DEGREE OF T-EQUIVARIANT MAPS IN \mathbb{R}^n

JOANNA JANCZEWSKA

Department of Technical Physics and Applied Mathematics Gdańsk University of Technology Narutowicza 11/12, 80-952 Gdańsk, Poland E-mail: janczewska@mif.pg.gda.pl

MARCIN STYBORSKI

Department of Technical Physics and Applied Mathematics Gdańsk University of Technology Narutowicza 11/12, 80-952 Gdańsk, Poland and Ph.D. student of the Institute of Mathematics, Polish Academy of Sciences E-mail: marcins@impan.gov.pl

Abstract. A special case of *G*-equivariant degree is defined, where $G = \mathbb{Z}_2$, and the action is determined by an involution $T : \mathbb{R}^p \oplus \mathbb{R}^q \to \mathbb{R}^p \oplus \mathbb{R}^q$ given by T(u, v) = (u, -v). The presented construction is self-contained. It is also shown that two *T*-equivariant gradient maps $f, g : (\mathbb{R}^n, S^{n-1}) \to (\mathbb{R}^n, \mathbb{R}^n \setminus \{0\})$ are *T*-homotopic iff they are gradient *T*-homotopic. This is an equivariant generalization of the result due to Parusiński.

1. Introduction. Let Ω be an open bounded subset of \mathbb{R}^n . Consider a continuous map $f: \overline{\Omega} \to \mathbb{R}^n$ such that f is not equal to 0 at any point on the boundary of Ω . Then an integer deg (f, Ω) called the Brouwer degree can be associated to f. The classical works on this subject are [3], [12], [13], and a modern one is [11]. It is well known that the Brouwer degree is an invariant of homotopy. This means that if $h: \overline{\Omega} \times [0, 1] \to \mathbb{R}^n$ is a homotopy nowhere vanishing on $\partial\Omega \times [0, 1]$ then deg $(h_t, \Omega) = \deg(h_0, \Omega)$ for all $t \in [0, 1]$, where $h_t(x) = h(x, t)$.

Let G be a compact Lie group. Assume that V is a real finite-dimensional representation of G and $n = \dim V$. Take $\Omega \subset V$ and $f : \overline{\Omega} \to V$ as above. In addition, suppose that Ω is G-invariant $(gx \in \Omega \text{ for all } x \in \Omega, g \in G)$ and f is G-equivariant (f(gx) = gf(x))

Key words and phrases: involution, T-equivariant degree, classification of T-equivariant maps.

Supported by Grant KBN no. 1 P03A 042 29.

The paper is in final form and no version of it will be published elsewhere.

²⁰⁰⁰ Mathematics Subject Classification: 47H11.

for all $x \in \overline{\Omega}$, $g \in G$). In this case, the *G*-equivariant degree $\text{Deg}_G(f, \Omega) \in B(G)$ is defined, where B(G) stands for the Burnside ring of *G*. This degree was introduced by Ize, Massabó and Vignoli in [10]. Up till now, it was considered by many authors. See for instance [6], [11] and [15]. Of course, *G*-equivariant degree is an invariant of *G*-equivariant homotopy $(h(gx, t) = gh(x, t) \text{ for all } x \in \overline{\Omega}, t \in [0, 1], g \in G).$

Let G be equal to \mathbb{Z}_2 . The action of \mathbb{Z}_2 on \mathbb{R}^n is determined by a decomposition of \mathbb{R}^n onto the direct sum $\mathbb{R}^p \oplus \mathbb{R}^q$ and the involution T(u, v) = (u, -v), where n = p + q, $p, q \in \mathbb{N} \cup \{0\}$ and $u \in \mathbb{R}^p$, $v \in \mathbb{R}^q$. In fact, to define the \mathbb{Z}_2 -equivariant degree we do not need to use the representation theory. In this work we would like to describe a construction of this degree. We will call it *T*-equivariant degree.

Our approach is alternative to the one by Granas and Dugundji in [8]. There are two basic differences between our and their approach. Contrary to Granas and Dugundji, from the beginning we work with the family of T-equivariant maps (see Sec. 6, §20, Theorem 1.2, pp. 551–552 in [8], and Lemma 3.2, Conclusion 3.3 here). We also introduce notions of T-equivariant normal maps and homotopies, which are different from ones in [8]. Moreover, the proofs of all lemmas and propositions needed to define the degree are complete.

Our construction is divided into five main steps. Each step is a separate section.

In [14], Parusiński showed that if we have two gradient vector fields on the unit ball in \mathbb{R}^n and nowhere vanishing on the sphere, then they are homotopic if and only if they are gradient homotopic. In the last section we will prove this theorem in *T*-equivariant case. Namely, consider two *T*-equivariant gradient vector fields f and g on the unit ball in \mathbb{R}^n and nowhere vanishing on the sphere. It is shown that if there is a *T*-equivariant homotopy joining f to g then there is a *T*-equivariant gradient homotopy joining f to g. Our result suggests that there is no interesting generalization of *T*-equivariant degree on gradient vector fields. The proof is based on the latest results by Ferrario (see [4]) and Dancer, Geba and Rybicki (see [1]).

2. T-equivariant maps and homotopy. Let $\mathbb{R}^n = \mathbb{R}^p \oplus \mathbb{R}^q$, where $n \in \mathbb{N}, p, q \in \mathbb{N} \cup \{0\}$ and n = p + q. For every $x \in \mathbb{R}^n$ we write x = (u, v), where $u \in \mathbb{R}^p$ and $v \in \mathbb{R}^q$. Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be given by

$$T(u,v) := (u,-v).$$

The map T is a linear isomorphism and an involution, i.e. $T^2 = \mathrm{Id}_{\mathbb{R}^n}$.

DEFINITION 2.1. A set $X \subset \mathbb{R}^n$ is *T*-invariant if $T(X) \subset X$.

If a set X is T-invariant then T(X) = X and $T|_X : X \to X$ is an involution onto X.

DEFINITION 2.2. Let $X \subset \mathbb{R}^n$ be *T*-invariant.

1. A map $f: X \to \mathbb{R}^n$ is called *T*-equivariant if f(Tx) = Tf(x) for all $x \in X$.

2. $h: X \times [0,1] \to \mathbb{R}^n$ is called a *T*-equivariant homotopy if it is continuous and h(Tx,t) = Th(x,t) for all $x \in X$ and $t \in [0,1]$.

3. A function $\tau: X \to \mathbb{R}$ is called *T*-equivariant if $\tau(Tx) = \tau(x)$ for all $x \in X$.

Remark that if $f = (f_1, f_2)$, where $f_1 : X \to \mathbb{R}^p$ and $f_2 : X \to \mathbb{R}^q$, then f is *T*-equivariant if and only if $f_1(u, -v) = f_1(u, v)$ and $f_2(u, -v) = -f_2(u, v)$ for all $(u, v) \in X$.

