastix [160] for registering the
corresponding 320× 416 frames.

Data Train Validation Test
Videos 300 29 80
Frames 60K 5.6K 15.5K
Segm (H) 300 116 320
Segm (N) 59.7K 5.5K 15.2K

Table 5.1: Dataset summary (K = ×103), (H,N) human- and network-labelled teeth
masks.

Noise, blur, colorization

We adopt frame-to-frame (F2F) training [161] on frames captured by camera
C1. We then use the trained image denoiser to produce denoised frames and their
corresponding noise maps. To introduce realistic blur, we temporally interpolate
the denoised frames eight times, followed by averaging them over a temporal win-
dow spanning 17 frames. The noise maps are subsequently added to the blurred
frames, forming the input video frames denoted as B. However, achieving perfect
frame registration between two distinct modalities like C1 and C2 presents a chal-
lenge. To overcome this, we employ colorization techniques to transform the frames
from C1 to match those from C2, creating the ground truth output video frames
represented by R. Similar to the approach used in [151], we train a Color Mapping
(CM) network to predict parameters of 3D functions, facilitating the mapping of
colors from dental scenes captured by C2 to those captured by C1. This method
allows us to bypass local registration errors, ensuring an exact pixel-to-pixel spatial
correspondence between frames B and R.

Segmentation Masks and Homographies

We manually annotate a single frame R containing natural teeth within the
phantom scenes from each training video. In the validation and test video sets, we
annotate four frames in each video. Following the approach outlined in [162], we
fine-tune an HRNet48 [163] pretrained on ImageNet using our annotations to auto-
matically segment teeth in the remaining frames across all three splits. We compute
optical flows between consecutive clean frames using RAFT [84]. These motion fields
are then cropped using teeth masks Mt to eliminate other moving objects such as
dental bur or the suction tube, as our primary interest is to estimate the motion
with respect to the teeth. Subsequently, we fit a partial affine homography H using
RANSAC to the segmented motion field.

5.3.2 Setup

We perform multiple experiments to showcase a) the effectiveness of the multi-
scale nature of MOST-NET b) the synergy of the proposed architecture and c) its
performance compared to multiple state-of-the-art single task baselines.
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• We assess performance gains across scale levels of MOST-NET. To this end,
we upsample all outputs at lower scales to original scale and compare them
with ground truth.

• We reconfigure MOST-NET by removing different branches to showcase that
the proposed design is the most optimal.

• We compare MOST-NET with single task state-of-the-art methods for restora-
tion, homography estimation and segmentation.

We train, validate, and test all methods on our dataset, as reported in Ta-
ble 5.1. In all MOST-NET training runs, we set λ1, λ2, λ3 to 2 × 10−4, 5 × 10−5

and 1 for balancing tasks in Equation 5.3. Training for all methods is performed
with a batch size of 16 and employs the Adam optimizer with an initial learning
rate of 1e− 4, which is decayed to 1e− 6 using cosine annealing. Augmentation of
the training frames includes horizontal and vertical flips with a probability of 0.5,
random channel perturbations, and color jittering, following the methodology intro-
duced in [50]. All experiments are carried out using PyTorch 1.10, and the inference
speed is reported in frames per second (FPS) on an NVidia RTX 5000 GPU.

5.3.3 Results

Figure 5.3: MOST-Net performance improves with output upscaling.

In Figure 5.3, we evaluate the performance improvements achieved across dif-
ferent scale levels of MOST-NET. Our observations indicate that the performance
of MOST-NET exhibits improvement through the propagation of task output across
scales, as reflected in all measured metrics. To further analyze the impact of various
components of MOST-NET, we conduct an ablation study presented in Table 5.2.
The architectural modifications for the ablation study include: (i) NS — omission
of segmentation as an auxiliary task, (ii) NE — exclusion of the connection between
encoder features f s

t and the Motion Gated Attention module, (iii) NW — elimina-
tion of the warping of previous encoder features f s

t−1, and (iv) NMO — disabling
multi-outputs at lower scales i.e. s > 1, resulting in no task interactions between
scales.

The ablation results reveal that all configurations lead to a decrease of more
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than 0.5dB in PSNR and an increase in temporal consistency error E(W). Partic-
ularly, the inclusion of the segmentation task and temporal alignment proves most
beneficial for the video restoration task. Specifically for NE, the decrease is 0.7dB
suggesting again better frame feature representations, when frames are aligned on
the feature level. The necessity of alignment occurs once more throughout this dis-
sertation; it suggests that aligning frames is beneficial, here, by highlighting the in-
teraction between the restoration and homography tasks. The absence of multi-task
interactions across scales results in a MACE error increase of more than 0.6. The
NE ablation demonstrates a slight improvement in MACE, albeit with a significant
drop in PSNR. Interestingly, the IoU remains relatively unaffected by the ablations,
suggesting potential for enhancing task interactions to assist in the segmentation
task. Qualitative results are presented in Figure 5.4.

Architecture PSNR ↑ SSIM ↑ MACE ↓ IoU ↑ E(W) ↓ #P(M) ↓ FPS ↑
MIMO-UNet [49] 26.66 0.916 - - 0.0278 5.3 8.4
ESTRNN [48] 30.72 0.943 - - 0.0229 2.3 68.5
MHN [81] - - 1.347 - - 6.2 89.8
DeepLabv3+(DL) [90] - - - 0.968 - 26.7 108.2
UNET++ [89] - - - 0.969 - 50.0 38.9
ESTRNN+MHN+DL 30.72 0.943 1.368 0.967 0.0229 35.2 28.6
MOST-NET-NS 30.21 0.939 1.426 - 0.0223 9.7 19.0
MOST-NET-NE 30.22 0.941 1.423 0.946 0.0221 9.8 19.2
MOST-NET-NW 30.37 0.943 1.456 0.952 0.0221 9.8 19.3
MOST-NET-NMO 30.48 0.940 2.155 0.946 0.0227 8.5 19.1
MOST-NET 31.05 0.947 1.507 0.946 0.0217 9.8 19.3

Table 5.2: STL and MTL benchmarks (top panel) and MOST-NET (bottom panel).
Best results of MOST-NET compared to ESTRNN+MHN+DL are in bold.

We present a comparison of MOST-NET with state-of-the-art single-task
methods in the tasks of restoration, homography estimation, and binary segmenta-
tion, as summarized in Table 5.2. In the context of video restoration, MOST-NET
surpasses the performance of the ESTRNN baseline [48] and the image restoration
model MIMO-UNet [49] by more than 0.3dB and 4.3dB in PSNR, respectively. We
attribute the lower PSNR performance of MIMO-UNet to its reliance on a single-
frame input, impacting its colorization capabilities and leading to elevated temporal
consistency error E(W) [164]. Additionally, ESTRNN exhibits observable flickering
artifacts, as evident from its higher E(W) compared to MOST-NET. In homography
estimation, MOST-NET marginally trails behind MHN [81] in terms of MACE error.
However, our multi-tasking approach suggests potential for improvement in homog-
raphy estimation. Notably, MHN achieves significantly lower MACE error when
trained and tested on ground truth videos, emphasizing the necessity of the video
restoration task to enhance homography estimation. Moving on to binary segmen-
tation tasks, we benchmark MOST-NET against DeepLabv3+ [90] with ResNet50
encoder and UNET++ [89] for teeth segmentation using the intersection-over-union
(IoU) criterion. MOST-NET achieves comparable results with significantly fewer
parameters, maintaining near real-time efficiency despite addressing three tasks con-
currently.
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Lastly, as there is other such multi-task method available, we compare our
multi-task MOST-NET with a forked pipeline of single-task methods—ESTRNN
for video restoration, MHN for homography estimation, and DeepLabv3+ (DL) for
segmentation. Despite running at 28.6 FPS, the forked pipeline requires 3.6 times
more model parameters than MOST-NET. Moreover, MOST-NET outperforms the
forked pipeline in PSNR, SSIM, and E(W) for video restoration, with comparable
MACE error and IoU scores, while operating near real-time at either 19.3 FPS or
21.3 FPS via TorchScript.

Figure 5.4: Our qualitative results of teeth-specific homography estimation (4th
column) and full frame restoration and teeth segmentation (5th column). MOST-
NET can denoise video frames and translate pale colors (first and second column)
into vivid colors (5th column). Simultaneously, it can deblur and register frames wrt
to teeth (4th column). In addition, despite blurry edges in the inputs, MOST-NET
produces segmentation masks that align well with teeth contours (rows 1-3). Failure
cases (bottom panel, 4-5th rows) stem from heavy blur (4th row, and tooth-like
independently moving objects (5th row), such as suction devices.

