DEGREE OF T-EQUIVARIANT MAPS IN \mathbb{R}^{n}

JOANNA JANCZEWSKA
Department of Technical Physics and Applied Mathematics
Gdańsk University of Technology
Narutowicza 11/12, 80-952 Gdańsk, Poland
E-mail: janczewska@mif.pg.gda.pl
MARCIN STYBORSKI
Department of Technical Physics and Applied Mathematics Gdańsk University of Technology
Narutowicza 11/12, 80-952 Gdańsk, Poland
and Ph.D. student of the Institute of Mathematics, Polish Academy of Sciences
E-mail: marcins@impan.gov.pl

Abstract

A special case of G-equivariant degree is defined, where $G=\mathbb{Z}_{2}$, and the action is determined by an involution $T: \mathbb{R}^{p} \oplus \mathbb{R}^{q} \rightarrow \mathbb{R}^{p} \oplus \mathbb{R}^{q}$ given by $T(u, v)=(u,-v)$. The presented construction is self-contained. It is also shown that two T-equivariant gradient maps $f, g:\left(\mathbb{R}^{n}, S^{n-1}\right) \rightarrow\left(\mathbb{R}^{n}, \mathbb{R}^{n} \backslash\{0\}\right)$ are T-homotopic iff they are gradient T-homotopic. This is

 an equivariant generalization of the result due to Parusiński.1. Introduction. Let Ω be an open bounded subset of \mathbb{R}^{n}. Consider a continuous map $f: \bar{\Omega} \rightarrow \mathbb{R}^{n}$ such that f is not equal to 0 at any point on the boundary of Ω. Then an integer $\operatorname{deg}(f, \Omega)$ called the Brouwer degree can be associated to f. The classical works on this subject are [3], [12], [13], and a modern one is [11]. It is well known that the Brouwer degree is an invariant of homotopy. This means that if $h: \bar{\Omega} \times[0,1] \rightarrow \mathbb{R}^{n}$ is a homotopy nowhere vanishing on $\partial \Omega \times[0,1]$ then $\operatorname{deg}\left(h_{t}, \Omega\right)=\operatorname{deg}\left(h_{0}, \Omega\right)$ for all $t \in[0,1]$, where $h_{t}(x)=h(x, t)$.

Let G be a compact Lie group. Assume that V is a real finite-dimensional representation of G and $n=\operatorname{dim} V$. Take $\Omega \subset V$ and $f: \bar{\Omega} \rightarrow V$ as above. In addition, suppose that Ω is G-invariant ($g x \in \Omega$ for all $x \in \Omega, g \in G$) and f is G-equivariant $(f(g x)=g f(x)$

[^0]for all $x \in \bar{\Omega}, g \in G)$. In this case, the G-equivariant degree $\operatorname{Deg}_{G}(f, \Omega) \in B(G)$ is defined, where $B(G)$ stands for the Burnside ring of G. This degree was introduced by Ize, Massabó and Vignoli in [10]. Up till now, it was considered by many authors. See for instance [6], [11] and [15]. Of course, G-equivariant degree is an invariant of G-equivariant homotopy $(h(g x, t)=g h(x, t)$ for all $x \in \bar{\Omega}, t \in[0,1], g \in G)$.

Let G be equal to \mathbb{Z}_{2}. The action of \mathbb{Z}_{2} on \mathbb{R}^{n} is determined by a decomposition of \mathbb{R}^{n} onto the direct sum $\mathbb{R}^{p} \oplus \mathbb{R}^{q}$ and the involution $T(u, v)=(u,-v)$, where $n=p+q$, $p, q \in \mathbb{N} \cup\{0\}$ and $u \in \mathbb{R}^{p}, v \in \mathbb{R}^{q}$. In fact, to define the \mathbb{Z}_{2}-equivariant degree we do not need to use the representation theory. In this work we would like to describe a construction of this degree. We will call it T-equivariant degree.

Our approach is alternative to the one by Granas and Dugundji in [8]. There are two basic differences between our and their approach. Contrary to Granas and Dugundji, from the beginning we work with the family of T-equivariant maps (see Sec. $6, \S 20$, Theorem 1.2, pp. 551-552 in [8], and Lemma 3.2, Conclusion 3.3 here). We also introduce notions of T-equivariant normal maps and homotopies, which are different from ones in [8]. Moreover, the proofs of all lemmas and propositions needed to define the degree are complete.

Our construction is divided into five main steps. Each step is a separate section.
In [14], Parusiński showed that if we have two gradient vector fields on the unit ball in \mathbb{R}^{n} and nowhere vanishing on the sphere, then they are homotopic if and only if they are gradient homotopic. In the last section we will prove this theorem in T-equivariant case. Namely, consider two T-equivariant gradient vector fields f and g on the unit ball in \mathbb{R}^{n} and nowhere vanishing on the sphere. It is shown that if there is a T-equivariant homotopy joining f to g then there is a T-equivariant gradient homotopy joining f to g. Our result suggests that there is no interesting generalization of T-equivariant degree on gradient vector fields. The proof is based on the latest results by Ferrario (see [4]) and Dancer, Gęba and Rybicki (see [1]).
2. T-equivariant maps and homotopy. Let $\mathbb{R}^{n}=\mathbb{R}^{p} \oplus \mathbb{R}^{q}$, where $n \in \mathbb{N}, p, q \in \mathbb{N} \cup\{0\}$ and $n=p+q$. For every $x \in \mathbb{R}^{n}$ we write $x=(u, v)$, where $u \in \mathbb{R}^{p}$ and $v \in \mathbb{R}^{q}$. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be given by

$$
T(u, v):=(u,-v)
$$

The map T is a linear isomorphism and an involution, i.e. $T^{2}=\operatorname{Id}_{\mathbb{R}^{n}}$.
Definition 2.1. A set $X \subset \mathbb{R}^{n}$ is T-invariant if $T(X) \subset X$.
If a set X is T-invariant then $T(X)=X$ and $T_{\mid X}: X \rightarrow X$ is an involution onto X.
Definition 2.2. Let $X \subset \mathbb{R}^{n}$ be T-invariant.

1. A map $f: X \rightarrow \mathbb{R}^{n}$ is called T-equivariant if $f(T x)=T f(x)$ for all $x \in X$.
2. $h: X \times[0,1] \rightarrow \mathbb{R}^{n}$ is called a T-equivariant homotopy if it is continuous and $h(T x, t)=$ $T h(x, t)$ for all $x \in X$ and $t \in[0,1]$.
3. A function $\tau: X \rightarrow \mathbb{R}$ is called T-equivariant if $\tau(T x)=\tau(x)$ for all $x \in X$.

Remark that if $f=\left(f_{1}, f_{2}\right)$, where $f_{1}: X \rightarrow \mathbb{R}^{p}$ and $f_{2}: X \rightarrow \mathbb{R}^{q}$, then f is T-equivariant if and only if $f_{1}(u,-v)=f_{1}(u, v)$ and $f_{2}(u,-v)=-f_{2}(u, v)$ for all $(u, v) \in X$.

From now on, every open bounded T-invariant subset of \mathbb{R}^{n} is said to be T-admissible.
Assume that $\Omega \subset \mathbb{R}^{n}$ is T-admissible. It is obvious that $\bar{\Omega}$ is T-invariant. We say that $f: \bar{\Omega} \rightarrow \mathbb{R}^{n}$ is T-admissible if f is continuous, T-equivariant and $f(x) \neq 0$ for all $x \in \partial \Omega$. We will denote by $\mathcal{A}_{T}(\Omega)$ the family of all T-admissible maps from $\bar{\Omega}$ into \mathbb{R}^{n}. In the same spirit we generalize the notion of homotopy. We say that a homotopy $h: \bar{\Omega} \times[0,1] \rightarrow \mathbb{R}^{n}$ is T-admissible if h is T-equivariant and $h(x, t) \neq 0$ for all $x \in \partial \Omega$ and $t \in[0,1]$. We will denote by $\mathcal{H} \mathcal{A}_{T}(\Omega)$ the family of all T-admissible homotopies from $\bar{\Omega} \times[0,1]$ into \mathbb{R}^{n}.