From now on, every open bounded T-invariant subset of \mathbb{R}^n is said to be T-admissible. Assume that $\Omega \subset \mathbb{R}^n$ is T-admissible. It is obvious that $\overline{\Omega}$ is T-invariant. We say that $f: \overline{\Omega} \to \mathbb{R}^n$ is T-admissible if f is continuous, T-equivariant and $f(x) \neq 0$ for all $x \in \partial \Omega$. We will denote by $\mathcal{A}_T(\Omega)$ the family of all T-admissible maps from $\overline{\Omega}$ into \mathbb{R}^n . In the same spirit we generalize the notion of homotopy. We say that a homotopy $h: \overline{\Omega} \times [0,1] \to \mathbb{R}^n$ is T-admissible if h is T-equivariant and $h(x,t) \neq 0$ for all $x \in \partial \Omega$ and $t \in [0,1]$. We will denote by $\mathcal{H}\mathcal{A}_T(\Omega)$ the family of all T-admissible homotopies from $\overline{\Omega} \times [0,1]$ into \mathbb{R}^n .

DEFINITION 2.3. We say that f is homotopic to g in $\mathcal{A}_T(\Omega)$ and write $f \sim g$ in $\mathcal{A}_T(\Omega)$ if there exists $h \in \mathcal{H}\mathcal{A}_T(\Omega)$ joining f to g, i.e. h(x,0) = f(x) and h(x,1) = g(x) for all $x \in \overline{\Omega}$.

It is easy to check that ~ is an equivalence relation in $\mathcal{A}_T(\Omega)$. The homotopy class of $f \in \mathcal{A}_T(\Omega)$ under ~ will be denoted by [f]. Finally, the set of all homotopy classes of the relation ~ will be denoted by $\mathcal{A}_T[\Omega]$.

3. T-equivariant generic maps. Let $\Omega \subset \mathbb{R}^n$ be T-admissible. Here and subsequently,

 $\mathcal{A}_T^{\infty}(\Omega) := \{ f \in \mathcal{A}_T(\Omega) : f_{|\Omega} \text{ is smooth} \},\$

 $\mathcal{HA}_T^{\infty}(\Omega) := \{ h \in \mathcal{HA}_T(\Omega) : h_{t|\Omega} \text{ is smooth for } t \in [0,1] \},\$

where $h_t: \overline{\Omega} \to \mathbb{R}^n$ is defined by $h_t(x) := h(x, t)$.

DEFINITION 3.1. We say that f is homotopic to g in $\mathcal{A}_T^{\infty}(\Omega)$ and write $f \simeq g$ in $\mathcal{A}_T^{\infty}(\Omega)$ if there exists $h \in \mathcal{H}\mathcal{A}_T^{\infty}(\Omega)$ joining f to g.

The relation \simeq is easily seen to be an equivalence relation in $\mathcal{A}_T^{\infty}(\Omega)$.

A map $f \in \mathcal{A}_T^{\infty}(\Omega)$ is said to be *generic* if $0 \in \mathbb{R}^n$ is a regular value of $f_{|\Omega}$, i.e. the derivative $Df(x) : \mathbb{R}^n \to \mathbb{R}^n$ is an isomorphism for all $x \in f^{-1}(\{0\})$.

In this section we show that under some restrictions on Ω , every homotopy class in $\mathcal{A}_T[\Omega]$ possesses a *T*-equivariant generic map. For this purpose we prove now a few lemmas.

Let K be a compact subset of \mathbb{R}^n . A map $f: K \to \mathbb{R}^n$ is called *smooth* if there exists an open set $X \subset \mathbb{R}^n$ such that $K \subset X$ and there exists a smooth map $\tilde{f}: X \to \mathbb{R}^n$ such that $\tilde{f}_{|K} = f$. Let $\{U_i\}_{i=1}^k$ be an open covering of K. Set $U = \bigcup_{i=1}^k U_i$. We call a family of smooth functions $\lambda_i: U \to [0, 1]$, where $i = 1, 2, \ldots, k$, a smooth partition of unity subordinate to the covering $\{U_i\}_{i=1}^k$, if this family satisfies the following conditions:

- supp $\lambda_i = \overline{\{x \in \mathbb{R}^n : \lambda_i(x) \neq 0\}} \subset U_i$ for every $i = 1, 2, \dots, k$,
- $\sum_{i=1}^{k} \lambda_i(y) = 1$ for every $y \in K$.

It is well known that such a partition exists (see [16]). Additionally, if K and every U_i are T-invariant sets and every λ_i is a T-equivariant function then we say that $\{U_i\}_{i=1}^k$ is a T-invariant covering of K and $\{\lambda_i\}_{i=1}^k$ is a T-equivariant partition of unity.

LEMMA 3.1. Assume that $K \subset \mathbb{R}^n$ is compact and T-invariant, and $\{U_i\}_{i=1}^k$ is an open T-equivariant covering of K. Then there exists a smooth T-equivariant partition of unity subordinate to the covering $\{U_i\}_{i=1}^k$.

Proof. Let $\{\lambda_i\}_{i=1}^k$ be a smooth partition of unity subordinate to the covering $\{U_i\}_{i=1}^k$ of K. For every i = 1, 2, ..., k, let $\hat{\lambda}_i$ be given by $\hat{\lambda}_i = \frac{1}{2}(\lambda_i + \lambda_i T)$. It is obvious that each function $\hat{\lambda}_i$ is smooth and T-equivariant. The family $\{\hat{\lambda}_i\}_{i=1}^k$ is a desired one.

Let $K \subset \mathbb{R}^n$ be compact and *T*-invariant. We say that *T* acts freely on *K* if $Tx \neq x$ for every $x \in K$, i.e. $K \cap \mathbb{R}^p = \emptyset$. Then

$$\operatorname{dist}(K, \mathbb{R}^p) := \inf\{|x - y| : x \in K, \ y \in \mathbb{R}^p\}$$

is a positive number.

LEMMA 3.2. Let $K \subset \mathbb{R}^n$ be a compact *T*-invariant set such that *T* acts freely on *K*. If a map $f : K \to \mathbb{R}^n$ is continuous and *T*-equivariant then for every $\varepsilon > 0$ there is a smooth *T*-equivariant map $g : K \to \mathbb{R}^n$ such that

$$\sup_{x \in K} |f(x) - g(x)| < \varepsilon.$$

From now on, B(a, r) stands for an open ball of radius r, centered at a point $a \in \mathbb{R}^n$.