5.4 Discussion and Conclusion

In this Chapter, we introduced MOST-NET, an novel deep neural network de-
signed for comprehensive video processing by modeling task interactions across mul-
tiple scales. This novel architecture concurrently tackles a wide range of tasks span-
ning from low- and mid-level scene enhancement, encompassing deblurring, denois-
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ing, and color mapping, to low- and mid-level understanding tasks such homography-
based motion estimation or even teeth segmentation. Once more, this Chapter con-
firms the necessity for frame alignment and shows how homography estimation, as an
auxiliary task, can improve performance on other video tasks. Our study highlights
the practical applicability of MOST-NET within the context of computer-aided den-
tal interventions. In this Chapter, we confirm our second hypothesis; one can ac-
commodate diverse tasks in a multi-task architecture for RGB video scenes. Indeed,
MOST-NET has lower parameter count than combined, state-of-the-art, single-task
models and fast runtimes, at lower parameter count, despite yielding multiple task
outputs per scale.

To facilitate research in the integration of visual scene enhancement and un-
derstanding tasks, we have openly shared the Vident-lab video dataset. This dataset
features natural teeth within phantom scenes and can serve as a resource for train-
ing on a diverse set of tasks. The dataset accompanies the Katsaros et al. [165].
Portions of research from the respective paper are discussed and generalized in this
Chapter.

The MOST-NET network has shown promise, but has its own limitations.
Firstly, it is currently limited to working with RGB color data, and its effective-
ness has only been demonstrated in macro-visualization settings. While expanding
its capabilities to other domains is an exciting possibility, our current findings are
constrained by the absence of relevant datasets. Secondly, while MOST-NET incor-
porates video denoising, deblurring, and color correction, these functionalities are
combined and treated as a single task of visual scene enhancement, as detailed in
Chapter 3. This approach, while effective, raises concerns about the scalability of
the architecture when handling more decoders to produce separate outputs, which
effectively increases the number of different gradient sets.
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Chapter 6

Neural Scale Search and
Adaptive Task Balancing

6.1 Introduction

This Chapter revolves around the application discussed in Chapter 5, this
time focusing on a new dataset, characterized by distinct challenges. The freshly
introduced dataset stems from real intra-oral dental procedures conducted at the
Medical University of Gdansk. This new dataset brings multiple challenges, such as
reduced lighting conditions, heightened noise levels, and scenes with varying depths
and teeth appearance that pose challenges to achieving optimal homographies and
segmentation maps. While the pool of tasks remains the same, the number and
severity of artifacts or challenges are escalated. The novel challenges are clearly il-
lustrated in Figure 6.1. This dataset will also be made publicly available to facilitate
relevant research.

To address the aforementioned issues, the preceding Chapter explored a multi-
task, decoder-focused model [156] for multi-output, multi-scale, and multi-task video
enhancement and understanding. This model, with multiple heads, predicts all
multi-task outputs at each scale level. The network propagates the per-task out-
puts bottoms-up, from the lowest to the highest scale level. Likewise, it enables
task interactions through a loop-like modeling of multi-task relationships in both
the encoder and decoder across scales. Consequently, it allows for improved task in-
teractions, refines predictions across scales, and offers insights into the contribution
of each scale to the performance improvement of each task.

In this Chapter, our third hypothesis assumes that not all scales are equally
crucial for all tasks, which coincides with the study of prevailing design choices in
state-of-the-art networks. Tasks exhibit varying degrees of granularity requirements,
with networks addressing low-level tasks allocating more computations at higher
scales, while those designed for higher-level tasks prioritize lower scales. For instance,
networks dedicated to tasks like deblurring [48, 49] and denoising [47, 46] focus their
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(a) low light (b) motion blur (c) occluding wa-
ter

(d) light change: t (e) light change:
t+ 1

(f) tooth deforma-
tion: t

(g) tooth deforma-
tion: t+ 1

(h) teeth at differ-
ent depths

(i) tooth deforma-
tion: t

(j) tooth deforma-
tion: t+ 1

(k) white gloves (l) teeth in mirror (m) blood (n) lack of context
- close view

(o) lack of context
- missing teeth

Figure 6.1: Processing real dental videos in a multi-task setting poses significant
challenges due to factors such as camera miniaturization and scene characteristics
influenced by artifacts, parallax, non-rigidity, ambiguity, and texture scarcity. Top
row examples highlight key restoration challenges: dark images (a), blur (b), water
interference (c), and sudden light changes across frames (d, e). Middle row in-
stances feature challenges in homography estimation: tooth deformations caused by
water (f, g, i, j) and teeth at varying depths, leading to different motion planes (h).
Bottom row image provide examples illustrating difficulties in teeth segmentation,
including objects with colors resembling teeth (e.g., gloves or sponges) (k), mirrored
teeth (l), blood on drilled regions (m), a lack of contextual cues for segmentation
in close-up views (n), and scenarios with multiple missing teeth (o), all of which
complicate the segmentation task.
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computations closer to the original input image scale to preserve spatial information.
Conversely, mid- or high-level tasks such as optical flow [166, 84], segmentation [90],
or surgical tool pose estimation [167] allocate more computation at lower scales of
the original image size to enhance reasoning about motion and spatial context.

Learning multiple tasks in a unified architecture requires rigid assumptions
on a) the impact of scales on each individual task, b) the interactions between the
tasks. The increase in performance across scales may be non-uniform and can vary
across tasks. Additionally, the coexistence of signals from multiple tasks across vari-
ous scales often leads to a significant number of gradient conflicts, thereby impeding
overall performance, as noted by Yu et al. [35]. Our fourth hypothesis challenges
the notion that all gradients are equally essential at every scale, as some gradi-
ents may introduce conflicts rather than contribute positively. To address this,
we propose Neural Scale Search (NSS), a gradient-based approach that explores
the optimal scales-for-tasks structure within the output space of the MOST model.
NSS leverages Softmax-Gumbel continuous relaxation to navigate the discrete search
space based on innerscale output differences. By quantifying the significance of task
outputs across scales in terms of their contribution to performance improvement
(or surrogate loss minimization as a proxy for each task’s metric), NSS introduces
MOST-NSS++, an architecture that is both sparser and more efficient than the
original MOST network.

Even when equipped with a suitable multi-task architecture and appropriate
linear scalarization of the multi-task loss weights, the optimization process of multi-
task networks remains challenging. Here, we discuss the second part of our fourth
hypothesis. We note that the initially balanced multi-task training achieved through
carefully assigned loss weights i.e. linear scalarization, may become uneven at later
stages, resulting in disparate learning paces. While existing approaches aim to
address variations in multi-task gradient magnitudes and directions, they do not
explicitly tackle the issue of uneven multi-task training and often require access to
network gradients, incurring a linearly growing memory cost with the number of
tasks. In our approach, designed with consideration for dataset size, we overcome
the computationally expensive access to gradients by introducing Adaptive Task
Balancing (ATB), a straightforward yet highly effective weighting scheme. ATB
dynamically adjusts task weights during training, ensuring that tasks progress at
comparable rates.

6.2 Method

In this Chapter, the problem formulation is identical to the one of Chapter 5, as
illustrated in Equation 5.1. The multi-task convolutional network attempts to solve
multiple tasks via three outputs,i.e. the restoration and segmentation images, as
well as the homography relating two consecutive frames. In the next Subsection, we
initially introduce a new MOST architecture, i.e. MOST-NET++. Thereafter, we
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discuss our two final hypotheses, i.e. optimal resource allocation via an end-to-end,
NAS-inspired approach to restructure the gradient flow and discover a sparser, yet
more efficient architecture and mitigation of the diverse multi-task training paces.

6.2.1 Architecture

Here, we describe the architecture we will employ as a baseline to address the
third and fourth hypothesis of this thesis. Specifically, we modify the MOST-NET
architecture into MOST-NET++, a novel instantiation of the MOST model.

Figure 6.2: The proposed MOST-NET++ achieves multi-scale feature exchange and
alignment, at the encoder level, and bottom-up multi-task output interaction and
refinement across scales, at the decoder level.

As illustrated in Figure 6.2, the encoder consists of a feature extractor that
combines deep- and image-level features at each scale and a feature alignment mod-
ule that aligns the previous frame to the current and fuses their information via
channel attention. In contrast to Chapter 5, this architecture employs addition-
ally Asymmetric Feature Fusion, image-level features, batch normalization across
all residual blocks. To make our network more efficient for real-time applications we
omit the Fourier transforms and convolutions and focus solely on the pixel domain.

Similarly to Chapter 5, the decoding part consists of the dense outputs, i.e.
the decoders branch out scale-wise to produce one output for each task and scale.
The scale-wise decoders are also shared with the homography estimation modules
that estimate and refine the homography bottoms-up in a cascade. It is different to
that segmentation maps are refined in a residual fashion across scales. Moreover, the
task-specific segmentation heads are augmented with one additional convolutional
layer. The details of the architecture are discussed in the next subsections.