Definition 2.3. We say that f is homotopic to g in $\mathcal{A}_{T}(\Omega)$ and write $f \sim g$ in $\mathcal{A}_{T}(\Omega)$ if there exists $h \in \mathcal{H} \mathcal{A}_{T}(\Omega)$ joining f to g, i.e. $h(x, 0)=f(x)$ and $h(x, 1)=g(x)$ for all $x \in \bar{\Omega}$.

It is easy to check that \sim is an equivalence relation in $\mathcal{A}_{T}(\Omega)$. The homotopy class of $f \in \mathcal{A}_{T}(\Omega)$ under \sim will be denoted by $[f]$. Finally, the set of all homotopy classes of the relation \sim will be denoted by $\mathcal{A}_{T}[\Omega]$.
3. T-equivariant generic maps. Let $\Omega \subset \mathbb{R}^{n}$ be T-admissible. Here and subsequently,

$$
\begin{aligned}
\mathcal{A}_{T}^{\infty}(\Omega) & :=\left\{f \in \mathcal{A}_{T}(\Omega): f_{\mid \Omega} \text { is smooth }\right\} \\
\mathcal{H} \mathcal{A}_{T}^{\infty}(\Omega) & :=\left\{h \in \mathcal{H} \mathcal{A}_{T}(\Omega): h_{t \mid \Omega} \text { is smooth for } t \in[0,1]\right\}
\end{aligned}
$$

where $h_{t}: \bar{\Omega} \rightarrow \mathbb{R}^{n}$ is defined by $h_{t}(x):=h(x, t)$.
Definition 3.1. We say that f is homotopic to g in $\mathcal{A}_{T}^{\infty}(\Omega)$ and write $f \simeq g$ in $\mathcal{A}_{T}^{\infty}(\Omega)$ if there exists $h \in \mathcal{H} \mathcal{A}_{T}^{\infty}(\Omega)$ joining f to g.

The relation \simeq is easily seen to be an equivalence relation in $\mathcal{A}_{T}^{\infty}(\Omega)$.
A map $f \in \mathcal{A}_{T}^{\infty}(\Omega)$ is said to be generic if $0 \in \mathbb{R}^{n}$ is a regular value of $f_{\mid \Omega}$, i.e. the derivative $D f(x): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is an isomorphism for all $x \in f^{-1}(\{0\})$.

In this section we show that under some restrictions on Ω, every homotopy class in $\mathcal{A}_{T}[\Omega]$ possesses a T-equivariant generic map. For this purpose we prove now a few lemmas.

Let K be a compact subset of \mathbb{R}^{n}. A map $f: K \rightarrow \mathbb{R}^{n}$ is called smooth if there exists an open set $X \subset \mathbb{R}^{n}$ such that $K \subset X$ and there exists a smooth map $\tilde{f}: X \rightarrow \mathbb{R}^{n}$ such that $\tilde{f}_{\mid K}=f$. Let $\left\{U_{i}\right\}_{i=1}^{k}$ be an open covering of K. Set $U=\bigcup_{i=1}^{k} U_{i}$. We call a family of smooth functions $\lambda_{i}: U \rightarrow[0,1]$, where $i=1,2, \ldots, k$, a smooth partition of unity subordinate to the covering $\left\{U_{i}\right\}_{i=1}^{k}$, if this family satisfies the following conditions:

- $\operatorname{supp} \lambda_{i}=\overline{\left\{x \in \mathbb{R}^{n}: \lambda_{i}(x) \neq 0\right\}} \subset U_{i}$ for every $i=1,2, \ldots, k$,
- $\sum_{i=1}^{k} \lambda_{i}(y)=1$ for every $y \in K$.

It is well known that such a partition exists (see [16]). Additionally, if K and every U_{i} are T-invariant sets and every λ_{i} is a T-equivariant function then we say that $\left\{U_{i}\right\}_{i=1}^{k}$ is a T-invariant covering of K and $\left\{\lambda_{i}\right\}_{i=1}^{k}$ is a T-equivariant partition of unity.

Lemma 3.1. Assume that $K \subset \mathbb{R}^{n}$ is compact and T-invariant, and $\left\{U_{i}\right\}_{i=1}^{k}$ is an open T-equivariant covering of K. Then there exists a smooth T-equivariant partition of unity subordinate to the covering $\left\{U_{i}\right\}_{i=1}^{k}$.

Proof. Let $\left\{\lambda_{i}\right\}_{i=1}^{k}$ be a smooth partition of unity subordinate to the covering $\left\{U_{i}\right\}_{i=1}^{k}$ of K. For every $i=1,2, \ldots, k$, let $\widehat{\lambda}_{i}$ be given by $\widehat{\lambda_{i}}=\frac{1}{2}\left(\lambda_{i}+\lambda_{i} T\right)$. It is obvious that each function $\widehat{\lambda_{i}}$ is smooth and T-equivariant. The family $\left\{\widehat{\lambda}_{i}\right\}_{i=1}^{k}$ is a desired one.

Let $K \subset \mathbb{R}^{n}$ be compact and T-invariant. We say that T acts freely on K if $T x \neq x$ for every $x \in K$, i.e. $K \cap \mathbb{R}^{p}=\emptyset$. Then

$$
\operatorname{dist}\left(K, \mathbb{R}^{p}\right):=\inf \left\{|x-y|: x \in K, y \in \mathbb{R}^{p}\right\}
$$

is a positive number.
Lemma 3.2. Let $K \subset \mathbb{R}^{n}$ be a compact T-invariant set such that T acts freely on K. If a map $f: K \rightarrow \mathbb{R}^{n}$ is continuous and T-equivariant then for every $\varepsilon>0$ there is a smooth T-equivariant map $g: K \rightarrow \mathbb{R}^{n}$ such that

$$
\sup _{x \in K}|f(x)-g(x)|<\varepsilon
$$

From now on, $B(a, r)$ stands for an open ball of radius r, centered at a point $a \in \mathbb{R}^{n}$.
Proof. Fix $\varepsilon>0$. Since K is compact, f is uniformly continuous. Hence, there is $\delta>0$ such that if $|x-y|<\delta$ then $|f(x)-f(y)|<\varepsilon$. Set $\delta^{\prime}=\min \left\{\delta, \operatorname{dist}\left(K, \mathbb{R}^{p}\right)\right\}$, and $U_{x}=B\left(x, \delta^{\prime}\right)$ for every $x \in K$. Then

- $T U_{x}=B\left(T x, \delta^{\prime}\right)$,
- $U_{x} \cap T U_{x}=\emptyset$,
- $K \subset \bigcup_{x \in K}\left(U_{x} \cup T U_{x}\right)$.