Proof. Fix $\varepsilon > 0$. Since K is compact, f is uniformly continuous. Hence, there is $\delta > 0$ such that if $|x - y| < \delta$ then $|f(x) - f(y)| < \varepsilon$. Set $\delta' = \min\{\delta, \operatorname{dist}(K, \mathbb{R}^p)\}$, and $U_x = B(x, \delta')$ for every $x \in K$. Then

- $TU_x = B(Tx, \delta'),$
- $U_x \cap TU_x = \emptyset$,
- $K \subset \bigcup_{x \in K} (U_x \cup TU_x).$

The compactness of K implies that there exist points $x_1, x_2, \ldots, x_k \in K$ such that $K \subset \bigcup_{i=1}^k (U_i \cup TU_i)$, where $U_i = U_{x_i}$. Consider a smooth T-equivariant partition of unity $\{\lambda_i\}_{i=1}^k$ subordinate to the covering $\{U_i \cup TU_i\}_{i=1}^k$ of K. Set $U = \bigcup_{i=1}^k (U_i \cup TU_i)$. For every $i \in \{1, 2, \ldots, k\}$, let $\pi_i : U \to \mathbb{R}^n$ be a map such that $\pi_i(U_i) = \{x_i\}$ and $\pi_i(TU_i) = \{Tx_i\}$. The function $g: U \to \mathbb{R}^n$ is defined by

$$g(x) = \sum_{i=1}^{k} \lambda_i(x) f(\pi_i(x)).$$

Take $x \in U$. If $x \in U_i \cup TU_i$ then in a sufficiently small neighbourhood of x the map $f \circ \pi_i$ is constant. If $x \in \partial U_i \cup \partial TU_i$ then in a sufficiently small neighbourhood of x the function λ_i is equal to 0. Hence g is smooth.

Take $x \in K$. If $x \in U_i$ then $\pi_i(x) = x_i$ and $|\pi_i(x) - x| < \delta$. If $x \in TU_i$ then $\pi_i(x) = Tx_i$ and $|\pi_i(x) - x| < \delta$. Finally, if $x \notin U_i \cup TU_i$ then $\lambda_i(x) = 0$. From this it follows that

$$|g(x) - f(x)| = \left|\sum_{i=1}^{k} \lambda_i(x) f(\pi_i(x)) - \sum_{i=1}^{k} \lambda_i(x) f(x)\right| \le \sum_{i=1}^{k} \lambda_i(x) |f(\pi_i(x)) - f(x)| < \varepsilon.$$

Moreover,

$$g(Tx) = \sum_{i=1}^{k} \lambda_i(Tx) f(\pi_i(Tx)) = \sum_{i=1}^{k} \lambda_i(x) f(T\pi_i(x)) = \sum_{i=1}^{k} \lambda_i(x) Tf(\pi_i(x)) = Tg(x),$$

which completes the proof.

CONCLUSION 3.3. Let $\Omega \subset \mathbb{R}^n$ be a T-admissible set such that T acts freely on $\overline{\Omega}$. Then for every $f \in \mathcal{A}_T(\Omega)$ there exists $g \in \mathcal{A}_T^{\infty}(\Omega)$ such that $f \sim g$ in $\mathcal{A}_T(\Omega)$.

Proof. By the assumption, $\overline{\Omega}$ is a T-invariant compact set and T acts freely on $\overline{\Omega}$. Set $d = \inf\{|f(x)| : x \in \partial\Omega\}$. From Lemma 3.2 it follows that there exists $g \in \mathcal{A}^{\infty}_{T}(\Omega)$ such that

$$\sup_{x \in \overline{\Omega}} |f(x) - g(x)| < d.$$

Consider the linear homotopy $h: \overline{\Omega} \times [0,1] \to \mathbb{R}^n$ joining f to g, i.e.

$$h(x,t) = tg(x) + (1-t)f(x).$$

It is trivial that h is continuous and h(Tx,t) = Th(x,t) for all $x \in \overline{\Omega}$ and $t \in [0,1]$. Take $x \in \partial \Omega$ and $t \in [0, 1]$. Then

$$|h(x,t)| = |f(x) - t(f(x) - g(x))| \ge |f(x)| - t|f(x) - g(x)| \ge |f(x)| - |f(x) - g(x)| > 0.$$

Hence $h \in \mathcal{H}A_{\mathcal{T}}(\Omega)$

Hence $h \in \mathcal{HA}_T(\Omega)$.

Let $U \subset \mathbb{R}^n$ be an open bounded set, and $K \subset U$ be compact. It is well known that there exists a smooth function $\eta: \mathbb{R}^n \to [0,1]$ such that

$$\eta(x) = \begin{cases} 1 & \text{for } x \in K, \\ 0 & \text{for } x \in \mathbb{R}^n \setminus U \end{cases}$$

In the mathematical literature, η is called the Urysohn function (see [8]).

LEMMA 3.4. Let U and U_0 be T-admissible subsets of \mathbb{R}^n . Assume that $U_0 \subset U$. Then there exists a smooth T-equivariant function $\tilde{\eta}: \mathbb{R}^n \to [0,1]$ such that $\tilde{\eta}(x) = 1$ for every $x \in \overline{U}_0$ and $\tilde{\eta}(x) = 0$ for every $x \in \mathbb{R}^n \setminus U$.

The proof is similar to that of Lemma 3.1. We leave it to the reader.

LEMMA 3.5. Let Ω_0 and Ω be T-admissible subsets of \mathbb{R}^n such that $\Omega_0 \subset \Omega$. Suppose that $f_0 \simeq g_0$ in $\mathcal{A}^{\infty}_T(\Omega_0)$ and there is an $f \in \mathcal{A}^{\infty}_T(\Omega)$ such that $f_{|\Omega_0|} = f_0$. Then there exist a map $g \in \mathcal{A}_T^{\infty}(\Omega)$ and a T-admissible set $U_0 \subset \Omega_0$ satisfying the following conditions: 1. $f \simeq g$ in $\mathcal{A}_T^{\infty}(\Omega)$, 2. g(x) = f(x) for every $x \in \overline{\Omega} \setminus \Omega_0$, 3. $g(x) = g_0(x)$ for every $x \in U_0$, 4. $g_0^{-1}(\{0\}) \cap \Omega_0 = g^{-1}(\{0\}) \cap \Omega_0 \subset U_0.$ *Proof.* Let $\bar{h} \in \mathcal{HA}^{\infty}_{T}(\Omega_{0})$ be a homotopy joining f_{0} to g_{0} . Take an open T-invariant subset

 U_0 of \mathbb{R}^n such that $\overline{U}_0 \subset \Omega_0$ and $\overline{h}(x,t) \neq 0$ for every $(x,t) \in (\overline{\Omega}_0 \setminus U_0) \times [0,1]$. Consider an open T-invariant subset U of \mathbb{R}^n such that $\overline{U}_0 \subset U \subset \overline{U} \subset \Omega_0$. Let $\eta : \mathbb{R}^n \to [0,1]$ be a smooth T-equivariant Urysohn function for the pair of sets U_0 and U, i.e. $\eta(x) = 1$ for every $x \in \overline{U}_0$ and $\eta(x) = 0$ for every $x \in \mathbb{R}^n \setminus U$. Let $h : \overline{\Omega} \times [0, 1] \to \mathbb{R}^n$ be defined by

$$h(x,t) = \begin{cases} f(x) & \text{for } x \in \overline{\Omega} \setminus \overline{U}, \\ \overline{h}(x,t\eta(x)) & \text{for } x \in \Omega_0. \end{cases}$$

We check that $h \in \mathcal{HA}^{\infty}_{T}(\Omega)$ and $g(x) := h(x, 1), x \in \overline{\Omega}$, satisfies the claim of our lemma.