Encoders: Feature Extraction

The cameera streams frames Bt at each time step t. MOST-NET++ extracts
features f s

t−1 and f s
t independently from two input frames Bt−1 and Bt at three

different scales. To achieve U-shaped downsampling [73], deep features are obtained
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through 3 × 3 convolutions with strides of 1, 2, 2 for s = 1, 2, 3, followed by ReLU
activations. Downsampling convolutions at lower scales (i.e., s = 2, 3) result in some
loss of spatial information. In this study, we address this issue by first combining
the deep features with image-level features, extracted from the downsampled im-
age itself, following the approach of MIMO-UNet [49]. These concatenated, deep-
and image-level, features are more descriptive representations of the image. There-
after, they undergo processing through a sequential stack of 5 residual blocks at
each scale. Second, we improve the residual output features through cross-scale
information exchange, illustrated in Figure 6.2, specifically for s = 1, 2, utilizing
Asymmetric Feature Fusion (AFF)[49]. Exchanging information across scales im-
proves representations too, as it allows the higher scale to complement its features
with features of a wider effective receptive field and vice-versa. The output channel
dimension for features f s

t is 2s+4. Differing from Chapter 5, we completely exclude
Fourier transforms and convolutions and instead employ plain residual blocks.

Encoders: Feature Alignment

At each scale, the features f s
t and WH̃s

(f s
t−1) undergo concatenation, followed

by a channel attention mechanism [48]. This process selectively fuses the features
into F s

t . In the context ofMOST-NET++, the homography outputs from lower scales
are employed to warp encoder features from the preceding time step, represented as
WH̃(f s

t−1). In this expression, W denotes the warping operator, while H̃s represents
an upscaled version of Hs+1 for higher scales and the identity matrix for s = 3.

Decoders: Dense Outputs

Following the channel attention mechanism, the attended encoder features
F s
t are conveyed to the expanding blocks in a scale-specific manner through the

use of skipping connections. At the lower scale (s = 3), the attended features F 3
t

directly feed into a stack of two residual blocks, each producing 128 output channels.
Subsequently, two transposed convolutions with strides of 2 are applied to restore the
resolution scale. For higher scales (s < 3), we concatenate F s

t with the upsampled
decoder features from the lower scale. This concatenated result is then convolved
using 3× 3 kernels to reduce the channel count by half. The output is then passed
through two residual blocks, generating 64 and 32 output channels, respectively.
These outputs from the residual blocks serve as scale-specific shared backbones,
resulting in output features gst .

Following this, lightweight task-specific branches are introduced to estimate
dense outputs at each scale. In this study, the number of task-specific layers for
estimating M s

t and Rs
t at each scale is increased to a total of three 3x3 convolutions,

interspersed with ReLU activations. Figure 6.2 visually illustrates how MOST-
NET++ facilitates the refinement of lower scale segmentation by upsampling and
feeding them into the task-specific branches at higher scales.

Decoders: Homography Outputs

At each scale, the homography estimation modules calculate four offsets, di-
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rectly linked to homographies through the Direct Linear Transformation, as demon-
strated in previous works[78, 81]. The motion-gated attention modules then engage
by multiplying the features gst with segmentationsM s

t to selectively filter out context
irrelevant to the target motion. Thereafter, the channel dimensionality undergoes
halving through a 3 × 3 convolution, while a second one focuses on extracting fea-
tures from the restored output Rs

t . The combination of these two streams results in
the formation of features hst .

At each scale, these features hst and WH̃s(hst−1) are utilized to predict offsets
through shallow downstream networks. The predicted offsets at lower scales are
then transformed back into homographies and cascaded bottom-up [81] to refine the
higher-scale ones. Following a methodology similar to [78], we implement blocks of
3× 3 convolutions, coupled with ReLU activations, batch normalization, and max-
pooling to decrease the spatial size of the features. A dropout of 0.2 is applied just
before the regression layer. For s = 1, the convolution output channels are set as
64, 128, 256, 256, and 256. For s = 2 and s = 3, the network depth is truncated
from the second and third layers onward, respectively.

6.2.2 Loss Function

In this Subsection, we describe the two components that address the third
and fourth hypothesis of this dissertation. Regarding the former, we assume that
not all scales are necessary for all tasks. Even more, we hypothesize that when
all tasks exist at all scales, gradient conflicts naturally occur and harm multi-task
performance. We propose NSS to learn whether all gradients are really necessary or
whether a few of them actually do not contribute significantly to the multi-task loss
minimization. If gradients at some scale do not improve significantly performance
of its task, then the task is omitted at this scale, thus minimizing gradient conflicts
and freeing up parameters. Regarding the latter, we attempt to mitigate the diverse
training paces issue by fixing the task-wise training paces to be equal by simply
exploiting the numerical loss values, that is, without costly access to the per-task
gradient vectors.

Neural Scale Search

We revisit the MOST output space of Figure 6.3. Each task is estimated at
multiple scales via the multi-scale property of our network. Each scale is assumed
to yield some performance improvement and conversely, lower scale outputs yield
some estimation error compared to the higher ones. Let us denote the estimation
error of the output upsampled from the lowest scale to the highest as follows:

ϵSi = Li

(
O1

i , u
S,1
i (ÔS

i )
)
, (6.1)
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Figure 6.3: The output space of a MOST network entails multiple task outputs at
multiple scales. NSS optimizes the task scaling by coupling the innerscale differ-
ences with learnable coefficients in the learning objective, to derive a more efficient
architecture, illustrated as the NSS solution.

In NSS we assume that, for a well-defined architecture, the output at higher scale
s − 1 should improve or, at least, not degrade the estimation of Oi compared to a
lower scale s. Subsequently, for s > S and for all tasks i, the following holds:

ϵs−1
i ≤ ϵsi (6.2)

where:

ϵsi (ω, θ) = Li

O1
i , u

S,1
i (ÔS

i (θ)) +
1

S − 1

s∑
j=S−1

ωs
i∆

s
i (θ)

 ,

and ωs
i is some weighting scalar and

∆s
i = us,1i

(
us,s+1
i (Ôs+1

i )− Ôs
i

)
(6.3)

As depicted in Figure 6.3, we evaluate the innerscale output differences ∆s
i

to gauge the impact of scale s on the i-th task. In essence, each difference signifies
the influence of each additional scale compared to its preceding scale, with the
lowest scale serving as the baseline and remaining constant. Let α ∈ (0, 1)S×T be
a matrix of probabilities with coefficient {αs

i}
T,S
i,s=1 quantifying whether performance

improvement brought by ∆s
i across tasks Os

i is significant, such that:

Os
i ∈ Fθ,α if αs

i → 1

Os
i ̸∈ Fθ,α if αs

i → 0 (6.4)

In this context, the optimization of the network structure Fθ,α can be achieved
through the following optimization problem. This problem involves the simultaneous
learning of the optimal scales-to-task structure α for a network F and the network
weights θ:

LNSS(θ, α) =
T∑
i

λiϵ
1
i (α, θ) + L0(α), (6.5)
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Here, L0 represents a sparsity measure [30], such as L0(α) =
∑

s

∑
i log(αs

i ).
The optimization problem in Equation (6.5) can be effectively addressed using the
Softmax-Gumbel scheme[31]. This scheme enables the direct and single-level opti-
mization of the decision structure concurrently with the network parameters.

Adaptive Task Balancing

Training a multi-task network typically involves minimizing the sum of a lin-
ear combination of task-specific losses (linear scalarization), as expressed in Equa-
tion (5.3) or Equation (6.5). However, our fourth hypothesis suggests that the task-
specific loss weights, which initially balance the tasks during early training stages,
may lose this balance in later stages. Previous research relies on access to internal
network gradients [32] or hyperparameter optimization [19]. In our approach, as-
suming a training process with a total of K weight updates, we propose adaptively
adjusting the task-specific loss weights λi

k at each weight update k = 1, . . . ,K after
the forward pass, where access to the numerical loss values is available. Specifically,
we impose constraints on the task-specific numerical loss values vki , ensuring they
are equal in pairs, and the sum of their values retains its magnitude, V k, after re-
weighting. In other words, for all i ∈ T and k ∈ K, the updated weights λk

i are
determined as the solution to the following linear system:


T∑
i

λiv
k
i = V k

∀i, j ∈ T λiv
k
i = λjv

k
j (6.6)

where vki , V
k ∈ R+, vki = Li

(
Os

i , Ôs
i (θ

k−1)
)
and V k =

∑T
i vki . Given the linear-

ity of the system, it can be reformulated in matrix form and easily solved using
Gaussian elimination. This solution ensures that tasks are trained at a consistent
speed, maintaining a rate of change for task-specific losses of 1 across time steps.
Importantly, it preserves the magnitude of the multi-task loss V k, with no influence
on the multi-task learning rate and no need for initialization.