The compactness of K implies that there exist points $x_{1}, x_{2}, \ldots, x_{k} \in K$ such that $K \subset$ $\bigcup_{i=1}^{k}\left(U_{i} \cup T U_{i}\right)$, where $U_{i}=U_{x_{i}}$. Consider a smooth T-equivariant partition of unity $\left\{\lambda_{i}\right\}_{i=1}^{k}$ subordinate to the covering $\left\{U_{i} \cup T U_{i}\right\}_{i=1}^{k}$ of K. Set $U=\bigcup_{i=1}^{k}\left(U_{i} \cup T U_{i}\right)$. For every $i \in\{1,2, \ldots, k\}$, let $\pi_{i}: U \rightarrow \mathbb{R}^{n}$ be a map such that $\pi_{i}\left(U_{i}\right)=\left\{x_{i}\right\}$ and $\pi_{i}\left(T U_{i}\right)=\left\{T x_{i}\right\}$. The function $g: U \rightarrow \mathbb{R}^{n}$ is defined by

$$
g(x)=\sum_{i=1}^{k} \lambda_{i}(x) f\left(\pi_{i}(x)\right)
$$

Take $x \in U$. If $x \in U_{i} \cup T U_{i}$ then in a sufficiently small neighbourhood of x the map $f \circ \pi_{i}$ is constant. If $x \in \partial U_{i} \cup \partial T U_{i}$ then in a sufficiently small neighbourhood of x the function λ_{i} is equal to 0 . Hence g is smooth.

Take $x \in K$. If $x \in U_{i}$ then $\pi_{i}(x)=x_{i}$ and $\left|\pi_{i}(x)-x\right|<\delta$. If $x \in T U_{i}$ then $\pi_{i}(x)=T x_{i}$ and $\left|\pi_{i}(x)-x\right|<\delta$. Finally, if $x \notin U_{i} \cup T U_{i}$ then $\lambda_{i}(x)=0$. From this it follows that

$$
|g(x)-f(x)|=\left|\sum_{i=1}^{k} \lambda_{i}(x) f\left(\pi_{i}(x)\right)-\sum_{i=1}^{k} \lambda_{i}(x) f(x)\right| \leq \sum_{i=1}^{k} \lambda_{i}(x)\left|f\left(\pi_{i}(x)\right)-f(x)\right|<\varepsilon
$$

Moreover,

$$
g(T x)=\sum_{i=1}^{k} \lambda_{i}(T x) f\left(\pi_{i}(T x)\right)=\sum_{i=1}^{k} \lambda_{i}(x) f\left(T \pi_{i}(x)\right)=\sum_{i=1}^{k} \lambda_{i}(x) T f\left(\pi_{i}(x)\right)=T g(x),
$$

which completes the proof.
Conclusion 3.3. Let $\Omega \subset \mathbb{R}^{n}$ be a T-admissible set such that T acts freely on $\bar{\Omega}$. Then for every $f \in \mathcal{A}_{T}(\Omega)$ there exists $g \in \mathcal{A}_{T}^{\infty}(\Omega)$ such that $f \sim g$ in $\mathcal{A}_{T}(\Omega)$.
Proof. By the assumption, $\bar{\Omega}$ is a T-invariant compact set and T acts freely on $\bar{\Omega}$. Set $d=\inf \{|f(x)|: x \in \partial \Omega\}$. From Lemma 3.2 it follows that there exists $g \in \mathcal{A}_{T}^{\infty}(\Omega)$ such that

$$
\sup _{x \in \bar{\Omega}}|f(x)-g(x)|<d .
$$

Consider the linear homotopy $h: \bar{\Omega} \times[0,1] \rightarrow \mathbb{R}^{n}$ joining f to g, i.e.

$$
h(x, t)=\operatorname{tg}(x)+(1-t) f(x)
$$

It is trivial that h is continuous and $h(T x, t)=T h(x, t)$ for all $x \in \bar{\Omega}$ and $t \in[0,1]$. Take $x \in \partial \Omega$ and $t \in[0,1]$. Then
$|h(x, t)|=|f(x)-t(f(x)-g(x))| \geq|f(x)|-t|f(x)-g(x)| \geq|f(x)|-|f(x)-g(x)|>0$.
Hence $h \in \mathcal{H} \mathcal{A}_{T}(\Omega)$.
Let $U \subset \mathbb{R}^{n}$ be an open bounded set, and $K \subset U$ be compact. It is well known that there exists a smooth function $\eta: \mathbb{R}^{n} \rightarrow[0,1]$ such that

$$
\eta(x)= \begin{cases}1 & \text { for } x \in K \\ 0 & \text { for } x \in \mathbb{R}^{n} \backslash U\end{cases}
$$

In the mathematical literature, η is called the Urysohn function (see [8]).
Lemma 3.4. Let U and U_{0} be T-admissible subsets of \mathbb{R}^{n}. Assume that $\bar{U}_{0} \subset U$. Then there exists a smooth T-equivariant function $\tilde{\eta}: \mathbb{R}^{n} \rightarrow[0,1]$ such that $\tilde{\eta}(x)=1$ for every $x \in \bar{U}_{0}$ and $\tilde{\eta}(x)=0$ for every $x \in \mathbb{R}^{n} \backslash U$.

The proof is similar to that of Lemma 3.1. We leave it to the reader.
Lemma 3.5. Let Ω_{0} and Ω be T-admissible subsets of \mathbb{R}^{n} such that $\Omega_{0} \subset \Omega$. Suppose that $f_{0} \simeq g_{0}$ in $\mathcal{A}_{T}^{\infty}\left(\Omega_{0}\right)$ and there is an $f \in \mathcal{A}_{T}^{\infty}(\Omega)$ such that $f_{\mid \Omega_{0}}=f_{0}$. Then there exist a map $g \in \mathcal{A}_{T}^{\infty}(\Omega)$ and a T-admissible set $U_{0} \subset \Omega_{0}$ satisfying the following conditions:

1. $f \simeq g$ in $\mathcal{A}_{T}^{\infty}(\Omega)$,
2. $g(x)=f(x)$ for every $x \in \bar{\Omega} \backslash \Omega_{0}$,
3. $g(x)=g_{0}(x)$ for every $x \in U_{0}$,
4. $g_{0}^{-1}(\{0\}) \cap \Omega_{0}=g^{-1}(\{0\}) \cap \Omega_{0} \subset U_{0}$.

Proof. Let $\bar{h} \in \mathcal{H} \mathcal{A}_{T}^{\infty}\left(\Omega_{0}\right)$ be a homotopy joining f_{0} to g_{0}. Take an open T-invariant subset U_{0} of \mathbb{R}^{n} such that $\bar{U}_{0} \subset \Omega_{0}$ and $\bar{h}(x, t) \neq 0$ for every $(x, t) \in\left(\bar{\Omega}_{0} \backslash U_{0}\right) \times[0,1]$. Consider an open T-invariant subset U of \mathbb{R}^{n} such that $\bar{U}_{0} \subset U \subset \bar{U} \subset \Omega_{0}$. Let $\eta: \mathbb{R}^{n} \rightarrow[0,1]$ be
a smooth T-equivariant Urysohn function for the pair of sets U_{0} and U, i.e. $\eta(x)=1$ for every $x \in \bar{U}_{0}$ and $\eta(x)=0$ for every $x \in \mathbb{R}^{n} \backslash U$. Let $h: \bar{\Omega} \times[0,1] \rightarrow \mathbb{R}^{n}$ be defined by

$$
h(x, t)= \begin{cases}f(x) & \text { for } x \in \bar{\Omega} \backslash \bar{U} \\ \bar{h}(x, t \eta(x)) & \text { for } x \in \Omega_{0}\end{cases}
$$

We check that $h \in \mathcal{H} \mathcal{A}_{T}^{\infty}(\Omega)$ and $g(x):=h(x, 1), x \in \bar{\Omega}$, satisfies the claim of our lemma.
Remark that $(\bar{\Omega} \backslash \bar{U}) \cap \Omega_{0}=\Omega_{0} \backslash \bar{U}$. If $x \in \Omega_{0} \backslash \bar{U}$ then $\eta(x)=0$, and hence $\bar{h}(x, t \eta(x))=$ $\bar{h}(x, 0)=f(x)$ for all $t \in[0,1]$. In consequence, h is smooth and $h(x, 0)=f(x)$ for every $x \in \bar{\Omega}$. If $x \in \partial \Omega$ then $h(x, t)=f(x) \neq 0$ for all $t \in[0,1]$. Moreover, for $x \in \Omega_{0}$ and $t \in[0,1]$ we have $h(T x, t)=\bar{h}(T x, t \eta(T x))=\bar{h}(T x, \operatorname{t\eta }(x))=T \bar{h}(x, t \eta(x))=T h(x, t)$. Thus h is T-equivariant. Summarizing, $h \in \mathcal{H} \mathcal{A}_{T}^{\infty}(\Omega)$ and it joins f to g.