Remark that $(\overline{\Omega}\setminus\overline{U})\cap\Omega_0 = \Omega_0\setminus\overline{U}$. If $x \in \Omega_0\setminus\overline{U}$ then $\eta(x) = 0$, and hence $\bar{h}(x,t\eta(x)) = \bar{h}(x,0) = f(x)$ for all $t \in [0,1]$. In consequence, h is smooth and h(x,0) = f(x) for every $x \in \overline{\Omega}$. If $x \in \partial\Omega$ then $h(x,t) = f(x) \neq 0$ for all $t \in [0,1]$. Moreover, for $x \in \Omega_0$ and $t \in [0,1]$ we have $h(Tx,t) = \bar{h}(Tx,t\eta(Tx)) = \bar{h}(Tx,t\eta(x)) = T\bar{h}(x,t\eta(x)) = Th(x,t)$. Thus h is T-equivariant. Summarizing, $h \in \mathcal{HA}_T^{\infty}(\Omega)$ and it joins f to g.

Take $x \in \overline{\Omega} \setminus \Omega_0$. Since $\overline{\Omega} \setminus \Omega_0 \subset \overline{\Omega} \setminus U$, we get g(x) = h(x, 1) = f(x).

If $x \in U_0$ then $\eta(x) = 1$ and $g(x) = h(x, 1) = \bar{h}(x, 1) = g_0(x)$.

Finally, fix $x \in \Omega_0$. If $x \in \Omega_0 \setminus \overline{U}$ then $g(x) = \overline{h}(x,0) = f_0(x)$. If $x \in \overline{U}$ then $g(x) = \overline{h}(x,\eta(x))$. Since $\{x \in \overline{\Omega}_0 : \overline{h}(x,t) = 0 \text{ for any } t \in [0,1]\} \subset U_0$, we have $g_0^{-1}(\{0\}) \cap \Omega_0 = g^{-1}(\{0\}) \cap \Omega_0 \subset U_0$, which completes the proof.

Let $K \subset \mathbb{R}^n$ be nonempty, compact and *T*-admissible. Set $k \in \mathbb{N}$. We call a family of open sets $\{U_i\}_{i=1}^k$ a (T, k)-simple covering of K if it satisfies the following conditions:

- 1. $U_i \cap TU_i = \emptyset$ for every $i \in \{1, 2, \dots, k\}$,
- 2. $K \subset \bigcup_{i=1}^{k} (U_i \cup TU_i).$

We say that K is a (T, k)-simple set if it possesses a (T, k)-simple covering. If $K = \emptyset$, it is said to be (T, 0)-simple.

PROPOSITION 3.6. Every nonempty compact T-invariant subset K of \mathbb{R}^n such that T acts freely on K is (T, k)-simple for a certain $k \in \mathbb{N}$.

Proof. Since T acts freely on $K, K \cap \mathbb{R}^p = \emptyset$. Set $l = \text{dist}(K, \mathbb{R}^p)$. We have

$$K \subset \bigcup_{x \in K} B(x, l)$$

By compactness of K, there are $x_1, x_2, \ldots, x_k \in K$ such that

$$K \subset \bigcup_{i=1}^{k} B(x_i, l).$$

Let $U_i = B(x_i, l)$ for i = 1, 2, ..., k. It is evident that $U_i \cap TU_i = \emptyset$ and

$$K \subset \bigcup_{i=1}^{k} (U_i \cup TU_i).$$

Let $\Omega \subset \mathbb{R}^n$ be an open bounded set. For every $f : \overline{\Omega} \to \mathbb{R}^n$ such that $f_{|\Omega}$ is C^r -smooth, where $r \geq 1$, and $f(x) \neq 0$ for all $x \in \partial\Omega$, set

$$R(f) = \{ x \in f^{-1}(\{0\}) : Df(x) \in GL(\mathbb{R}^n) \}.$$

LEMMA 3.7. Assume that $\Omega \subset \mathbb{R}^n$ is *T*-admissible, *T* acts freely on $\overline{\Omega}$, which is (T, k)-simple for a certain $k \in \mathbb{N}$. Let $f \in \mathcal{A}^{\infty}_{T}(\Omega)$. Then there exists $g \in \mathcal{A}^{\infty}_{T}(\Omega)$ such that

- (i) $f \simeq g$ in $\mathcal{A}_T^{\infty}(\Omega)$,
- (ii) $g^{-1}(\{0\}) \setminus R(g)$ is (T, k 1)-simple.

Proof. Let $\{U_i\}_{i=1}^k$ be a (T, k)-simple covering of $\overline{\Omega}$. Set

$$K = \overline{\Omega} \setminus \bigcup_{i=2}^{k} (U_i \cup TU_i), \quad K_1 = K \cap U_1.$$

Let us remark that K is T-invariant, $K \subset (U_1 \cup TU_1)$, K and K_1 are compact. Thus K is (T, 1)-simple and $K = K_1 \cup TK_1$.

From the Sard theorem it follows that there exists a regular value y_0 of $f_{|\Omega \cap U_1}$ such that $|y_0| < \inf\{|f(x)| : x \in \partial\Omega\}$. Since $f \circ T = T \circ f$, we have $Df(Tx) = T \circ Df(x) \circ T$ for every $x \in \Omega$. Hence Ty_0 is also a regular value of $f_{|\Omega \cap TU_1}$. Moreover, $|Ty_0| = |y_0|$.

Let $\eta : \mathbb{R}^n \to [0,1]$ be a smooth function such that $\eta(x) = 1$ for all $x \in K_1$ and $\eta(x) = 0$ for all $x \in \mathbb{R}^n \setminus U_1$. Let $g : \overline{\Omega} \to \mathbb{R}^n$ be given by

$$g(x) = \begin{cases} f(x) - \eta(x)y_0 & \text{for } x \in U_1 \cap \overline{\Omega}, \\ f(x) - \eta(Tx)Ty_0 & \text{for } x \in TU_1 \cap \overline{\Omega}, \\ f(x) & \text{for } x \in \overline{\Omega} \setminus (U_1 \cup TU_1), \end{cases}$$

The map $g_{|\Omega}$ is easily seen to be smooth. Let

$$h(x,t) = f(x) + t(g(x) - f(x))$$

for all $(x,t) \in \overline{\Omega} \times [0,1]$. Take $x \in \overline{\Omega}$. If $x \in U_1 \cap \overline{\Omega}$ then $g(Tx) = f(Tx) - \eta(T^2x)Ty_0 = Tf(x) - \eta(x)Ty_0 = T(f(x) - \eta(x)y_0) = Tg(x)$. If $x \in TU_1 \cap \overline{\Omega}$ then $g(Tx) = f(Tx) - \eta(Tx)y_0 = Tf(x) - \eta(Tx)y_0 = Tf(x) - T^2\eta(Tx)y_0 = T(f(x) - \eta(Tx)Ty_0) = Tg(x)$. Finally, if $x \in \overline{\Omega} \setminus (U_1 \cup TU_1)$ then g(Tx) = f(Tx) = Tf(x) = Tg(x). Consequently, g is T-equivariant.

