
68 ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ PAK 4/2007

Robert SMYK1, Maciej CZYŻAK2, Zenon ULMAN2
1 PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W ELBLĄGU, INSTUTUT INFORMATYKI
2 POLITECHNIKA GDAŃSKA

Design of a complex multiplier based on the convolution
with the use of the polynomial residue number system

M.Sc. Robert SMYK

He received his M.S. degree in control engineering in
2002 from the Gdansk University of Technology.
Since 2002 he has pursued his PhD study in the
Department of Electrical and Control Engineering.
Since 2004 he has been an instructor in the
Department of Informatics at the Elblag Higher
Professional College (PWSZ Elbląg). His research
area includes algoritms of digital signal processing
and computer arithmetic.

e-mail: r.smyk@ely.pg.gda.pl

Ph.D. Maciej CZYŻAK

He received his Ph.D. in 1985 from the Gdansk
University of Technology(GUT). From 1984 to 1990
he was a researcher and lecturer at the Institute of
Informatics, Faculty of Electronics, GUT. Since 1994
he has been a lecturer of informatics at the Faculty of
Electrical and Control Engineering ,GUT. His research
interests are in fast digital signal processing, computer
arithmetic and VLSI design.

e-mail: m.czyzak@ely.pg.gda.pl

Abstract

The complex multiplication is one of the basic operations in digital signal
processing. In this work the design procedure of the complex multiplier
based on the well-known decomposition algorithm of Skavantzos
and Stouraitis is presented. The algorithm makes use of encoding n-bit
numbers as polynomials of degree 7 in the ring of polynomials modulo

 with)1(8 −x 4n -bit coefficients. The complex multiplication is carried
out as an eight point cyclic convolution. The design procedure is illustrated
by the computational example and design of a small multiplier.

Keywords: digital signal processing, complex multiplication, polynomial
residue number system.

Projektowanie mnożnika zespolonego
oparte na splocie z użyciem
wielomianowego systemu resztowego

Streszczenie

Mnożenie zespolone jest jedną z podstawowych operacji w cyfrowym
przetwarzaniu sygnałów. W niniejszej pracy przestawiono metodę
projektowania mnożników zespolonych opartą na znanym algorytmie
dekompozycji Skavantzosa and Stouraitisa. W algorytmie tym stosuje się
kodowanie liczb n-bitowych jako wielomianów stopnia 7 w pierścieniu
wielomianów modulo ze współczynnikami)1(8 −x 4n -bitowymi.
Mnożenie zespolone jest następnie realizowane jako 8-punktowy splot
cykliczny. Proponowaną metodę projektowania zilustrowano przykładem
obliczeniowym oraz przykładowym projektem mnożnika.

Słowa kluczowe: cyfrowe przetwarzanie sygnałów, mnożenie zespolone,
wielomianowy system resztowy.

1. Introduction

The complex multiplication is one of the basic arithmetic
operations in digital signal processing. The most important design
goals while designing complex multipliers can be maximization of
the throughput while maintaining a possibly small area, or

D.Sc. Ph.D. Zenon ULMAN

He received his Ph.D. in 1979 from the Gdansk
University of Technology(GUT). From 1972 he has
been a researcher and lecturer at the Faculty of
Electrical and Control Engineering, GUT. In 2000 he
obtained the Doctor of Science degree from the
Technical University of Wroclaw. His scientific
interests include computer arithmetic, number systems
and fast digital signal processing.

e-mail: z.ulman@ely.pg.gda.pl

minimization of the area-time complexity. The design issues also
encompass the power dissipation in VLSI multipliers. Using
a direct approach a binary complex bit multiplier can be
based on four