Take $x \in \bar{\Omega} \backslash \Omega_{0}$. Since $\bar{\Omega} \backslash \Omega_{0} \subset \bar{\Omega} \backslash U$, we get $g(x)=h(x, 1)=f(x)$.
If $x \in U_{0}$ then $\eta(x)=1$ and $g(x)=h(x, 1)=\bar{h}(x, 1)=g_{0}(x)$.
Finally, fix $x \in \Omega_{0}$. If $x \in \Omega_{0} \backslash \bar{U}$ then $g(x)=\bar{h}(x, 0)=f_{0}(x)$. If $x \in \bar{U}$ then $g(x)=\bar{h}(x, \eta(x))$. Since $\left\{x \in \bar{\Omega}_{0}: \bar{h}(x, t)=0\right.$ for any $\left.t \in[0,1]\right\} \subset U_{0}$, we have $g_{0}^{-1}(\{0\}) \cap$ $\Omega_{0}=g^{-1}(\{0\}) \cap \Omega_{0} \subset U_{0}$, which completes the proof.

Let $K \subset \mathbb{R}^{n}$ be nonempty, compact and T-admissible. Set $k \in \mathbb{N}$. We call a family of open sets $\left\{U_{i}\right\}_{i=1}^{k}$ a (T, k)-simple covering of K if it satisfies the following conditions:

1. $U_{i} \cap T U_{i}=\emptyset$ for every $i \in\{1,2, \ldots, k\}$,
2. $K \subset \bigcup_{i=1}^{k}\left(U_{i} \cup T U_{i}\right)$.

We say that K is $a(T, k)$-simple set if it possesses a (T, k)-simple covering. If $K=\emptyset$, it is said to be $(T, 0)$-simple.

Proposition 3.6. Every nonempty compact T-invariant subset K of \mathbb{R}^{n} such that T acts freely on K is (T, k)-simple for a certain $k \in \mathbb{N}$.

Proof. Since T acts freely on $K, K \cap \mathbb{R}^{p}=\emptyset$. Set $l=\operatorname{dist}\left(K, \mathbb{R}^{p}\right)$. We have

$$
K \subset \bigcup_{x \in K} B(x, l)
$$

By compactness of K, there are $x_{1}, x_{2}, \ldots, x_{k} \in K$ such that

$$
K \subset \bigcup_{i=1}^{k} B\left(x_{i}, l\right)
$$

Let $U_{i}=B\left(x_{i}, l\right)$ for $i=1,2, \ldots, k$. It is evident that $U_{i} \cap T U_{i}=\emptyset$ and

$$
K \subset \bigcup_{i=1}^{k}\left(U_{i} \cup T U_{i}\right)
$$

Let $\Omega \subset \mathbb{R}^{n}$ be an open bounded set. For every $f: \bar{\Omega} \rightarrow \mathbb{R}^{n}$ such that $f_{\mid \Omega}$ is C^{r}-smooth, where $r \geq 1$, and $f(x) \neq 0$ for all $x \in \partial \Omega$, set

$$
R(f)=\left\{x \in f^{-1}(\{0\}): D f(x) \in \mathrm{GL}\left(\mathbb{R}^{n}\right)\right\}
$$

Lemma 3.7. Assume that $\Omega \subset \mathbb{R}^{n}$ is T-admissible, T acts freely on $\bar{\Omega}$, which is (T, k) simple for a certain $k \in \mathbb{N}$. Let $f \in \mathcal{A}_{T}^{\infty}(\Omega)$. Then there exists $g \in \mathcal{A}_{T}^{\infty}(\Omega)$ such that
(i) $f \simeq g$ in $\mathcal{A}_{T}^{\infty}(\Omega)$,
(ii) $g^{-1}(\{0\}) \backslash R(g)$ is $(T, k-1)$-simple.

Proof. Let $\left\{U_{i}\right\}_{i=1}^{k}$ be a (T, k)-simple covering of $\bar{\Omega}$. Set

$$
K=\bar{\Omega} \backslash \bigcup_{i=2}^{k}\left(U_{i} \cup T U_{i}\right), \quad K_{1}=K \cap U_{1}
$$

Let us remark that K is T-invariant, $K \subset\left(U_{1} \cup T U_{1}\right), K$ and K_{1} are compact. Thus K is $(T, 1)$-simple and $K=K_{1} \cup T K_{1}$.

From the Sard theorem it follows that there exists a regular value y_{0} of $f_{\mid \Omega \cap U_{1}}$ such that $\left|y_{0}\right|<\inf \{|f(x)|: x \in \partial \Omega\}$. Since $f \circ T=T \circ f$, we have $D f(T x)=T \circ D f(x) \circ T$ for every $x \in \Omega$. Hence $T y_{0}$ is also a regular value of $f_{\mid \Omega \cap T U_{1}}$. Moreover, $\left|T y_{0}\right|=\left|y_{0}\right|$.

Let $\eta: \mathbb{R}^{n} \rightarrow[0,1]$ be a smooth function such that $\eta(x)=1$ for all $x \in K_{1}$ and $\eta(x)=0$ for all $x \in \mathbb{R}^{n} \backslash U_{1}$. Let $g: \bar{\Omega} \rightarrow \mathbb{R}^{n}$ be given by

$$
g(x)= \begin{cases}f(x)-\eta(x) y_{0} & \text { for } x \in U_{1} \cap \bar{\Omega} \\ f(x)-\eta(T x) T y_{0} & \text { for } x \in T U_{1} \cap \bar{\Omega} \\ f(x) & \text { for } x \in \bar{\Omega} \backslash\left(U_{1} \cup T U_{1}\right),\end{cases}
$$

The map $g_{\mid \Omega}$ is easily seen to be smooth. Let

$$
h(x, t)=f(x)+t(g(x)-f(x))
$$

for all $(x, t) \in \bar{\Omega} \times[0,1]$. Take $x \in \bar{\Omega}$. If $x \in U_{1} \cap \bar{\Omega}$ then $g(T x)=f(T x)-\eta\left(T^{2} x\right) T y_{0}=$ $T f(x)-\eta(x) T y_{0}=T\left(f(x)-\eta(x) y_{0}\right)=T g(x)$. If $x \in T U_{1} \cap \bar{\Omega}$ then $g(T x)=f(T x)-$ $\eta(T x) y_{0}=T f(x)-\eta(T x) y_{0}=T f(x)-T^{2} \eta(T x) y_{0}=T\left(f(x)-\eta(T x) T y_{0}\right)=T g(x)$. Finally, if $x \in \bar{\Omega} \backslash\left(U_{1} \cup T U_{1}\right)$ then $g(T x)=f(T x)=T f(x)=T g(x)$. Consequently, g is T-equivariant.

Since $|g(x)-f(x)|<\left|y_{0}\right|$ for all $x \in \bar{\Omega}$, we conclude that h is a homotopy joining f to g in $\mathcal{A}_{T}^{\infty}(\Omega)$.