6.3 Experiments

6.3.1 Dataset

In this Section, we initially discuss the dataset, consisting of 100 intra-oral
sequences from real dental interventions and their partition into training, validation,
and test sets, consisting of 65, 10, and 25 videos, respectively. The distribution of
frames in each set is 49K for training, 4K for validation, and 17K for the test set.
The dataset specifics, including the count of manual frame segmentations and per-
task baseline metrics, are summarized in Table 6.1. The general pipeline for data
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Figure 6.4: Data acquisition and generation pipeline for the publicly available
Vident-Real-100 dataset. Top branch:We use a beam splitter in phantom (PH)
scenes to acquire pairs of video frames and learn a color mapping network (CM).The
learnt color function (CF) is applied on the restored frames, outputted from the bot-
tom branch.Bottom branch: We acquire video sequences in real intra-oralscenes (R).
The frames are processed for noise removal and sharpening, before being passed onto
the CF component to colorize them. (b) Examples of three videosnippets from the
dataset

acquisition and label generation is depicted in Figure 6.4.

Data Train Validation Test
Videos 65 10 25
Frames 49K 4K 17K
Segmentations 426 40 138
PSNR 18.03 18.84 17.39
SSIM 0.834 0.857 0.821
MACE 11.48 7.59 9.29
IoU 0.208 0.206 0.254

Table 6.1: Summary of the Vident-real-100 dataset.

Noise, blur, colorization

For the enhancement of dental video data in terms of noise, blur, and coloriza-
tion, we employ a dual-branch methodology. In the initial branch, we integrate a
dental microcamera (C1) with a larger, high-quality camera (C2), both firmly cou-
pled via a 50-50 beam splitter to simultaneously capture phantom scenes featuring
natural teeth (PH). A color mapping (CM) network is trained to approximate the
colors of C2 via C1, utilizing the spatiotemporally aligned frames from both cameras.
The learned color mapping function (CF) is then applied to enhance the color charac-
teristics of frames captured solely by C1. The second branch, exclusive to camera C1,
involves unsupervised denoising in the RAW domain using the Frame2Frame (F2F)
approach [161]. Subsequently, a ”restore-from-restored” (RfromR) method [168] is
employed, wherein the pre-denoised frames are subjected to additional defocus blur.
The model of Lee et al. [168] is trained to remove noise, blocking artifacts, and
enhance the sharpness of the input data. The restored frames (R) are obtained by
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applying the color mapping function from the first branch to the output sequences
of the second branch.

Segmentation masks and homographies

In the context of segmentation masks and homographies, denoted as M and
H respectively, we manually annotate teeth on select frames from each video. A
pre-trained HRNet48 [163] is then fine-tuned on these annotated frames to facilitate
automatic teeth segmentation across the entire dataset. Optical flows (OF ) between
consecutive frames are computed using RAFT [84], fine-tuned on synthetic dental
data to align with the motion characteristics of intra-oral sequences. The motion
fields are subsequently cropped with teeth masks (M) to eliminate irrelevant object
motion. Finally, a partial affine homography (H) is fitted using RANSAC to the
segmented motion field; the derived H homography consists our ground truth label
for the homography estimation task.

6.3.2 Setup

We perform multiple experiments to verify the validity of the novel MOST-
NET++ architectural instantiation. Thereafter, we perform diagnostics and an
extensive performance evaluation for NSS (third hypothesis) and ATB (fourth hy-
pothesis).

• We reconfigure MOST-NET++ by removing different branches to showcase
that the proposed design is maximally synergic and thus the most optimal.

• We assess the NSS training routines, the performance of the discovered MOST-
NSS++ architecture, the gradient conflicts, and the scale-wise performance
improvements compared to MOST-NET++.

• We compare ATB with efficient baselines for different MOST architectures and
discuss the training curves and the generalization performance.

• We compare MOST-NET++ and MOST-NSS++ with single task state-of-the-
art methods for restoration (ESTRNN [48], MIMO-UNet [49]), homography
estimation (MHN [81]) and binary segmentation (DLV3+ [90], UNET++ [89])
and multi-task architectures ( [165]).

We train MOST-NET++ with different loss functions: the Charbonnier loss [158]
as L1, binary cross-entropy [159] as L2, and Mean Average Corner Error (MACE) [78]
as L3. Task-specific loss weights, denoted as linear scalarization (LS), are manually
set to 1 × 10−1, 2 × 10−1, and 1.4 × 103 for λ1, λ2, and λ3 respectively. Regarding
MOST-NSS++, the initial phase involves pretraining the network weights θ over
the training dataset D for 40 epochs. Subsequently, the search phase starts, op-
timizing both the scale architecture α and the network weights θ jointly through
a single-level optimization scheme, accomplished in a single backward pass. The
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search phase spans two epochs. Upon derivation of the optimal architecture, we
eliminate task-specific decoders for scales where tasks are not performed and retrain
the network from scratch, as per the common Neural Architecture Search (NAS)
practices.

Throughout all experiments, a batch size of 5 is utilized, and Adam serves as
the optimizer with a learning rate of 1× 10−4 for θ, reduced to 1× 10−6 with cosine
annealing. For α, a learning rate of 1× 10−2 is employed to encourage more explo-
ration. We use horizontal and vertical flips with a probability of 0.5, random channel
perturbations, and color jittering, for data augmentation. Consistent configurations
are maintained across all models to ensure a fair comparison, including ablations,
comparisons, and diagnostics. The experiments are conducted using PyTorch 1.10
on 2×NVidia V100, and the frames per second (FPS) metric is measured on NVidia
RTX 5000 to approximate the deployment environment. Performance evaluation
encompasses video restoration, involving frame-wise PSNR and SSIM, homography
estimation with Mean Average Corner Error (MACE), and semantic segmentation
utilizing Intersection over Union (IoU) for teeth.

6.3.3 Results

Synergy

To gauge the impact of auxiliary tasks on the overall MOST-NET++ archi-
tecture, we begin by evaluating architectural synergy. Firstly, we remove alignment
by excluding the homography warping (W) operation from the feature alignment
module, warping it solely with the identity matrix. Secondly, we eliminate the seg-
mentation mask from the homography decoders (S) to examine the significance of
enabling the teeth segmentation map to interact with other tasks. While both exper-
iments yield consistent performance in segmentation and homography estimation,
Table 6.2 highlights a notable degradation in image quality, resulting in a decrease
of 1.7 to even about 2.2 dB. This underscores the importance of aligning frames and
emphasizing the teeth region for optimal restoration results.

Architecture S W PSNR ↑ SSIM ↑ MACE ↓ IoU ↑ #P(M) ↓ FPS ↑
MOST-NET++ 3 7 31.47 (32.12) 0.976 (0.972) 5.78 (4.81) 0.627 (0.609) 8.9 5.0
MOST-NET++ 7 3 32.01 (31.68) 0.979 (0.973) 5.56 (5.36) 0.631 (0.548) 8.9 5.0
MOST-NET++ 3 3 33.69 (32.92) 0.984 (0.980) 5.85 (5.14) 0.643 (0.597) 8.9 5.0

Table 6.2: Ablation study for using segmentation (S) and homography (W) outputs
in MOST-NET++ on the test (validation) set. Eliminating task interactions by
removing either Ht or Mt results in significant, i.e. 1.5-2.2dB, performance degrada-
tion for video restoration, demonstrating the synergy of the proposed architecture.

Neural Scale Search

NSS reaches convergence, as depicted in Figure 6.7, where we present the
convergence diagnostics for a temperature of 5, averaged across three runs. The
highest scale is allocated for the restoration task, emphasizing the need for a finer
level of detail. The medium scale is assigned to segmentation, considering that
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Figure 6.5: The same scales-to-tasks structure is derived for all temperatures τ > 1
validating the robustness of the NSS solution. When τ = 1, the solution is even
sparser, retaining the highest scale only for the restoration task, while performing
segmentation and homography estimation solely at the lowest scale.

Figure 6.6: The reduction of the MOST-NET++ architecture into MOST-NSS++.
Similarly to Figure 6.2, feature extraction and alignment remain identical. How-
ever, by omitting task-specific decoders at multiple scales, MOST-NSS++ is more
lightweight. MOST-NSS++ performs all tasks at the lowest scale as shown by the
outputs (R3,M3,H3) while it retains the middle scale for segmentation (M2) and
the highest scale for restoration (R1).

predictions are already robust, and performance improvement on the high scale is
negligible due to the sparsity constraint. This scales-to-tasks structure aligns with
the design principles observed in modern single-task networks. The restructured,
discovered architecture is depicted in Figure 6.6.

It’s noteworthy that NSS achieves convergence to the same solution in all
runs, without employing temperature annealing as seen in prior works such as [30,
21]. Additionally, the resulting configuration is derived for various temperature
parameters, as illustrated in Figure 6.5.
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Figure 6.7: Convergence diagnostics of
the αs

i and ∆s
i variables for a tempera-

ture of τ = 5, across three NSS runs.