Since $|g(x) - f(x)| < |y_0|$ for all $x \in \overline{\Omega}$, we conclude that h is a homotopy joining f to g in $\mathcal{A}_T^{\infty}(\Omega)$.

Remark that $g^{-1}(\{0\}) \setminus R(g)$ is a compact set and $g^{-1}(\{0\}) \subset \bigcup_{i=2}^{k} (U_i \cup TU_i) \cup K$. Take $x \in K$. If $x \in K_1$ then $g(x) = f(x) - y_0$. If $x \in TK_1$ then $g(x) = f(x) - Ty_0$. From this $K \cap g^{-1}(\{0\}) \subset R(g)$, and so $g^{-1}(\{0\}) \setminus R(g) \subset \bigcup_{i=2}^{k} (U_i \cup TU_i)$ is (T, k-1)-simple.

LEMMA 3.8. Let $\Omega \subset \mathbb{R}^n$ be a *T*-admissible set such that *T* acts freely on $\overline{\Omega}$. Assume that $f \in \mathcal{A}^{\infty}_T(\Omega)$ and $f^{-1}(\{0\}) \setminus R(f)$ is (T, k)-simple for a certain $k \in \mathbb{N}$. Then there exists a map $g \in \mathcal{A}^{\infty}_T(\Omega)$ such that

- (i) $f \simeq g$ in $\mathcal{A}_T^{\infty}(\Omega)$,
- (ii) $g^{-1}(\{0\}) \setminus R(g)$ is (T, k 1)-simple.

Proof. Since $f^{-1}({0}) \setminus R(f)$ is (T, k)-simple, there is an open and T-invariant subset Ω_0 of Ω such that

- (a) $f^{-1}(\{0\}) \setminus R(f) \subset \Omega_0$,
- (b) $R(f) \subset \Omega \setminus \overline{\Omega}_0$,

(c) $\overline{\Omega}_0$ is (T, k)-simple.

Set $f_0 = f_{|\Omega_0}$. Combining (a) with (b), we see that $f_0 \in \mathcal{A}_T^{\infty}(\Omega_0)$. By Lemma 3.7 it follows that there is $g_0 \in \mathcal{A}_T^{\infty}(\Omega_0)$ such that $f_0 \simeq g_0$ in $\mathcal{A}_T^{\infty}(\Omega_0)$ and $g_0^{-1}(\{0\}) \setminus R(g_0)$ is (T, k - 1)-simple. From Lemma 3.5 we have that there is $g \in \mathcal{A}_T^{\infty}(\Omega)$ such that $f \simeq g$ in $\mathcal{A}_T^{\infty}(\Omega)$ and $g^{-1}(\{0\}) \setminus R(g) = g_0^{-1}(\{0\}) \setminus R(g_0)$. Thus $g^{-1}(\{0\}) \setminus R(g)$ is (T, k-1)-simple.

Applying the mathematical induction, Lemma 3.8 and Conclusion 3.3, one can immediately prove the next theorem.

THEOREM 3.9. Let $\Omega \subset \mathbb{R}^n$ be a *T*-admissible set such that *T* acts freely on $\overline{\Omega}$. If $f \in \mathcal{A}_T(\Omega)$ then there exists a generic map $g \in \mathcal{A}_T^{\infty}(\Omega)$ such that $f \sim g$ in $\mathcal{A}_T(\Omega)$.

CONCLUSION 3.10. Let $\Omega \subset \mathbb{R}^n$ be a *T*-admissible set such that *T* acts freely on $\overline{\Omega}$. If $f \in \mathcal{A}_T(\Omega)$ then $\deg(f, \Omega) \in 2\mathbb{Z}$.

Here and subsequently, $\deg(f, \Omega)$ stands for the Brouwer degree of f on Ω .

Proof. Fix $f \in \mathcal{A}_T(\Omega)$. By Theorem 3.9 there is a generic map $g \in \mathcal{A}_T^{\infty}(\Omega)$ such that $f \sim g$ in $\mathcal{A}_T(\Omega)$. Hence $\deg(f, \Omega) = \deg(g, \Omega)$. Since $T \circ g = g \circ T$, we have $Dg(x) = T \circ Dg(Tx) \circ T$ for every $x \in \Omega$. From this

$$g^{-1}(\{0\}) \cap \Omega = \{x_1, x_2, \dots, x_m\} \cup \{Tx_1, Tx_2, \dots, Tx_m\}$$

and sign det $Dg(x_i) = \text{sign det } Dg(Tx_i)$ for i = 1, 2, ..., m. In consequence,

$$\deg(g,\Omega) = \sum_{i=1}^{m} \operatorname{sign} \det Dg(x_i) + \sum_{i=1}^{m} \operatorname{sign} \det Dg(Tx_i) = 2\sum_{i=1}^{m} \operatorname{sign} \det Dg(x_i),$$

which completes the proof. \blacksquare

4. T-equivariant normal maps. Let $\Omega \subset \mathbb{R}^n$ be T-admissible and let $\varepsilon > 0$. Define

$$\Omega(\varepsilon) = \{ (u, v) \in \Omega : |v| < \varepsilon \}.$$

DEFINITION 4.1. Let $f = (f_1, f_2) \in \mathcal{A}_T(\Omega)$, where $f_1 : \overline{\Omega} \to \mathbb{R}^p$, and $f_2 : \overline{\Omega} \to \mathbb{R}^q$.

1. A map f is said to be ε -normal if there exists $\varepsilon > 0$ such that

$$f(u, v) = (f_1(u, 0), v)$$

for all $(u, v) \in \Omega(\varepsilon)$.

2. A map f is called *normal* if there exists $\varepsilon > 0$ such that f is ε -normal.

We will denote by $\mathcal{NA}_T(\Omega)$ the family of all normal maps from $\overline{\Omega}$ into \mathbb{R}^n .

DEFINITION 4.2. Let $\Omega \subset \mathbb{R}^n$ be a *T*-admissible set.

1. A homotopy $h \in \mathcal{HA}_T(\Omega)$ is called *normal* if there exists $\varepsilon > 0$ such that $h_t : \overline{\Omega} \to \mathbb{R}^n$ is ε -normal for every $t \in [0, 1]$.

2. We say that f is homotopic to g in $\mathcal{NA}_T(\Omega)$ and write $f \approx g$ in $\mathcal{NA}_T(\Omega)$ if there exists a normal homotopy joining f to g.

We will denote by $\mathcal{HNA}_T(\Omega)$ the family of all normal homotopies from $\overline{\Omega} \times [0,1]$ into \mathbb{R}^n . The homotopy class of $f \in \mathcal{NA}_T(\Omega)$ under \approx will be denoted by [[f]]. Finally, the set of all homotopy classes of the relation \approx will be denoted by $\mathcal{NA}_T[\Omega]$. The construction of the degree for maps in $\mathcal{A}_T(\Omega)$, which will be described in the next section, is based on the following theorem.