Remark that $g^{-1}(\{0\}) \backslash R(g)$ is a compact set and $g^{-1}(\{0\}) \subset \bigcup_{i=2}^{k}\left(U_{i} \cup T U_{i}\right) \cup K$. Take $x \in K$. If $x \in K_{1}$ then $g(x)=f(x)-y_{0}$. If $x \in T K_{1}$ then $g(x)=f(x)-T y_{0}$. From this $K \cap g^{-1}(\{0\}) \subset R(g)$, and so $g^{-1}(\{0\}) \backslash R(g) \subset \bigcup_{i=2}^{k}\left(U_{i} \cup T U_{i}\right)$ is $(T, k-1)$-simple.
LEmma 3.8. Let $\Omega \subset \mathbb{R}^{n}$ be a T-admissible set such that T acts freely on $\bar{\Omega}$. Assume that $f \in \mathcal{A}_{T}^{\infty}(\Omega)$ and $f^{-1}(\{0\}) \backslash R(f)$ is (T, k)-simple for a certain $k \in \mathbb{N}$. Then there exists a map $g \in \mathcal{A}_{T}^{\infty}(\Omega)$ such that
(i) $f \simeq g$ in $\mathcal{A}_{T}^{\infty}(\Omega)$,
(ii) $g^{-1}(\{0\}) \backslash R(g)$ is $(T, k-1)$-simple.

Proof. Since $f^{-1}(\{0\}) \backslash R(f)$ is (T, k)-simple, there is an open and T-invariant subset Ω_{0} of Ω such that
(a) $f^{-1}(\{0\}) \backslash R(f) \subset \Omega_{0}$,
(b) $R(f) \subset \Omega \backslash \bar{\Omega}_{0}$,
(c) $\bar{\Omega}_{0}$ is (T, k)-simple.

Set $f_{0}=f_{\mid \Omega_{0}}$. Combining (a) with (b), we see that $f_{0} \in \mathcal{A}_{T}^{\infty}\left(\Omega_{0}\right)$. By Lemma 3.7 it follows that there is $g_{0} \in \mathcal{A}_{T}^{\infty}\left(\Omega_{0}\right)$ such that $f_{0} \simeq g_{0}$ in $\mathcal{A}_{T}^{\infty}\left(\Omega_{0}\right)$ and $g_{0}^{-1}(\{0\}) \backslash R\left(g_{0}\right)$ is $(T, k-1)$-simple. From Lemma 3.5 we have that there is $g \in \mathcal{A}_{T}^{\infty}(\Omega)$ such that $f \simeq g$ in $\mathcal{A}_{T}^{\infty}(\Omega)$ and $g^{-1}(\{0\}) \backslash R(g)=g_{0}^{-1}(\{0\}) \backslash R\left(g_{0}\right)$. Thus $g^{-1}(\{0\}) \backslash R(g)$ is $(T, k-1)$-simple.

Applying the mathematical induction, Lemma 3.8 and Conclusion 3.3, one can immediately prove the next theorem.

Theorem 3.9. Let $\Omega \subset \mathbb{R}^{n}$ be a T-admissible set such that T acts freely on $\bar{\Omega}$. If $f \in \mathcal{A}_{T}(\Omega)$ then there exists a generic map $g \in \mathcal{A}_{T}^{\infty}(\Omega)$ such that $f \sim g$ in $\mathcal{A}_{T}(\Omega)$.
Conclusion 3.10. Let $\Omega \subset \mathbb{R}^{n}$ be a T-admissible set such that T acts freely on $\bar{\Omega}$. If $f \in \mathcal{A}_{T}(\Omega)$ then $\operatorname{deg}(f, \Omega) \in 2 \mathbb{Z}$.

Here and subsequently, $\operatorname{deg}(f, \Omega)$ stands for the Brouwer degree of f on Ω.
Proof. Fix $f \in \mathcal{A}_{T}(\Omega)$. By Theorem 3.9 there is a generic map $g \in \mathcal{A}_{T}^{\infty}(\Omega)$ such that $f \sim g$ in $\mathcal{A}_{T}(\Omega)$. Hence $\operatorname{deg}(f, \Omega)=\operatorname{deg}(g, \Omega)$. Since $T \circ g=g \circ T$, we have $D g(x)=T \circ D g(T x) \circ T$ for every $x \in \Omega$. From this

$$
g^{-1}(\{0\}) \cap \Omega=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\} \cup\left\{T x_{1}, T x_{2}, \ldots, T x_{m}\right\}
$$

and sign det $D g\left(x_{i}\right)=\operatorname{sign} \operatorname{det} D g\left(T x_{i}\right)$ for $i=1,2, \ldots, m$. In consequence,

$$
\operatorname{deg}(g, \Omega)=\sum_{i=1}^{m} \operatorname{sign} \operatorname{det} D g\left(x_{i}\right)+\sum_{i=1}^{m} \operatorname{sign} \operatorname{det} D g\left(T x_{i}\right)=2 \sum_{i=1}^{m} \operatorname{sign} \operatorname{det} D g\left(x_{i}\right),
$$

which completes the proof.
4. T-equivariant normal maps. Let $\Omega \subset \mathbb{R}^{n}$ be T-admissible and let $\varepsilon>0$. Define

$$
\Omega(\varepsilon)=\{(u, v) \in \Omega:|v|<\varepsilon\} .
$$

Definition 4.1. Let $f=\left(f_{1}, f_{2}\right) \in \mathcal{A}_{T}(\Omega)$, where $f_{1}: \bar{\Omega} \rightarrow \mathbb{R}^{p}$, and $f_{2}: \bar{\Omega} \rightarrow \mathbb{R}^{q}$.

1. A map f is said to be ε-normal if there exists $\varepsilon>0$ such that

$$
f(u, v)=\left(f_{1}(u, 0), v\right)
$$

for all $(u, v) \in \Omega(\varepsilon)$.
2. A map f is called normal if there exists $\varepsilon>0$ such that f is ε-normal.

We will denote by $\mathcal{N} \mathcal{A}_{T}(\Omega)$ the family of all normal maps from $\bar{\Omega}$ into \mathbb{R}^{n}.
Definition 4.2. Let $\Omega \subset \mathbb{R}^{n}$ be a T-admissible set.

1. A homotopy $h \in \mathcal{H} \mathcal{A}_{T}(\Omega)$ is called normal if there exists $\varepsilon>0$ such that $h_{t}: \bar{\Omega} \rightarrow \mathbb{R}^{n}$ is ε-normal for every $t \in[0,1]$.
2. We say that f is homotopic to g in $\mathcal{N} \mathcal{A}_{T}(\Omega)$ and write $f \approx g$ in $\mathcal{N} \mathcal{A}_{T}(\Omega)$ if there exists a normal homotopy joining f to g.

We will denote by $\mathcal{H} \mathcal{N} \mathcal{A}_{T}(\Omega)$ the family of all normal homotopies from $\bar{\Omega} \times[0,1]$ into \mathbb{R}^{n}. The homotopy class of $f \in \mathcal{N} \mathcal{A}_{T}(\Omega)$ under \approx will be denoted by $[[f]]$. Finally, the set of all homotopy classes of the relation \approx will be denoted by $\mathcal{N} \mathcal{A}_{T}[\Omega]$.

The construction of the degree for maps in $\mathcal{A}_{T}(\Omega)$, which will be described in the next section, is based on the following theorem.

Theorem 4.1. The map $\tau: \mathcal{N} \mathcal{A}_{T}[\Omega] \rightarrow \mathcal{A}_{T}[\Omega],[[f]] \mapsto[f]$ is a bijection.

Proof.