Figure 6.8: Percentage of multi-
task gradient conflicts with respect
to the total number of updates
per epoch for MOST-NET++ and
MOST-NSS++ on a batch size of
5.

Upon reaching convergence, we conduct a retraining of the discovered MOST-
NSS++ network from scratch. Interestingly, the resulting architecture demonstrates
more efficient training dynamics, as depicted in Figure 6.9, in contrast to MOST-
NET++ orMOST-NET, which tend to plateau faster irrspectively of the optimiza-
tion scheme employed.

Subsequently, we conduct a comparative analysis of MOST-NET++ and MOST-
NSS++ in terms of conflicts of gradients [35] across epochs. These conflicts arise
when a pair of gradient vectors, computed from the losses of two different tasks,
produces an angle higher than 90 degrees. In Figure 6.8, we illustrate that while
conflicts in task-specific gradients occur in approximately over 55% of weight updates
in MOST, this percentage dramatically decreases to 25% for MOST-NSS++. This
suggests that the performance improvement of NSS can be attributed not only to
the discovered optimal scales-to-tasks structure but also to the introduced sparsity,
effectively reducing negative transfer.

Lastly, in Figure 6.10, we showcase the performance improvement across scales
on MOST-NET++ compared to MOST-NSS++ and observe that the latter utilizes
its parameter resources more efficiently. Particularly, MOST-NSS++ outperforms
MOST-NET++ on all tasks at the lowest scale, highlighting the effectiveness of NSS
in resource allocation. Shared scales (lowest) exploit the gradient conflict mitigation
to train faster and reach a better optimum while task-specific scales (medium, high)
specialize for each task and, overall, train a more effective architecture.

Adaptive Task Balancing

We conduct a comparative analysis of ATB against methods that do not re-
quire access to internal network gradients. We employ the baseline alternatives
DWA, RWL, and LS. RWL attempts to bypass bad local optima issues by passing
the uniformly-sampled loss weights from a softmax function. Likewise it introduces
temporally local asymmetries in task weighting which are however averaged over
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Figure 6.9: ATB compared to DWA, RWL and LS on the validation set for three
different MOST architectures. ATB yields smoother curves on the validation set
indicating that optimization states revolve around flatter regions of the feature space.

Figure 6.10: Performance across scales for MOST-NET++ (all-scales-to-all-tasks)
and MOST-NSS++ (discovered scales-to-tasks) architectures. Each metric is illus-
trated with three bars for MOST-NET++ (left side of the arrows), which predicts
one output per task and scale. MOST-NSS++ (right side of the arrows) on the
contrary bears less bars as not all tasks at all scales. MOST-NSS++ improves per-
formance on most metrics despite the lower parameter count and faster runtimes.
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time since the sampling distribution is uniform. RWL incurs zero cost compara-
tively and has shown to be a competitive alternative to multi-task optimizations
methods. DWA addresses the pet-task training rates explicitly, by defining new
per-task loss weights based on the numeric loss values and the per-task, relative
descending rate. LS refers to simple linear scalarization, which attempts to bridge
the magnitudes of the per-task gradients. We repeat those experiments across three
MOST architectures: MOST-NET [165], the proposed MOST-NET++, and the
optimized MOST-NSS++.

Across various runs and tasks, ATB consistently outperforms the other meth-
ods, as detailed in Table 6.3. Notably, ATB demonstrates better performance and
contributes to more stable training, as evidenced by the smoothness of the training
curves. It is worth noting that, among the MOST architectures, MOST-NSS++ ex-
hibits the least sensitivity to different training regimes, highlighting the effectiveness
of its design.

Our experiments reveal that while both DWA and RWL generally outperform
LS, they can exhibit instability. It is further evident that, DWA shows better training
curves than RWL. DWA addresses the pet-task training rates explicitly. RWL on
the other hand lacks explicit handling of diverse training speeds. In our experiments
we find it to be less stable than simple linear scalarization.

Architecture Method PSNR ↑ SSIM ↑ MACE ↓ IoU ↑ #P(M) ↓ FPS ↑
MOST-NET LS 31.14 (28.72) 0.977 (0.972) 6.47 (5.48) 0.599 (0.604) 8.7 5.0
MOST-NET RWL 30.48 (29.94) 0.973 (0.969) 6.80 (5.63) 0.624 (0.595) 8.7 5.0
MOST-NET DWA 31.57 (29.71) 0.977 (0.971) 6.26 (5.57) 0.598 (0.542) 8.7 5.0
MOST-NET ATB 32.55 (30.82) 0.984 (0.980) 5.94 (5.15) 0.649 (0.616) 8.7 5.0
MOST-NET++ LS 31.24 (29.07) 0.976 (0.969) 5.51 (4.51) 0.644 (0.604) 8.9 5.0
MOST-NET++ RWL 33.21 (31.99) 0.979 (0.974) 5.62 (4.73) 0.635 (0.586) 8.9 5.0
MOST-NET++ DWA 32.81 (30.71) 0.979 (0.976) 5.44 (5.53) 0.642 (0.588) 8.9 5.0
MOST-NET++ ATB 33.69 (32.92) 0.984 (0.980) 5.85 (5.14) 0.643 (0.597) 8.9 5.0
MOST-NSS++ LS 33.56 (32.45) 0.984 (0.982) 5.40 (4.32) 0.641 (0.612) 6.8 6.4
MOST-NSS++ RWL 33.07 (32.51) 0.983(0.981) 5.21 (4.34) 0.628 (0.585) 6.8 6.4
MOST-NSS++ DWA 33.78 (32.00) 0.985 (0.982) 5.07 (4.50) 0.626 (0.585) 6.8 6.4
MOST-NSS++ ATB 33.82 (32.66) 0.985 (0.982) 4.85 (3.85) 0.615 (0.608) 6.8 6.4

Table 6.3: Performance evaluation for ATB against DWA, RWL and LS on the test
(validation) set for three different MOST architectures. ATB outperforms compared
methods for most tasks and architectures, and generalizes better on the test set.

Comparisons

We further showcase the performance of the final solutions on the dental ap-
plication by comparing them to established state-of-the-art single-task models, as
summarized in Table 6.4. We adapt MIMO-UNet and ESTRNN, specifically de-
signed for restoration tasks, and integrate them into our framework. Additionally,
we incorporate DeepLabv3+ and UNET++ for semantic segmentation, and imple-
ment HMG for homography estimation, successfully reproducing the MS-COCO
results reported by the authors. Our baseline metrics involve blindly predicting
restored images, homography, and segmentation using input frames, an identity
matrix (representing no motion), and assigning all pixels to teeth classes.

MOST-NSS++ demonstrates superior performance compared to the restora-
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tion networks, with substantial improvements. They perform competitively, if
not slightly lower, in homography estimation and semantic segmentation. MOST-
NSS++ outperforms MOST-NET++ by a large margin on restoration and homog-
raphy estimation while performing slightly worse only for segmentation, with less
parameters and better runtimes. Notably, MOST-NSS++ achieves further perfor-
mance enhancement over MOST-NET++ while employing 24% fewer parameters
and achieving a 28% increase in frames per second (FPS).

Architecture PSNR ↑ SSIM ↑ MACE ↓ IoU ↑ #P(M) ↓ FPS ↑
BASELINE 17.39 (18.84) 0.821 (0.857) 9.19 (7.59) 0.254 (0.206) – –
HMG [81] – – 4.24 (3.78) – 6.2 28.4
MIMO-UNet [49] 29.18 (29.54) 0.977 (0.975) – – 6.8 4.6
ESTRNN [48] 33.08 (32.94) 0.980 (0.981) – – 2.3 10.6
UNET++ [89] – – – 0.695 (0.762) 50.0 7.9
DL [90] – – – 0.680 (0.745) 26.7 25.5
MOST-NET [165] 32.55 (30.82) 0.984 (0.980) 5.94 (5.15) 0.649 (0.616) 8.7 5.0
MOST-NET++ 33.69 (32.92) 0.984 (0.980) 5.85 (5.14) 0.643(0.597) 8.9 5.0
MOST-NSS++ 33.82 (32.66) 0.985 (0.982) 4.85 (3.85) 0.615 (0.608) 6.8 6.4

Table 6.4: Performance evaluation of MOST-NET++ and MOST-NSS++ against
single- and multi-task networks on the test (validation) set. The proposed network
and its reduced variant outperform previous multi-task work. They further perform
competitively, or even better than state-of-the-art single-taskers, at lower computa-
tional resources.