nn ×
nn× bit binary multipliers and two adders. There

also exists an algebraic transform proposed by Blahut [1], that
allows to save one real multiplication at the cost of two more
additions and one subtraction. The theoretical lower bound on the
delay for an nn × -bit binary multiplication was given by
Winograd [2] and for the area-time complexity by Brent and Kung
[3], but in practice they have small impact on multiplier design.
The binary multiplication can be implemented very effectively
using only shifts and additions, but the delay may be prohibitive.
A common alternative to this solution is the generation of partial
products with a subsequent addition using a two-dimensional full-
adder(FA) array and a final two-operand binary adder. Such an
array is usually transformed into square that gives an array
multiplier. The delay of such a multiplier consists roughly of the
delay of the FA array that is proportional to n and the carry-
propagate adder delay. The binary adder is used commonly in the
ripple-carry or carry look-ahead form. A faster but less regular
multiplier can be obtained by summing the partial product with the
use of the Wallace tree [5]. In this case the delay is proportional to
log n. The complex multiplier considered in this paper has
a different structure from those based on binary multipliers
discussed above. Here the complex n-bit numbers are encoded as
polynomials of degree seven in the rings of polynomial modulo

. The complex multiplication is performed as an 8-point
cyclic convolution. In the first step n-bit complex numbers are
decomposed into n/4-bit segments. Using these segments
the coefficients of the input polynomials are calculated. In the
second step all 64 possible products of polynomial coefficients
are calculated. In this step ,

)1(8 −x

4/4/ nn × 14/4/ +× nn and
14/14/ +×+ nn multipliers are needed. Using these products, the

coefficients of the circular convolution are computed with the
subsequent calculation of the real and imaginary parts of the
complex product. In this paper, is assumed. The aim of this
work is to show the design procedure of the complex multiplier
based on the above presented principle and consider the issue of
its time-hardware complexity. This algorithm may be useful as
a design tool for large multipliers, but the characteristic features
of its hardware realization can also be determined using small n.
Therefore we shall use n = 4. This work is a revised and extended
version of [6].

4=n

2. The complex multiplication algorithm

for n-bit numbers

Consider multiplication yxz ⋅= of two n-bit complex numbers
with ir jxxx += and ir jyyy += . In order to decrease the

PAK 4/2007 ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ 69

wordlength the real and imaginary parts are decomposed into 1-bit
segments in the following manner [4]

()

(),222

222

0
4/

1
2/

2
4/3

3

0
4/

1
2/

2
4/3

3

i
n

i
n

i
n

i

r
n

r
n

r
n

r

xxxxj

xxxxx

++++

++++= (1)

()
(.222

222

0
4/

1
2/

2
4/3

3

0
4/

1
2/

2
4/3

3

i
n

i
n

i
n

i

r
n

r
n

r
n

r

yyyyj

yyyyy

++++

++++=

)
 (2)

After such decomposition the complex numbers can be

expressed as 7th order polynomials. This makes possible to
represent the multiplication of complex numbers as
a multiplication of polynomials. The complex number x can be
defined in the polynomial form as follows [4]:

,2
2
222

2
22

2
2
2 22

2
22)(

70
7

64/
6

50
5

44/
4

32/
3

24/3
2

12/
1

04/3
0

kwkwkwkw

kwkwkwkwkW

nn

nnnn

++++

++++=
 (3)

with 2222 jk += .

The polynomial coefficients can be expressed as linear
combinations of the individual segments

. ,
 , ,
, ,

 , ,

00716

00514

22332

22130

iri

irr

iri

irr

xxwxw
xxwxw
xxwxw

xxwxw

−=−=
−=−=
+−==

+==

 (4)

These coefficients can be computed by equating the respective

expressions:

,22

2
2

2
22

2
2

2
22

4/3
3

4/3
3

2

4/3
2

0

4/3
0

n
i

n
r

nn

jxx

jwjw

+=

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

 (5a)

,22

2
2

2
22

2
2

2
2

2
22

2
2

2/
2

2/
2

3

2/
3

1

2/
1

n
i

n
r

nn

jxx

jwjw

+=

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

 (5b)

,22

2
2

2
22

2
2

2
22

4/
1

4/
1

6

4/
6

4

4/
4

n
i

n
r

nn

jxx

jwjw

+=

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

 (5c)

.
2
2

2
2

2
2

2
2

2
2

2
2

11

7

7

5

5 ir jxxjwjw +=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+ (5d)