Step 1. We show that τ is a surjection.
Fix $f=\left(f_{1}, f_{2}\right) \in \mathcal{A}_{T}(\Omega)$. We show that there is $g \in \mathcal{N} \mathcal{A}_{T}(\Omega)$ such that $f \sim g$ in $\mathcal{A}_{T}(\Omega)$. Set $d=\inf \{|f(x)|: x \in \partial \Omega\}$. Since f is T-equivariant, $f_{2}(u, 0)=0$ for every $(u, 0) \in \bar{\Omega}$. By the continuity of f, there is $0<\varepsilon \leq d / 12$ such that if $x, y \in \bar{\Omega}$ and $|x-y|<2 \varepsilon$ then $\left|f_{i}(x)-f_{i}(y)\right|<d / 6$ for $i=1,2$.

Let $\eta: \mathbb{R} \rightarrow[0,1]$ be a smooth function such that $\eta(t)=1$ for every $|t| \leq \varepsilon$ and $\eta(t)=0$ for every $|t| \geq 2 \varepsilon$. Let $h: \bar{\Omega} \times[0,1] \rightarrow \mathbb{R}^{n}$ be defined by

$$
h(u, v, t)=(1-t \eta(|v|)) f(u, v)+t \eta(|v|)\left(f_{1}(u, 0), v\right) .
$$

Then

$$
\begin{aligned}
h(T(u, v), t)=h(u,-v, t) & =(1-t \eta(|v|)) f(u,-v)+t \eta(|v|)\left(f_{1}(u, 0),-v\right) \\
= & (1-t \eta(|v|)) T f(u, v)+\operatorname{t\eta }(|v|) T\left(f_{1}(u, 0), v\right)=T h(u, v, t)
\end{aligned}
$$

for every $(u, v) \in \bar{\Omega}$ and $t \in[0,1]$.
Take $(u, v) \in \partial \Omega$ and $t \in[0,1]$. If $|v| \geq 2 \varepsilon$ then $h(u, v, t)=f(u, v) \neq 0$. If $|v|<2 \varepsilon$ then

$$
\begin{aligned}
|h(u, v, t)| & =\left|f(u, v)-\operatorname{t\eta }(|v|)\left(f_{1}(u, v)-f_{1}(u, 0), f_{2}(u, v)-v\right)\right| \\
& \geq|f(u, v)|-t \eta(|v|)\left|f_{1}(u, v)-f_{1}(u, 0)\right|-t \eta(|v|)\left|f_{2}(u, v)-v\right| \\
& \geq|f(u, v)|-\left|f_{1}(u, v)-f_{1}(u, 0)\right|-\left|f_{2}(u, v)-v\right| \\
& \geq|f(u, v)|-\left(\left|f_{1}(u, v)-f_{1}(u, 0)\right|+\left|f_{2}(u, v)\right|+|v|\right) \\
& >d-3 \frac{d}{6}=\frac{d}{2}>0 .
\end{aligned}
$$

In consequence, $h \in \mathcal{H} \mathcal{A}_{T}(\Omega)$. Set $g:=h_{1}$. If $|v| \leq \varepsilon$ then $g(u, v)=h(u, v, 1)=$ $\left(f_{1}(u, 0), v\right)$. Thus g is normal.

Step 2. We show that τ is an injection.
Take $f=\left(f_{1}, f_{2}\right) \in \mathcal{N} \mathcal{A}_{T}(\Omega)$ and $g=\left(g_{1}, g_{2}\right) \in \mathcal{N} \mathcal{A}_{T}(\Omega)$ such that $f \sim g$ in $\mathcal{A}_{T}(\Omega)$. We prove that $f \approx g$ in $\mathcal{N} \mathcal{A}_{T}(\Omega)$. Let $h=\left(h_{I}, h_{I I}\right) \in \mathcal{A}_{T}(\Omega)$ be a homotopy joining f to g in $\mathcal{A}_{T}(\Omega)$. Set $d=\inf \{|h(x, t)|: x \in \partial \Omega \wedge t \in[0,1]\}$. Since h is T-equivariant, we get $h_{I I}(u, 0, t)=0$ for every $(u, 0) \in \bar{\Omega}$ and $t \in[0,1]$. Take $0<\varepsilon \leq d / 12$ such that f, g are 2ε-normal, and if $x, y \in \bar{\Omega}$ and $|x-y|<2 \varepsilon$ then $|h(x, t)-h(y, t)|<d / 6$. Let $\eta: \mathbb{R} \rightarrow[0,1]$ be a smooth function such that $\eta(t)=1$ for every $|t| \leq \varepsilon$ and $\eta(t)=0$ for every $|t| \geq 2 \varepsilon$. Let $\hat{h}: \bar{\Omega} \times[0,1] \rightarrow \mathbb{R}^{n}$ be given by

$$
\hat{h}(u, v, t)=(1-\eta(|v|)) h(u, v, t)+\eta(|v|)\left(h_{I}(u, 0, t), v\right) .
$$

We check at once that \hat{h} is a normal homotopy joining f to g.
5. T-equivariant degree. In this section we introduce the degree of T-equivariant maps in \mathbb{R}^{n}, called the T-equivariant degree. First we define this degree for T-equivariant normal maps, and next for all T-admissible ones.

Let $\Omega \subset \mathbb{R}^{n}$ be a T-admissible set and let $f=\left(f_{1}, f_{2}\right) \in \mathcal{N} \mathcal{A}_{\mathcal{T}}(\Omega)$, where $f_{1}: \bar{\Omega} \rightarrow \mathbb{R}^{p}$, $f_{2}: \bar{\Omega} \rightarrow \mathbb{R}^{q}$. Set $\Omega_{0}=\Omega \cap \mathbb{R}^{p}$. Assume that $\Omega_{0} \neq \emptyset$. The map $g_{0}: \bar{\Omega}_{0} \rightarrow \mathbb{R}^{p}$ is given by $g_{0}(u)=f_{1}(u, 0)$. Since $f(u, v) \neq 0$ for all $(u, v) \in \partial \Omega$ and $f_{2}(u, 0)=0$ for all $(u, 0) \in \bar{\Omega}$, we conclude that $g_{0}(u, v) \neq 0$ for all $(u, v) \in \partial \Omega_{0}$. Define

$$
d_{0}= \begin{cases}\operatorname{deg}\left(g_{0}, \Omega_{0}\right) & \text { if } \Omega_{0} \neq \emptyset \\ 0 & \text { if } \Omega_{0}=\emptyset\end{cases}
$$

Since f is normal, there is $\varepsilon>0$ such that $f(x) \neq 0$ for all $x \in \partial \Omega(\varepsilon)$. Set $\Omega_{1}=\Omega \backslash \overline{\Omega(\varepsilon)}$. Let us remark that T acts freely on $\bar{\Omega}_{1}$. Define

$$
g_{1}(x)=f(x),
$$

where $x \in \bar{\Omega}_{1}$. It is evident that $g_{1} \in \mathcal{A}_{T}\left(\Omega_{1}\right)$. By Conclusion 3.10 there exists an integer d_{1} such that $\operatorname{deg}\left(g_{1}, \Omega_{1}\right)=2 d_{1}$. The T-equivariant degree of f on Ω is given as follows:

$$
\operatorname{deg}_{T}(f, \Omega)=\left(d_{0}, d_{1}\right) \in \mathbb{Z} \oplus \mathbb{Z}
$$

Let us denote by \mathcal{N} the set of all pairs (f, Ω) such that $f \in \mathcal{N} \mathcal{A}_{T}(\Omega)$ and $\Omega \subset \mathbb{R}^{n}$ is T-admissible.