THEOREM 4.1. The map $\tau : \mathcal{NA}_T[\Omega] \to \mathcal{A}_T[\Omega], [[f]] \mapsto [f]$ is a bijection.

Proof.

Step 1. We show that τ is a surjection.

Fix $f = (f_1, f_2) \in \mathcal{A}_T(\Omega)$. We show that there is $g \in \mathcal{N}\mathcal{A}_T(\Omega)$ such that $f \sim g$ in $\mathcal{A}_T(\Omega)$. Set $d = \inf\{|f(x)| : x \in \partial\Omega\}$. Since f is T-equivariant, $f_2(u, 0) = 0$ for every $(u, 0) \in \overline{\Omega}$. By the continuity of f, there is $0 < \varepsilon \leq d/12$ such that if $x, y \in \overline{\Omega}$ and $|x - y| < 2\varepsilon$ then $|f_i(x) - f_i(y)| < d/6$ for i = 1, 2.

Let $\eta : \mathbb{R} \to [0,1]$ be a smooth function such that $\eta(t) = 1$ for every $|t| \leq \varepsilon$ and $\eta(t) = 0$ for every $|t| \geq 2\varepsilon$. Let $h : \overline{\Omega} \times [0,1] \to \mathbb{R}^n$ be defined by

$$h(u, v, t) = (1 - t\eta(|v|))f(u, v) + t\eta(|v|)(f_1(u, 0), v)$$

Then

$$\begin{split} h(T(u,v),t) &= h(u,-v,t) = (1-t\eta(|v|))f(u,-v) + t\eta(|v|)(f_1(u,0),-v) \\ &= (1-t\eta(|v|))Tf(u,v) + t\eta(|v|)T(f_1(u,0),v) = Th(u,v,t), \end{split}$$

for every $(u, v) \in \overline{\Omega}$ and $t \in [0, 1]$.

Take $(u,v) \in \partial \Omega$ and $t \in [0,1]$. If $|v| \ge 2\varepsilon$ then $h(u,v,t) = f(u,v) \ne 0$. If $|v| < 2\varepsilon$ then

$$\begin{split} |h(u,v,t)| &= |f(u,v) - t\eta(|v|) (f_1(u,v) - f_1(u,0), f_2(u,v) - v)| \\ &\geq |f(u,v)| - t\eta(|v|) |f_1(u,v) - f_1(u,0)| - t\eta(|v|) |f_2(u,v) - v| \\ &\geq |f(u,v)| - |f_1(u,v) - f_1(u,0)| - |f_2(u,v) - v| \\ &\geq |f(u,v)| - (|f_1(u,v) - f_1(u,0)| + |f_2(u,v)| + |v|) \\ &> d - 3\frac{d}{6} = \frac{d}{2} > 0. \end{split}$$

In consequence, $h \in \mathcal{HA}_T(\Omega)$. Set $g := h_1$. If $|v| \leq \varepsilon$ then $g(u, v) = h(u, v, 1) = (f_1(u, 0), v)$. Thus g is normal.

Step 2. We show that τ is an injection.

Take $f = (f_1, f_2) \in \mathcal{NA}_T(\Omega)$ and $g = (g_1, g_2) \in \mathcal{NA}_T(\Omega)$ such that $f \sim g$ in $\mathcal{A}_T(\Omega)$. We prove that $f \approx g$ in $\mathcal{NA}_T(\Omega)$. Let $h = (h_I, h_{II}) \in \mathcal{A}_T(\Omega)$ be a homotopy joining f to g in $\mathcal{A}_T(\Omega)$. Set $d = \inf\{|h(x,t)| : x \in \partial\Omega \wedge t \in [0,1]\}$. Since h is T-equivariant, we get $h_{II}(u, 0, t) = 0$ for every $(u, 0) \in \overline{\Omega}$ and $t \in [0, 1]$. Take $0 < \varepsilon \leq d/12$ such that f, g are 2ε -normal, and if $x, y \in \overline{\Omega}$ and $|x-y| < 2\varepsilon$ then |h(x,t) - h(y,t)| < d/6. Let $\eta : \mathbb{R} \to [0,1]$ be a smooth function such that $\eta(t) = 1$ for every $|t| \leq \varepsilon$ and $\eta(t) = 0$ for every $|t| \geq 2\varepsilon$. Let $\hat{h} : \overline{\Omega} \times [0,1] \to \mathbb{R}^n$ be given by

$$\hat{h}(u,v,t) = (1 - \eta(|v|))h(u,v,t) + \eta(|v|)(h_I(u,0,t),v).$$

We check at once that \hat{h} is a normal homotopy joining f to g.

5. *T*-equivariant degree. In this section we introduce the degree of *T*-equivariant maps in \mathbb{R}^n , called the *T*-equivariant degree. First we define this degree for *T*-equivariant normal maps, and next for all *T*-admissible ones.

Let $\Omega \subset \mathbb{R}^n$ be a *T*-admissible set and let $f = (f_1, f_2) \in \mathcal{NA}_{\mathcal{T}}(\Omega)$, where $f_1 : \overline{\Omega} \to \mathbb{R}^p$, $f_2 : \overline{\Omega} \to \mathbb{R}^q$. Set $\Omega_0 = \Omega \cap \mathbb{R}^p$. Assume that $\Omega_0 \neq \emptyset$. The map $g_0 : \overline{\Omega}_0 \to \mathbb{R}^p$ is given by $g_0(u) = f_1(u, 0)$. Since $f(u, v) \neq 0$ for all $(u, v) \in \partial\Omega$ and $f_2(u, 0) = 0$ for all $(u, 0) \in \overline{\Omega}$, we conclude that $g_0(u, v) \neq 0$ for all $(u, v) \in \partial\Omega_0$. Define

$$d_0 = \begin{cases} \deg(g_0, \Omega_0) & \text{if } \Omega_0 \neq \emptyset, \\ 0 & \text{if } \Omega_0 = \emptyset. \end{cases}$$

Since f is normal, there is $\varepsilon > 0$ such that $f(x) \neq 0$ for all $x \in \partial \Omega(\varepsilon)$. Set $\Omega_1 = \Omega \setminus \overline{\Omega(\varepsilon)}$. Let us remark that T acts freely on $\overline{\Omega}_1$. Define

$$g_1(x) = f(x),$$

where $x \in \overline{\Omega}_1$. It is evident that $g_1 \in \mathcal{A}_T(\Omega_1)$. By Conclusion 3.10 there exists an integer d_1 such that $\deg(g_1, \Omega_1) = 2d_1$. The *T*-equivariant degree of f on Ω is given as follows:

$$\deg_T(f,\Omega) = (d_0, d_1) \in \mathbb{Z} \oplus \mathbb{Z}.$$

Let us denote by \mathcal{N} the set of all pairs (f, Ω) such that $f \in \mathcal{NA}_T(\Omega)$ and $\Omega \subset \mathbb{R}^n$ is T-admissible.