Qualitative Results

We further illustrate the qualitative results of this experimental study in Fig-
ure 6.11. From left to right, columns depict the previous and current input frames,
the previous frame overlaid on the current frame without alignment, i.e. warped
with the identity matrix (large differences are illustrated with red and cyan colors),
the homography-warped previous frame, overlaid on the current one (smaller red
and cyan color intensities show better alignment), the output segmentation mask,
and the restored current frame. The network yields vivid colors with less noise and
blur compared to the input frames. Simultaneously, it can generally segment the
masks (rows 1,2,4 and 6) but fails on very dark imagery (row 5) when artifacts such
as blood (row 3) or excessive water appear. Last, the homography estimations are
satisfying for small inter-frame motion but fail when the scale component becomes
larger since the variance in the motion fields increases, and the optimal homography
is compromised. Row 6 shows a successful example where the misalignment of col-
umn 2 is drastically recovered in column 3. Row 3 further shows good results where
the network manages to align the frames regardless of the tooth deformation caused
by the water.

Thereafter, we visualize the qualitative results of video restoration compared
to other state-of-the-art methods in Figure 6.12. Despite accommodating multiple
tasks, MOST-NSS++ outputs better colors and sharper edges compared to MOST-
NET and popular, state-of-the-art single-task networks trained for the same task.
The differences are clearly reflected on the PSNR metric.

Last, we showcase how MOST-NSS++ improves performance with each ad-
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(a) Bt (b) WI(Bt−1) (c) WĤ(Bt−1) (d) M̂t (e) R̂t (f) Rt

Figure 6.11: Qualitative results of MOST-NSS++ on six real intra-oral video se-
quences. We showcase the a) current input frame, b) unaligned consecutive frames
with the past frame overlaid on the current as WI(Bt−1), c) their homography-
aligned version as WĤ(Bt−1), d) segmentation map M̂t where blue and red denote
the FP and FN pixels respectively, e) restored frame R̂t and f) its GT label Rt .

89

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


(a) Frame
Top /

Bottom
PNSR

(b)
Patch

15.1 dB /
19.1 dB

(c)
MIMO-UNet

24.9 dB /
29.8 dB

(d)
ESTRNN
33.2 dB /
31.3 dB

(e)
MOST-NET

30.2 dB /
28.2 dB

(f)
MOST-
NSS++

36.7 dB /
35.6 dB

(g)
GT

∞/∞

Figure 6.12: Qualitative results for video restoration.

ditional scale of its derived architecture. The results are illustrated in Figure 6.13.
Indeed, segmentation and restoration results substantially improve with each scale.
Homography, on the contrary, bears no performance improvement and thus opti-
mally uses only one scale, to free the next scales from noisy gradients and non-used
parameters.

(a) Bt

Top /
Bottom /
Metric

(b) WI

11.21 /
9.72 /
MACE

(c) WĤ3

3.31 /
1.94 /
MACE

(d) M3
t

0.678 /
0.621 /
IoU

(e) M2
t

0.731 /
0.632 /
IoU

(f) R3
t

30.16 /
31.97 /
PSNR

(g) R1
t

34.23 /
35.13 /
PSNR

Figure 6.13: Qualitative performance improvement for MOST-NSS++ across scales.
Outputs at higher scales are more accurate, especially for video restoration where
colors are more vivid (teeth are whiter) and frames are sharper (texture in the
tongue and teeth contours are less blurry) at the highest scale R1

t , compared to
R3

t . Segmentation maps are similarly refined at the middle scale M2
t , compared to

M3
t , while homography estimation outputs achieve low errors already at the lowest

scale eliminating the necessity for upscaling and thus reducing model parameters
and minimizing gradient conflicts.
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6.4 Discussion and Conclusion

In this Chapter, we employed a modified MOST architecture, MOST-NET++.
The network was initially trained with the sum of the losses. Subsequently, it
was trained with NSS, which discovered a new architecture, MOST-NSS++. The
discovered network showed to improve in overall performance despite being essen-
tially pruned. Specifically, MOST-NSS++ achieves further performance enhance-
ment over MOST-NET++ while employing 24% fewer parameters and achieving a
28% increase in frames per second (FPS). We posit the improved network to the
scales-to-tasks structure derived, which confirms our third hypothesis that not all
scales are necessary for all tasks; even worse, such a setup introduces conflicts of gra-
dients in about half of the model updates. We show that MOST-NSS++ minimizes
gradient conflicts and advances further from MOST-NET++ to achieve very low
parameter count, and even runtimes, despite accommodating a multitude of tasks
with state-of-the-art performance.

Moreover we experimentally confirm that the MOST networks trained with
ATB are consistently more stable in our experiments. We observe that they tend to
plateau slower and generalize better on the test set. When most relevant methods are
gradient-based, wherein the backward pass time scales linearly with the number of
tasks, ATB bears almost no additional compute and is thus practical for real-world
applications. In this Chapter, we experimentally confirm the fourth hypothesis,
i.e. tasks train at uneven rates, and modelling those rates is beneficial for multi-
task learning, for the application and studies at hand. The study in itself poses
interesting questions for further investigation. How does ATB perform with scaling
up the number of tasks? How does it adapt to more variant loss landscapes?

The application results demonstrate notable achievements across various as-
pects. The restoration process exhibits commendable performance, reaching the
state-of-the-art for the dataset. Homography results display strong inter-frame ac-
curacy, although a drift appears when aligning longer-range video frames. Segmen-
tation, while showcasing relatively good performance compared to state-of-the-art,
encounters more challenges, potentially stemming from the disparity in training,
validation, or testing distributions. It is noteworthy that despite the dataset’s abun-
dant frames, each snippet displays and focuses on one or a few teeth, thus learning
solid teeth representations is more challenging. To enhance representation learning,
it is suggested that domain generalization or the incorporation of a vast array of
data augmentations, learned end-to-end following the Neural Architecture Search
paradigm, may be necessary. On the architectural design and at higher complexity,
the integration of spatial attention mechanisms has proven to substantially elevate
overall performance in architectural design.

In other notes with respect to this study, the trained MOST-NET++ model
was at an earlier stage of the work, reduced in 16bits of arithmetic precision via the
TensorRT framework. The truncated model achieved runtimes of approximately 24
FPS, verifying its capability for real-time video processing applications. The work

91

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


described in this Chapter chapter builds upon the foundational research presented
in a recent journal paper submission, incorporating and expanding upon its findings
to provide a more comprehensive and nuanced exploration within the context of this
doctoral thesis.
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Chapter 7

Conclusions and Outlook

7.1 Exploring Multi-Task Architectures to Combine Vi-
sual Enhancement and Understanding

When multiple tasks are of interest, this thesis shows experimentally that they
can be combined and jointly learnt in multi-task architectures. No matter the nature
of the tasks, visual cues among tasks are shared to some extend. Even when the task
outputs are less correlated, we hypothesized that there is some common knowledge
overlap, which, if incorporated within a multi-task convolutional neural network
appropriately, it can yield architectures with better performance-vs-compute trade-
off compared to single task networks. Moreover, exploiting the dynamic nature of
videos, provides abundant information that is typically disregarded in the multi-task
literature.

In Chapter 3, we addressed two visual enhancement, that despite belonging
to the same level of hierarchy, their outputs are less correlated. While the noise
map is omnipresent on the whole image, deblurring in dynamic scenes with diverse
depths is heavily space-variant. To study and tackle the tasks simultaneously we
proposed R2-D4 to solve video denoising and deblurring simultaneously. We showed
that we can achieve state-of-the-art performance on this challenging combination of
visual scene enhancement tasks, even with very high levels of noise. The perfor-
mance improvement over compared methods does originate from the architectural
design as we show that even with lesser number of parameters and floating point
operations, R2-D4 still performs better than end-to-end, single task networks. To a
large extend, we posit the success of this architecture to the deformable offsets which
function as accurate and robust motion predictors. The strong supervision from the
multi-task signal is in itself enough to learn pixel displacements, align frames and
effectively borrow context from neighbouring ones to restore even heavily degraded
frame regions.

In Chapter 4, we addressed video deblurring and segmentation as represen-
tative tasks of visual scene enhancement and understanding respectively. Despite
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belonging to a different level of hierarchy those two tasks are closely related. To
address them, we proposed a multi-task learning architecture that leverages spa-
tiotemporal features to handle motion. The proposed method achieves higher de-
blurring performance than its single task counterpart, and a reasonably high IoU
score for dental instrument segmentation and runs at significantly faster runtimes
than the combined single-task solutions. The multi-task network further achieves a
×4 reduction in parameters compared to the system of the single-taskers, facilitating
the deployment on smaller devices.

The experiments performed in Chapters 3 and 4 confirm that low- and mid-
level visual scene enhancement and understanding tasks such as the likes of video
deblurring, denoising and segmentation can be efficiently combined. Effectively,
we propose two novel multi-task architectures, capable of accommodating tasks at
faster runtimes or lower parameter count and GFLOPs compared to single task
architectures. Therefore, we experimentally verify our first hypothesis.