Theorem 5.1. The map $\operatorname{deg}_{T}: \mathcal{N} \rightarrow \mathbb{Z} \oplus \mathbb{Z},(f, \Omega) \mapsto \operatorname{deg}_{T}(f, \Omega)$, possesses the following properties:

1. Homotopy invariance:

If $h \in \mathcal{H} \mathcal{N} \mathcal{A}_{T}(\Omega)$ then $\operatorname{deg}_{T}\left(h_{t}, \Omega\right)=\operatorname{deg}_{T}\left(h_{0}, \Omega\right)$ for every $t \in(0,1]$.
2. Excision:

Assume that $\Omega_{0} \subset \Omega$ is T-invariant and $f^{-1}(\{0\}) \cap \Omega \subset \Omega_{0}$. Then

$$
\operatorname{deg}_{T}(f, \Omega)=\operatorname{deg}_{T}\left(f_{\mid \Omega_{0}}, \Omega_{0}\right)
$$

3. Additivity:

Assume that Ω_{1}, Ω_{2} are disjoint open T-invariant subsets of Ω such that $f^{-1}(\{0\}) \cap \Omega \subset$ $\Omega_{1} \cup \Omega_{2}$. Then

$$
\operatorname{deg}_{T}(f, \Omega)=\operatorname{deg}_{T}\left(f_{\mid \Omega_{1}}, \Omega_{1}\right)+\operatorname{deg}_{T}\left(f_{\mid \Omega_{2}}, \Omega_{2}\right)
$$

4. Existence:

If $\operatorname{deg}_{T}(f, \Omega) \neq 0$ then there exists a point $x \in \Omega$ such that $f(x)=0$.
We call $\operatorname{deg}_{T}: \mathcal{N} \rightarrow \mathbb{Z} \oplus \mathbb{Z}$ the T-equivariant degree of normal maps. Its properties follow directly from the definition. It is worth pointing out that if $f \in \mathcal{N} \mathcal{A}_{T}(\Omega)$ then there is the following dependence between $\operatorname{deg}(f, \Omega)$ and $\operatorname{deg}_{T}(f, \Omega)$:

$$
\operatorname{deg}(f, \Omega)=d_{0}+2 d_{1}, \quad d_{0}=\operatorname{deg}(f, \Omega(\varepsilon))
$$

Let \mathcal{E} denote the family of all pairs (f, Ω) such that $f \in \mathcal{A}_{T}(\Omega)$ and Ω is T-admissible. Applying Theorem 4.1 one can extend the T-equivariant degree over \mathcal{E}. Consider $f \in \mathcal{A}_{T}(\Omega)$. There exists $g \in \mathcal{N} \mathcal{A}_{T}(\Omega)$ such that $[g]=[f]$. Set

$$
\operatorname{Deg}_{T}(f, \Omega)=\operatorname{deg}_{T}(g, \Omega)
$$

From Theorem 4.1 it follows that the above formula does not depend on the choice of g.
Definition 5.1. The map $\operatorname{Deg}_{T}: \mathcal{E} \rightarrow \mathbb{Z} \oplus \mathbb{Z},(f, \Omega) \mapsto \operatorname{Deg}_{T}(f, \Omega)$, is called the T-equivariant degree.

The next theorem is a natural consequence of Definition 5.1 and Theorem 5.1.
Theorem 5.2. The T-equivariant degree possesses the following properties:

1. If $h \in \mathcal{H} \mathcal{A}_{T}(\Omega)$ then $\operatorname{Deg}_{T}\left(h_{t}, \Omega\right)=\operatorname{Deg}_{T}\left(h_{0}, \Omega\right)$ for every $t \in(0,1]$.
2. Assume that $\Omega_{0} \subset \Omega$ is T-invariant and $f^{-1}(\{0\}) \cap \Omega \subset \Omega_{0}$. Then

$$
\operatorname{Deg}_{T}(f, \Omega)=\operatorname{Deg}_{T}\left(f_{\mid \Omega_{0}}, \Omega_{0}\right)
$$

3. Assume that Ω_{1} and Ω_{2} are disjoint open T-invariant subsets of Ω such that $f^{-1}(\{0\}) \cap$ $\Omega \subset \Omega_{1} \cup \Omega_{2}$. Then

$$
\operatorname{Deg}_{T}(f, \Omega)=\operatorname{Deg}_{T}\left(f_{\mid \Omega_{1}}, \Omega_{1}\right)+\operatorname{Deg}_{T}\left(f_{\mid \Omega_{2}}, \Omega_{2}\right)
$$

4. If $\operatorname{Deg}_{T}(f, \Omega) \neq 0$ then there exists a point $x \in \Omega$ such that $f(x)=0$.
5. T-homotopies versus gradient T-homotopies. In this section we prove the Parusiński theorem in T-invariant case.

From now on, we assume that $\mathbb{R}^{n}=\mathbb{R}^{p} \oplus \mathbb{R}^{q}$ and $p \geq 2$. Let B^{n} denote the open unit ball, S^{n-1} the unit sphere, and D^{n} the unit disc in \mathbb{R}^{n} centered at 0 . We have $D^{n}=B^{n} \cup S^{n-1}$. It is trivial that these sets are T-invariant. Set $D^{p}=D^{n} \cap \mathbb{R}^{p}$, $B^{p}=B^{n} \cap \mathbb{R}^{p}$ and $S^{p-1}=S^{n-1} \cap \mathbb{R}^{p}$.

Among many generalizations of the Brouwer degree there is the stable equivariant degree. It was considered by several authors (see $[2,4,17]$ and the references given there). The stable equivariant degree of the T-equivariant continuous map $f: S^{n-1} \rightarrow S^{n-1}$ is the element $d_{T}(f) \in \mathbb{Z} \oplus \mathbb{Z}$ given by

$$
d_{T}(f)=\left(\operatorname{deg}\left(f, S^{p-1}\right), \operatorname{deg}\left(f, S^{n-1}\right)\right)
$$

Let $\left[S^{n-1}, S^{n-1}\right]_{T}$ denote the set of all T-equivariant homotopy classes of T-equivariant continuous self-maps of S^{n-1}. Let $[f]_{T}$ stands for the T-equivariant homotopy class of $f: S^{n-1} \rightarrow S^{n-1}$. D. Ferrario proved that the stable equivariant degree d_{T} classifies T-equivariant continuous self-maps of S^{n-1} (see Theorem 7.1 in [4]). This means that the map

$$
\left[S^{n-1}, S^{n-1}\right]_{T} \ni[f]_{T} \longmapsto d_{T}(f) \in \mathbb{Z} \oplus \mathbb{Z}
$$

is an injection.
Proposition 6.1. Suppose that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a T-equivariant continuous map such that $f\left(S^{n-1}\right) \subset \mathbb{R}^{n} \backslash\{0\}$. Then there exist a T-equivariant continuous map $\hat{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and a T-equivariant homotopy $h: \mathbb{R}^{n} \times[0,1] \rightarrow \mathbb{R}^{n}$ such that

- $h_{0}=f, h_{1}=\hat{f}$,
- $\hat{f}\left(S^{n-1}\right) \subset S^{n-1}$,
- $\hat{f}\left(D^{n}\right) \subset D^{n}$,
- $h\left(S^{n-1} \times[0,1]\right) \subset \mathbb{R}^{n} \backslash\{0\}$.