THEOREM 5.1. The map $\deg_T : \mathcal{N} \to \mathbb{Z} \oplus \mathbb{Z}, (f, \Omega) \mapsto \deg_T(f, \Omega),$ possesses the following properties:

1. Homotopy invariance:

If $h \in \mathcal{HNA}_T(\Omega)$ then $\deg_T(h_t, \Omega) = \deg_T(h_0, \Omega)$ for every $t \in (0, 1]$.

2. Excision:

Assume that $\Omega_0 \subset \Omega$ is T-invariant and $f^{-1}(\{0\}) \cap \Omega \subset \Omega_0$. Then

$$\deg_T(f,\Omega) = \deg_T(f_{|\Omega_0},\Omega_0).$$

3. Additivity:

Assume that Ω_1 , Ω_2 are disjoint open T-invariant subsets of Ω such that $f^{-1}(\{0\}) \cap \Omega \subset \Omega_1 \cup \Omega_2$. Then

$$\deg_T(f,\Omega) = \deg_T(f_{|\Omega_1},\Omega_1) + \deg_T(f_{|\Omega_2},\Omega_2).$$

4. *Existence*:

If $\deg_T(f,\Omega) \neq 0$ then there exists a point $x \in \Omega$ such that f(x) = 0.

We call $\deg_T : \mathcal{N} \to \mathbb{Z} \oplus \mathbb{Z}$ the *T*-equivariant degree of normal maps. Its properties follow directly from the definition. It is worth pointing out that if $f \in \mathcal{NA}_T(\Omega)$ then there is the following dependence between $\deg(f, \Omega)$ and $\deg_T(f, \Omega)$:

$$\deg(f,\Omega) = d_0 + 2d_1, \qquad d_0 = \deg(f,\Omega(\varepsilon))$$

Let \mathcal{E} denote the family of all pairs (f, Ω) such that $f \in \mathcal{A}_T(\Omega)$ and Ω is *T*-admissible. Applying Theorem 4.1 one can extend the *T*-equivariant degree over \mathcal{E} . Consider $f \in \mathcal{A}_T(\Omega)$. There exists $g \in \mathcal{N}\mathcal{A}_T(\Omega)$ such that [g] = [f]. Set

$$\operatorname{Deg}_T(f,\Omega) = \operatorname{deg}_T(g,\Omega).$$

From Theorem 4.1 it follows that the above formula does not depend on the choice of g. DEFINITION 5.1. The map $\text{Deg}_T : \mathcal{E} \to \mathbb{Z} \oplus \mathbb{Z}, (f, \Omega) \mapsto \text{Deg}_T(f, \Omega)$, is called the *T*-equivariant degree.

The next theorem is a natural consequence of Definition 5.1 and Theorem 5.1.

THEOREM 5.2. The T-equivariant degree possesses the following properties:

1. If $h \in \mathcal{HA}_T(\Omega)$ then $\text{Deg}_T(h_t, \Omega) = \text{Deg}_T(h_0, \Omega)$ for every $t \in (0, 1]$.

2. Assume that $\Omega_0 \subset \Omega$ is T-invariant and $f^{-1}(\{0\}) \cap \Omega \subset \Omega_0$. Then

 $\operatorname{Deg}_T(f,\Omega) = \operatorname{Deg}_T(f_{|\Omega_0},\Omega_0).$

3. Assume that Ω_1 and Ω_2 are disjoint open *T*-invariant subsets of Ω such that $f^{-1}(\{0\}) \cap \Omega \subset \Omega_1 \cup \Omega_2$. Then

 $\operatorname{Deg}_T(f,\Omega) = \operatorname{Deg}_T(f_{|\Omega_1},\Omega_1) + \operatorname{Deg}_T(f_{|\Omega_2},\Omega_2).$

4. If $\text{Deg}_T(f,\Omega) \neq 0$ then there exists a point $x \in \Omega$ such that f(x) = 0.

6. *T***-homotopies versus gradient** *T***-homotopies.** In this section we prove the Parusiński theorem in *T*-invariant case.

From now on, we assume that $\mathbb{R}^n = \mathbb{R}^p \oplus \mathbb{R}^q$ and $p \geq 2$. Let B^n denote the open unit ball, S^{n-1} the unit sphere, and D^n the unit disc in \mathbb{R}^n centered at 0. We have $D^n = B^n \cup S^{n-1}$. It is trivial that these sets are *T*-invariant. Set $D^p = D^n \cap \mathbb{R}^p$, $B^p = B^n \cap \mathbb{R}^p$ and $S^{p-1} = S^{n-1} \cap \mathbb{R}^p$.

Among many generalizations of the Brouwer degree there is the stable equivariant degree. It was considered by several authors (see [2, 4, 17] and the references given there). The stable equivariant degree of the *T*-equivariant continuous map $f: S^{n-1} \to S^{n-1}$ is the element $d_T(f) \in \mathbb{Z} \oplus \mathbb{Z}$ given by

$$d_T(f) = (\deg(f, S^{p-1}), \deg(f, S^{n-1})).$$

Let $[S^{n-1}, S^{n-1}]_T$ denote the set of all *T*-equivariant homotopy classes of *T*-equivariant continuous self-maps of S^{n-1} . Let $[f]_T$ stands for the *T*-equivariant homotopy class of $f: S^{n-1} \to S^{n-1}$. D. Ferrario proved that the stable equivariant degree d_T classifies *T*-equivariant continuous self-maps of S^{n-1} (see Theorem 7.1 in [4]). This means that the map

$$[S^{n-1}, S^{n-1}]_T \ni [f]_T \longmapsto d_T(f) \in \mathbb{Z} \oplus \mathbb{Z}$$

is an injection.

PROPOSITION 6.1. Suppose that $f : \mathbb{R}^n \to \mathbb{R}^n$ is a *T*-equivariant continuous map such that $f(S^{n-1}) \subset \mathbb{R}^n \setminus \{0\}$. Then there exist a *T*-equivariant continuous map $\hat{f} : \mathbb{R}^n \to \mathbb{R}^n$ and a *T*-equivariant homotopy $h : \mathbb{R}^n \times [0, 1] \to \mathbb{R}^n$ such that

•
$$h_0 = f, h_1 = f$$
,

•
$$\hat{f}(S^{n-1}) \subset S^{n-1}$$
,

•
$$\hat{f}(D^n) \subset D^n$$
,

• $h(S^{n-1} \times [0,1]) \subset \mathbb{R}^n \setminus \{0\}.$

Proof. We check at once that $\hat{f} : \mathbb{R}^n \to \mathbb{R}^n$ given by

$$\hat{f}(x) = \begin{cases} |x| \left| f\left(\frac{x}{|x|}\right) \right|^{-1} f\left(\frac{x}{|x|}\right) & \text{for } x \neq 0, \\ 0 & \text{for } x = 0 \end{cases}$$

and $h(x,t) = t\hat{f}(x) + (1-t)f(x)$ satisfy all the claims.