Our experiments pave the way for further research. Initially, we confined our
experimental focus to convolutional neural networks for a specific set of tasks. How
might one introduce an additional, yet challenging visual scene enhancement task,
such as video super-resolution, alongside denoising and deblurring? What would
the findings of a similar study on transformers? While numerous visual enhance-
ment tasks like shadow or reflection removal are increasingly relevant, their joint
integration in efficient multi-task architectures remains unexplored in the existing
literature. Another limitation of this thesis lies in its exclusive concentration on the
RGB domain. The exploration of multitasking across various modalities related to
medical imaging has been relatively overlooked. For instance, in the case of MRI
(Magnetic Resonance Imaging) slices, Computed Tomography (CT), or X-ray scans.
Integrating visual enhancement, such as signal denoising or contrast enhancement,
with the comprehension of anomalies, such as tumor recognition, fracture identifi-
cation, or other anatomical landmarks in medical images, could be learned concur-
rently. Just as we implicitly aligned frames via deformable offsets in Chapter 3,
one could register CT, X-ray, or MRI images to facilitate precise localization and
tracking of changes over time. Such experiments could extend the findings of this
thesis to different domains and modalities.

7.2 Leveraging Multi-task Interactions Across Convolu-
tional Scales

In Chapter 5, we introduced MOST-NET, a novel deep neural network de-
signed for video processing, addressing various tasks across multiple scales. The
architecture includes tasks ranging from low-level video restoration (deblurring, de-
noising, and color mapping) to mid-level tasks like homography-based motion es-
timation and teeth segmentation for dental scene understanding. The practical
applicability of MOST-NET in computer-aided dental interventions is highlighted,
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confirming the accommodation of diverse tasks in a multi-task architecture for RGB
video scenes. Notably, MOST-NET achieves lower parameter count than combined,
state-of-the-art, single-task models with fast runtimes, despite producing multiple
task outputs per scale. The Chapter further emphasizes the importance of frame
alignment, demonstrating how homography estimation as an auxiliary task can en-
hance the performance of other video tasks. To support further research in visual
scene enhancement and understanding tasks, the Vident-lab video dataset, featuring
natural teeth within phantom scenes, has been openly shared as a valuable resource
in a domain with limited publicly available materials. The dataset is detailed in
Katsaros et al. [165].

However, it is important to note some limitations. The MOST-NET architec-
ture is confined, again, on convolutional neural networks in the RGB domain, and its
experimental aspects primarily apply to macro-visualization environments. While
exploring other domains would be intriguing, our current findings are constrained by
the absence of relevant datasets. Additionally, despite integrating video denoising,
deblurring, and color mapping within MOST-NET, all tasks are consolidated and
modeled as a single visual scene enhancement task, following the findings of Chapter
3. Although this approach is effective, it raises questions about how the architecture
scales when multiple outputs are provided. Would the decoupled gradient from the
separated tasks be advantageous or detrimental to the other tasks? Lastly, explor-
ing how the current multi-task convolutional architecture performs when adapted
to a Transformer architecture is another interesting avenue. While attention blocks
have proven valuable for cross-task information exchange, pre-training may be es-
sential to match the performance of more mature and easily trainable convolutional
architectures.

7.3 Searching for Multi-task Interactions Across Con-
volutional Scales

In Chapter 6, we proposed a new variant of MOST-NET, dubbed MOST-
NET++, to improve the architectural components and the multi-task performance.
However, we observed that performing all tasks at all scales is not always the best
approach, as performance improvement across tasks is not uniform. Moreover, multi-
task gradients generate a high number of conflicts and can lead to suboptimal so-
lutions. To alleviate the issue, we searched for the optimal task interactions with
NSS, which discovered a new architecture, MOST-NSS++. NSS relies on simple
backpropagation and its gradients to determine the optimal structure instead of
computationally expensive reinforcement learning or evolutionary approaches. Con-
trasted to other methods that require bi-level optimization, NSS converges stably
across different runs and temperature hyper-parameters with single-level optimiza-
tion.

The discovered network showed to improve in overall performance despite be-
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ing essentially pruned. Specifically, MOST-NSS++ achieves further performance en-
hancement over MOST-NET++ while employing 24% fewer parameters and achiev-
ing a 28% increase in frames per second (FPS). We posit the improved network to
the scales-to-tasks structure derived, which confirms our third hypothesis that not
all scales are necessary for all tasks; even worse, such a setup introduces conflicts of
gradients in about half of the model updates. We show that MOST-NSS++ mini-
mizes gradient conflicts and advances further from MOST-NET++ to achieve very
low parameter count, and even runtimes, despite accommodating a multitude of
tasks with state-of-the-art performance. Those aforementioned experiments, verify
the third hypothesis of this doctoral dissertation.

While NSS utilizes SNAS and the Softmax-Gumbel trick to acquire the op-
timal scales-to-tasks structure, more recent NAS methods demonstrate enhanced
performance. DrNAS has garnered significant attention as an intriguing alterna-
tive. A thorough comparison between the current NSS approach based on DARTS,
SNAS, and DrNAS, for example, could offer valuable insights into the learning dy-
namics of the MOST architecture and potentially enhance the acquired structure.
Another compelling avenue for research involves conducting similar experiments on
a Transformer-based MOST architecture to observe how these NAS methods per-
form with different architectures, benefiting from an improved gradient flow due to
the increased number of neural connections introduced by the inherent attention
mechanisms at each block.

7.4 Diverse Multi-task Training Speeds and Adaptive
Task Balancing

This thesis engages with the issue of diverse multi-task training speeds. Progress
across tasks often exhibits unevenness, leading some tasks’ progress to dominate oth-
ers, resulting in solutions that deviate significantly from the Pareto front. Existing
approaches typically rely on computationally expensive access to internal network
gradients, which scales linearly with the number of tasks. To mitigate this challenge,
we proposed an alternative solution called Adaptive Task Balancing (ATB), where
the loss weights are adjusted dynamically with each weight update.

The experimental results of Chapter 6 reaffirm that MOST networks trained
using ATB consistently exhibit more stable training curves. They tend to plateau
slower and showcase improved generalization on the test set. Importantly, ATB in-
troduces almost negligible additional computational overhead compared to relevant
methods, rendering it practical for real-world applications. The fourth hypothesis
of this thesis that tasks train at uneven rates is empirically validated, and incor-
porating this understanding through ATB proves beneficial for multi-task learning
in the application under consideration. This study prompts intriguing questions for
further exploration, such as assessing the performance of ATB when scaling up the
number of tasks and its adaptability to more diverse loss landscapes.
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As stated above, ATB does not access the network gradients, to support train-
ing with large datasets and number of tasks. Other related methods focus solely on
multi-task performance actually consider and access the multi-task network gradi-
ents, despite the memory requirements. However, the solutions typically treat the
per-task network gradients as an entity, and try to stabilize training as such, i.e. on
the whole network level. Another interesting line of research would be to attempt to
stabilize multi-task learning by considering the per-task gradients on each individual
layer or scale, thus offering more granularity on the modification of the multi-task
training dynamics.

7.5 Contributions

To conclude, this thesis enumerates the contributions mentioned below. Ini-
tially, I experimentally confirmed that visual scene enhancement and understand-
ing tasks can be effectively integrated within multi-task convolutional architectures.
Specifically, video deblurring was learnt in pairs with video denoising and segmenta-
tion, with better performance than combined single task networks at lower compute.
Therefore, two novel convolutional architectures were proposed. The first integrated
the two challenging visual scene enhancement tasks together for the first time in the
literature. The second addressed both visual enhancement and understanding tasks
together, solving deblurring and segmentation concurrently. This confirmed the first
hypothesis and was thoroughly discussed in Chapters 3 and 4.

Taking a step further, this thesis leveraged the multi-scale nature of convolu-
tional architectures as expressed by its feature maps, to accommodate five different
vision tasks of diverse hierarchies and scope. Specifically, a multi-task, multi-scale,
multi-output architecture was introduced, allowing multiple tasks to interact and
refine their predictions from the lowest scale, up to the highest. The assumptions,
design and experimental findings were presented in Chapter 5 and verified the second
hypothesis of this thesis.

Next, this thesis argued that embedding tasks within convolutional neural
network parameters essentially necessitates different compute and granularity for
each task. Therefore, I proposed Neural Scale Search to learn a more effective
architecture; instead of manually designing the branch-out strategy of the multi-
task decoders, NSS learnt them concurrently with the network weights. Chapter 6
discussed in part the NSS method, the experiments and the findings, and confirmed
that the learnt structure was better as evidenced by higher performance and lesser
multi-task gradient conflicts.

Last, this thesis introduced a simple yet effective training regime that ex-
perimentally outperformed related techniques and stabilized the multi-task training
without costly access to internal network gradients. The relevant descriptions and
experiments were discussed in parts of Chapter 6.

The contributions of this thesis were experimentally verified and part of the
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experimental results supporting this thesis have been published in several scientific
papers. In practical terms, the insights within this thesis can guide practitioners
seeking efficient solutions for multiple tasks, proposing topological designs, architec-
tural components, and multi-task training methodologies.