Proof. We check at once that $\hat{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ given by

$$
\hat{f}(x)= \begin{cases}|x|\left|f\left(\frac{x}{|x|}\right)\right|^{-1} f\left(\frac{x}{|x|}\right) & \text { for } x \neq 0 \\ 0 & \text { for } x=0\end{cases}
$$

and $h(x, t)=t \hat{f}(x)+(1-t) f(x)$ satisfy all the claims.
Fix $f \in \mathcal{A}_{T}\left(B^{n}\right)$. Clearly, f can be extended to a T-equivariant continuous map over \mathbb{R}^{n}. Moreover, two different extensions of f are linear homotopic and the linear homotopy joining these extensions has no zeroes on $S^{n-1} \times[0,1]$. Therefore we identify f with its extension. Let \hat{f} be a map as in Proposition 6.1. Then $\operatorname{Deg}_{T}\left(f, B^{n}\right)=\operatorname{Deg}_{T}\left(\hat{f}, B^{n}\right)$. Remark that there is one-to-one correspondence between $\operatorname{Deg}_{T}\left(f, B^{n}\right)=\left(d_{0}, d_{1}\right)$ and $d_{T}(\hat{f})=\left(\operatorname{deg}\left(\hat{f}, S^{p-1}\right), \operatorname{deg}\left(\hat{f}, S^{n-1}\right)\right)$. Namely,

$$
d_{0}=\operatorname{deg}\left(\hat{f}, S^{p-1}\right), \quad d_{1}=\frac{1}{2}\left(\operatorname{deg}\left(\hat{f}, S^{n-1}\right)-\operatorname{deg}\left(\hat{f}, S^{p-1}\right)\right)
$$

Therefore the map

$$
\mathcal{A}_{T}\left[B^{n}\right] \ni[f] \longmapsto d_{T}(\hat{f}) \in \mathbb{Z} \oplus \mathbb{Z}
$$

is an injection.
Conclusion 6.2. The T-equivariant degree $\operatorname{Deg}_{T}\left(f, B^{n}\right)$ classifies T-admissible maps from D^{n} into \mathbb{R}^{n}.

Another generalization of the Brouwer degree is the T-equivariant degree for gradient T-equivariant maps from \mathbb{R}^{n} into \mathbb{R}^{n}. This degree was considered in $[7,5,1]$.

Assume that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a T-equivariant continuous map. We say that f is ∇_{T}-admissible if $f\left(S^{n-1}\right) \subset \mathbb{R}^{n} \backslash\{0\}$ and there exists a T-equivariant C^{1} function $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that $f=\nabla \varphi$. We will denote by $\nabla \mathcal{A}_{T}\left(B^{n}\right)$ the set of all ∇_{T}-admissible maps. In the same spirit we introduce the notion of ∇_{T}-admissible homotopy. Let $h: \mathbb{R}^{n} \times[0,1] \rightarrow \mathbb{R}^{n}$ be a T-equivariant homotopy. We say that h is ∇_{T}-admissible if $h\left(S^{n-1} \times[0,1]\right) \subset \mathbb{R}^{n} \backslash\{0\}$ and there exists a T-equivariant C^{1} function $\chi: \mathbb{R}^{n} \times[0,1] \rightarrow \mathbb{R}$ such that $h(x, t)=\nabla_{x} \chi(x, t)$ for all $x \in \mathbb{R}^{n}$ and $t \in[0,1]$.
f is homotopic to g in $\nabla \mathcal{A}_{T}\left(B^{n}\right)$, if there is a ∇_{T}-admissible homotopy h joining f to g. The ∇_{T}-admissible homotopy class of $f \in \nabla \mathcal{A}_{T}\left(B^{n}\right)$ will be denoted by $[f]_{\nabla}$. The set of all ∇_{T}-admissible homotopy classes in $\nabla \mathcal{A}_{T}\left(B^{n}\right)$ will be denoted by $\nabla \mathcal{A}_{T}\left[B^{n}\right]$.

The T-equivariant degree of $f \in \nabla \mathcal{A}_{T}\left(B^{n}\right)$ is the element $\nabla_{T} \operatorname{deg}\left(f, B^{n}\right) \in \mathbb{Z} \oplus \mathbb{Z}$. From the construction made by Gęba in [5] (see formula 3.5, Theorems 3.2 and 3.3), it follows that

$$
\nabla_{T} \operatorname{deg}\left(f, B^{n}\right)=\operatorname{Deg}_{T}\left(f, B^{n}\right)
$$

Dancer, Gęba and Rybicki proved that this degree classifies ∇_{T}-admissible maps. More precisely, the map

$$
\nabla \mathcal{A}_{T}\left[B^{n}\right] \ni[f]_{\nabla} \longmapsto \nabla_{T} \operatorname{deg}\left(f, B^{n}\right) \in \mathbb{Z} \oplus \mathbb{Z}
$$

is a bijection (see Corollary 4.1 and Remark 4.1 in [1]).
Conclusion 6.3. The T-equivariant degree $\operatorname{Deg}_{T}\left(f, B^{n}\right)$ classifies ∇_{T}-admissible maps.

From Conclusions 6.2 and 6.3 we get a nice theorem.
Theorem 6.4. Assume that $f, g \in \nabla \mathcal{A}_{T}\left(B^{n}\right)$. If f is homotopic to g in $\mathcal{A}_{T}\left(B^{n}\right)$ then f is homotopic to g in $\nabla \mathcal{A}_{T}\left(B^{n}\right)$.

Acknowledgments. We wish to express our sincere thanks to K. Gęba and M. Izydorek for their useful hints and comments.

References

[1] E. N. Dancer, K. Gęba, S. M. Rybicki, Classification of homotopy classes of equivariant gradient maps, Fund. Math. 185 (2005), 1-18.
[2] T. tom Dieck, Transformation Groups, Walter de Gruyter, Berlin 1987.
[3] J. Dugundji, A. Granas, Fixed Point Theory, Vol. I, Monografie Matematyczne 61, PWN, Warszawa 1982.
[4] D. L. Ferrario, On the equivariant Hopf theorem, Topology 42 (2003), 447-465.
[5] K. Gęba, Degree for gradient equivariant maps and equivariant Conley index, in: Topological Nonlinear Analysis II (Frascati 1995), Progr. Nonlinear Differential Equations Appl. 27, Birkhäuser, Boston 1997, 247-272.
[6] K. Gęba, W. Krawcewicz, J. Wu, An equivariant degree with applications to symmetric bifurcation problems. I. Construction of the degree, Proc. London Math. Soc. (3) 69 (1994), 377-398.
[7] K. Gęba, I. Massabó, A. Vignoli, On the Euler characteristic of equivariant gradient vector fields, Boll. Un. Mat. Ital. A (7) 4 (1990), 243-251.
[8] A. Granas, J. Dugundji, Fixed Point Theory, Springer Monogr. Math., Springer, New York 2003.
[9] J. Ize, Equivariant degree, in: Handbook of Topological Fixed Point Theory, Springer, Dordrecht 2005, 301-337.
[10] J. Ize, I. Massabó, A. Vignoli, Degree theory for equivariant maps I, Trans. Amer. Math. Soc. 315 (1989), 443-510.
[11] W. Krawcewicz, J. Wu, Theory of Degrees with Applications to Bifurcation and Differential Equations, Wiley, New York 1997.
[12] J. W. Milnor, Topology from the Differentiable Viewpoint, The Univ. Press of Virginia, Charlottesville 1965.
[13] L. Nirenberg, Topics in Nonlinear Functional Analysis, Lecture Notes, 1973-1974, Courant Institute of Mathematical Sciences, New York University, New York 1974.
[14] A. Parusiński, Gradient homotopies of gradient vector fields, Studia Math. 96 (1990), 73-80.
[15] G. Peschke, Degree of certain equivariant maps into a representation sphere, Topology Appl. 59 (1994), 137-156.
[16] M. Spivak, Calculus on Manifolds, PWN, Warsaw 1977 (in Polish).
[17] H. Ulrich, Fixed Point Theory of Parametrized Equivariant Maps, Lecture Notes in Math. 1343, Springer, Berlin 1988.

[^0]: 2000 Mathematics Subject Classification: 47H11.
 Key words and phrases: involution, T-equivariant degree, classification of T-equivariant maps.

 Supported by Grant KBN no. 1 P03A 04229.
 The paper is in final form and no version of it will be published elsewhere.