Fix $f \in \mathcal{A}_T(B^n)$. Clearly, f can be extended to a T-equivariant continuous map over \mathbb{R}^n . Moreover, two different extensions of f are linear homotopic and the linear homotopy joining these extensions has no zeroes on $S^{n-1} \times [0, 1]$. Therefore we identify f with its extension. Let \hat{f} be a map as in Proposition 6.1. Then $\text{Deg}_T(f, B^n) = \text{Deg}_T(\hat{f}, B^n)$. Remark that there is one-to-one correspondence between $\text{Deg}_T(f, B^n) = (d_0, d_1)$ and $d_T(\hat{f}) = (\text{deg}(\hat{f}, S^{p-1}), \text{deg}(\hat{f}, S^{n-1}))$. Namely,

$$d_0 = \deg(\hat{f}, S^{p-1}), \qquad d_1 = \frac{1}{2} \left(\deg(\hat{f}, S^{n-1}) - \deg(\hat{f}, S^{p-1}) \right).$$

Therefore the map

$$\mathcal{A}_T[B^n] \ni [f] \longmapsto d_T(\hat{f}) \in \mathbb{Z} \oplus \mathbb{Z}$$

is an injection.

CONCLUSION 6.2. The T-equivariant degree $\text{Deg}_T(f, B^n)$ classifies T-admissible maps from D^n into \mathbb{R}^n .

Another generalization of the Brouwer degree is the *T*-equivariant degree for gradient *T*-equivariant maps from \mathbb{R}^n into \mathbb{R}^n . This degree was considered in [7, 5, 1].

Assume that $f : \mathbb{R}^n \to \mathbb{R}^n$ is a *T*-equivariant continuous map. We say that f is ∇_T -admissible if $f(S^{n-1}) \subset \mathbb{R}^n \setminus \{0\}$ and there exists a *T*-equivariant C^1 function $\varphi : \mathbb{R}^n \to \mathbb{R}$ such that $f = \nabla \varphi$. We will denote by $\nabla \mathcal{A}_T(B^n)$ the set of all ∇_T -admissible maps. In the same spirit we introduce the notion of ∇_T -admissible homotopy. Let $h : \mathbb{R}^n \times [0,1] \to \mathbb{R}^n$ be a *T*-equivariant homotopy. We say that h is ∇_T -admissible if $h(S^{n-1} \times [0,1]) \subset \mathbb{R}^n \setminus \{0\}$ and there exists a *T*-equivariant C^1 function $\chi : \mathbb{R}^n \times [0,1] \to \mathbb{R}$ such that $h(x,t) = \nabla_x \chi(x,t)$ for all $x \in \mathbb{R}^n$ and $t \in [0,1]$.

f is homotopic to g in $\nabla \mathcal{A}_T(B^n)$, if there is a ∇_T -admissible homotopy h joining f to g. The ∇_T -admissible homotopy class of $f \in \nabla \mathcal{A}_T(B^n)$ will be denoted by $[f]_{\nabla}$. The set of all ∇_T -admissible homotopy classes in $\nabla \mathcal{A}_T(B^n)$ will be denoted by $\nabla \mathcal{A}_T[B^n]$.

The *T*-equivariant degree of $f \in \nabla \mathcal{A}_T(B^n)$ is the element $\nabla_T \deg(f, B^n) \in \mathbb{Z} \oplus \mathbb{Z}$. From the construction made by Gęba in [5] (see formula 3.5, Theorems 3.2 and 3.3), it follows that

$$\nabla_T \deg(f, B^n) = \operatorname{Deg}_T(f, B^n).$$

Dancer, Gęba and Rybicki proved that this degree classifies ∇_T -admissible maps. More precisely, the map

 $\nabla \mathcal{A}_T[B^n] \ni [f]_{\nabla} \longmapsto \nabla_T \deg(f, B^n) \in \mathbb{Z} \oplus \mathbb{Z}$

is a bijection (see Corollary 4.1 and Remark 4.1 in [1]).

CONCLUSION 6.3. The T-equivariant degree $\text{Deg}_T(f, B^n)$ classifies ∇_T -admissible maps.

From Conclusions 6.2 and 6.3 we get a nice theorem.

THEOREM 6.4. Assume that $f, g \in \nabla \mathcal{A}_T(B^n)$. If f is homotopic to g in $\mathcal{A}_T(B^n)$ then f is homotopic to g in $\nabla \mathcal{A}_T(B^n)$.

Acknowledgments. We wish to express our sincere thanks to K. Gęba and M. Izydorek for their useful hints and comments.

References

- E. N. Dancer, K. Gęba, S. M. Rybicki, Classification of homotopy classes of equivariant gradient maps, Fund. Math. 185 (2005), 1–18.
- [2] T. tom Dieck, Transformation Groups, Walter de Gruyter, Berlin 1987.
- [3] J. Dugundji, A. Granas, *Fixed Point Theory*, Vol. I, Monografie Matematyczne 61, PWN, Warszawa 1982.
- [4] D. L. Ferrario, On the equivariant Hopf theorem, Topology 42 (2003), 447–465.
- K. Gęba, Degree for gradient equivariant maps and equivariant Conley index, in: Topological Nonlinear Analysis II (Frascati 1995), Progr. Nonlinear Differential Equations Appl. 27, Birkhäuser, Boston 1997, 247–272.
- [6] K. Gęba, W. Krawcewicz, J. Wu, An equivariant degree with applications to symmetric bifurcation problems. I. Construction of the degree, Proc. London Math. Soc. (3) 69 (1994), 377–398.
- [7] K. Gęba, I. Massabó, A. Vignoli, On the Euler characteristic of equivariant gradient vector fields, Boll. Un. Mat. Ital. A (7) 4 (1990), 243–251.
- [8] A. Granas, J. Dugundji, *Fixed Point Theory*, Springer Monogr. Math., Springer, New York 2003.
- [9] J. Ize, *Equivariant degree*, in: Handbook of Topological Fixed Point Theory, Springer, Dordrecht 2005, 301–337.
- [10] J. Ize, I. Massabó, A. Vignoli, Degree theory for equivariant maps I, Trans. Amer. Math. Soc. 315 (1989), 443–510.
- [11] W. Krawcewicz, J. Wu, Theory of Degrees with Applications to Bifurcation and Differential Equations, Wiley, New York 1997.
- [12] J. W. Milnor, Topology from the Differentiable Viewpoint, The Univ. Press of Virginia, Charlottesville 1965.
- [13] L. Nirenberg, Topics in Nonlinear Functional Analysis, Lecture Notes, 1973–1974, Courant Institute of Mathematical Sciences, New York University, New York 1974.
- [14] A. Parusiński, Gradient homotopies of gradient vector fields, Studia Math. 96 (1990), 73–80.
- [15] G. Peschke, Degree of certain equivariant maps into a representation sphere, Topology Appl. 59 (1994), 137–156.
- [16] M. Spivak, Calculus on Manifolds, PWN, Warsaw 1977 (in Polish).
- [17] H. Ulrich, Fixed Point Theory of Parametrized Equivariant Maps, Lecture Notes in Math. 1343, Springer, Berlin 1988.