7.6 Future Work

The thesis primarily focuses on convolutional neural networks in the RGB do-
main, limiting exploration of other domains and modalities such as medical imaging
datasets like MRI, CT, or X-ray scans. Integration of tasks across various modal-
ities remains relatively unexplored. While this thesis successfully integrates tasks
including but not limited to video denoising, deblurring, homography estimation and
segmentation within multi-task architectures, questions arise regarding the scalabil-
ity of the architecture when multiple outputs are provided. Naturally the gradient
vectors grow in number with the number of the tasks, incurring gradient conflicts
and compromising multi-task performance. Moreover, exploring the multi-task be-
haviour in Transformer architectures, and the necessity of pre-training for matching
the performance of convolutional architectures, warrants further investigation. The
thesis addresses the issue of uneven progress across tasks during multi-task training,
proposing Adaptive Task Balancing (ATB) as a solution. However, questions remain
about its adaptability to diverse loss landscapes, scalability with a larger number
of tasks, and potential modifications to stabilize multi-task learning by considering
per-task gradients on individual layers or scales for more granular modification of
training dynamics.
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dependently moving or uniform motion scenarios. . . . . . . . . . . . 50

3.5 Mean PSNR versus GFLOPs for three R2-D4 variants compared to
ESTRNN and STFAN. . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.6 Qualitative Results of R2D4 against compared methods. In zoomed
areas, red and green rectangles highlight artifacts and more accurate
reconstructions, respectively. The first, second, third and fourth rows
were generated with severe, severe, moderate and low noise. . . . . . 52

3.7 Qualitative results on an in-house dental dataset. Clearly, R2D4 gen-
eralizes across scenes and is able to restore video frames in multiple
application environments. . . . . . . . . . . . . . . . . . . . . . . . . 53
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4.1 Overview of the proposed method. The top figure illustrates a higher
level scheme whereas the bottom one contains depicts the architec-
tural details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Qualitative results of the proposed method. From left to right: In-
put blurry frame (B), deblurred output frame (R̂), GT sharp frame
(R) and GT with overlaid mask (M̂). Green, yellow and blue pixels
correspond to TP, FP, FN, respectively. Best-viewed when zoomed in. 61

5.1 Our MOST-NET instantiation addresses three tasks for video en-
hancement: video restoration, teeth segmentation, and homography
estimation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2 A flowchart of dataset preparation. . . . . . . . . . . . . . . . . . . . 67

5.3 MOST-Net performance improves with output upscaling. . . . . . . 69

5.4 Our qualitative results of teeth-specific homography estimation (4th
column) and full frame restoration and teeth segmentation (5th col-
umn). MOST-NET can denoise video frames and translate pale colors
(first and second column) into vivid colors (5th column). Simultane-
ously, it can deblur and register frames wrt to teeth (4th column).
In addition, despite blurry edges in the inputs, MOST-NET produces
segmentation masks that align well with teeth contours (rows 1-3).
Failure cases (bottom panel, 4-5th rows) stem from heavy blur (4th
row, and tooth-like independently moving objects (5th row), such as
suction devices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.1 Processing real dental videos in a multi-task setting poses significant
challenges due to factors such as camera miniaturization and scene
characteristics influenced by artifacts, parallax, non-rigidity, ambigu-
ity, and texture scarcity. Top row examples highlight key restoration
challenges: dark images (a), blur (b), water interference (c), and sud-
den light changes across frames (d, e). Middle row instances feature
challenges in homography estimation: tooth deformations caused by
water (f, g, i, j) and teeth at varying depths, leading to different mo-
tion planes (h). Bottom row image provide examples illustrating
difficulties in teeth segmentation, including objects with colors re-
sembling teeth (e.g., gloves or sponges) (k), mirrored teeth (l), blood
on drilled regions (m), a lack of contextual cues for segmentation in
close-up views (n), and scenarios with multiple missing teeth (o), all
of which complicate the segmentation task. . . . . . . . . . . . . . . 74

6.2 The proposed MOST-NET++ achieves multi-scale feature exchange
and alignment, at the encoder level, and bottom-up multi-task output
interaction and refinement across scales, at the decoder level. . . . . 76
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6.3 The output space of a MOST network entails multiple task outputs
at multiple scales. NSS optimizes the task scaling by coupling the
innerscale differences with learnable coefficients in the learning ob-
jective, to derive a more efficient architecture, illustrated as the NSS
solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.4 Data acquisition and generation pipeline for the publicly available
Vident-Real-100 dataset. Top branch:We use a beam splitter in phan-
tom (PH) scenes to acquire pairs of video frames and learn a color
mapping network (CM).The learnt color function (CF) is applied
on the restored frames, outputted from the bottom branch.Bottom
branch: We acquire video sequences in real intra-oralscenes (R). The
frames are processed for noise removal and sharpening, before being
passed onto the CF component to colorize them. (b) Examples of
three videosnippets from the dataset . . . . . . . . . . . . . . . . . . 81

6.5 The same scales-to-tasks structure is derived for all temperatures
τ > 1 validating the robustness of the NSS solution. When τ = 1,
the solution is even sparser, retaining the highest scale only for the
restoration task, while performing segmentation and homography es-
timation solely at the lowest scale. . . . . . . . . . . . . . . . . . . . 84

6.6 The reduction of the MOST-NET++ architecture into MOST-NSS++.
Similarly to Figure 6.2, feature extraction and alignment remain iden-
tical. However, by omitting task-specific decoders at multiple scales,
MOST-NSS++ is more lightweight. MOST-NSS++ performs all tasks
at the lowest scale as shown by the outputs (R3,M3,H3) while it re-
tains the middle scale for segmentation (M2) and the highest scale
for restoration (R1). . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.7 Convergence diagnostics of the αs
i and ∆s

i variables for a temperature
of τ = 5, across three NSS runs. . . . . . . . . . . . . . . . . . . . . . 85

6.8 Percentage of multi-task gradient conflicts with respect to the total
number of updates per epoch for MOST-NET++ and MOST-NSS++
on a batch size of 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.9 ATB compared to DWA, RWL and LS on the validation set for three
different MOST architectures. ATB yields smoother curves on the
validation set indicating that optimization states revolve around flat-
ter regions of the feature space. . . . . . . . . . . . . . . . . . . . . . 86
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6.10 Performance across scales for MOST-NET++ (all-scales-to-all-tasks)
and MOST-NSS++ (discovered scales-to-tasks) architectures. Each
metric is illustrated with three bars for MOST-NET++ (left side of
the arrows), which predicts one output per task and scale. MOST-
NSS++ (right side of the arrows) on the contrary bears less bars as
not all tasks at all scales. MOST-NSS++ improves performance on
most metrics despite the lower parameter count and faster runtimes. 86

6.11 Qualitative results of MOST-NSS++ on six real intra-oral video se-
quences. We showcase the a) current input frame, b) unaligned
consecutive frames with the past frame overlaid on the current as
WI(Bt−1), c) their homography-aligned version as WĤ(Bt−1), d) seg-
mentation map M̂t where blue and red denote the FP and FN pixels
respectively, e) restored frame R̂t and f) its GT label Rt . . . . . . . 89

6.12 Qualitative results for video restoration. . . . . . . . . . . . . . . . . 90

6.13 Qualitative performance improvement for MOST-NSS++ across scales.
Outputs at higher scales are more accurate, especially for video restora-
tion where colors are more vivid (teeth are whiter) and frames are
sharper (texture in the tongue and teeth contours are less blurry)
at the highest scale R1

t , compared to R3
t . Segmentation maps are

similarly refined at the middle scale M2
t , compared to M3

t , while ho-
mography estimation outputs achieve low errors already at the lowest
scale eliminating the necessity for upscaling and thus reducing model
parameters and minimizing gradient conflicts. . . . . . . . . . . . . . 90
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List of Tables

3.1 Results of the proposed methods compared to state-of-the-art single-
task solutions on the test. PSNR (top) and SSIM (bottom) results
at three noise levels are illustrated. GFLOPs* for STFAN did not
include their FAC layers. The bold and underlined results indicate
the first and second rank, respectively. . . . . . . . . . . . . . . . . . 50
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2.2dB, performance degradation for video restoration, demonstrating
the synergy of the proposed architecture. . . . . . . . . . . . . . . . 83

6.3 Performance evaluation for ATB against DWA, RWL and LS on the
test (validation) set for three different MOST architectures. ATB
outperforms compared methods for most tasks and architectures, and
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6.4 Performance evaluation of MOST-NET++ and MOST-NSS++ against
single- and multi-task networks on the test (validation) set. The pro-
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work. They further perform competitively, or even better than state-
of-the-art single-taskers, at lower computational resources. . . . . . . 88
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