The same scheme of decomposition for the second complex

number y is used. The respective polynomial obtained for y will be
denoted as V(k). Then the product of x and y can be computed as

18)()()(
−

⋅=
x

kVkWkQ , (6)

which is equivalent to 8-point circular convolution, where

.
2
2

2
2

2
2

2
2)(

7
7

6
6

5
5

4
4

3
3

2
2

1
1

0
0

kqkqkq

kqkqkqkqkqkQ

+++

+++++=
 (7)

and
2/2/2/2/ 754310 qqqqqqQre +−−−+= , (8a)

2/2/2/2/ 765321 qqqqqqQim −−−++= . (8b)

The relationships (8a) and (8b) can be obtained by inserting

2222 jk += into (7).
The coefficients of Q(k) are the entries on the main diagonal of

the matrix Q defined as
TGZQ ⋅= (9)

with

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−

−−

−

33333333

14143414

11335533

12143634

11115555

12121636

33113355

14121416

22222222
22222222
22222222
22222222
22222222
22222222
22222222
22222222

G (10)

and

VWZ ⋅= , (11)

where [] .7,...,2,1,0, ,
8

== − jiwW ji
 and V is a diagonal

matrix with being the elements of the
coefficient vector of the complex number y, appearing as in (5).

),...,,(710 vvvdiag iv

iw

3. Realization of the algorithm for n = 4

The algorithm consists of the following steps:
i) computation of and , i = 0,1,...,7, iw iv

ii) calculation of the matrix Z (products , i , j = 0, 1, 2,..., 7), ji vw ⋅

iii) computation of , i = 0, 1, 2,...,7, iq
iv) determination of and by (8a) and (8b), respectively. reQ imQ

3.1. Computation of and iw iv

The coefficients , , i = 0,1,...,7 can be computed as given
in (4), , , k = 0,1,2,...,7, are 1-bit. Thus and may be
at most 2-bit with the extra sign bit. The sign-magnitude form is
assumed. The coefficients are computed using logic functions. The
logic equations are given only for , i = 0,1,...,7, since for
they have the same form with , replaced with , .

iw iv

krx kix iw iv

iw iv

rkx ikx rky iky
a)

3
,)0(

0 rxw =
b) , ,

22
)1(

1 ir xxw ⋅= 22
)0(

1 ir xxw ⊕=
c)

3
,)0(

2 rxw =
d)

22
)1(

3 ir xxw ⋅= , ,
22

)0(
3 ir xxw ⊕=

e) , , 1)1(
4 =w 1

)0(
4 rxw =

f) , , , 1)2(
5 =w ir xxw 00

)1(
5 ⊕= 00

)0(
5 ir xxw ⋅=

g) , , 1)1(
6 =w 1

)0(
6 ixw =

h)
00

)1(
7 ir xxw ⋅= , .

00
)0(

7 ir xxw ⊕=

3.2. Calculation of the matrix Z

In this step all products , i, j=0, 1, 2,...,7 have to be
computed. The operands can be classified in the following manner

ji vw ⋅

i) 1-bit unsigned 20 , ww

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

70 ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ PAK 4/2007

ii) 2-bit unsigned 1w
iii) 1-bit signed , , , 3w 4w 6w 7w
iv) 2-bit signed 5w

Due to the sign-magnitude representation, the signs can be
multiplied separately, hence three types of simple multipliers are
needed, namely 1-bit multiplier (Type I), 2×1-bit multiplier (Type
II), a 2×2-bit multiplier (Type III), signed 1-bit multiplier (Type
IV) and signed 2×2-bit multiplier (Type V). The respective logic
functions have the following form:

Type I: (1×1-bit unsigned arguments)

)0()0()0(bahI =

Type II: (2×1-bit unsigned arguments)

)1()0()1(bahII = ,)0()0()0(bahII =

Type III: (2×2-bit unsigned arguments)

)0()1()1()2(abahIII = ,)1()0()1()0()0()1()1(baabaahIII += ,

)0()0()1()0(baahIII = ,

Type IV: (1×1-bit signed arguments)

2 1)1(signsignhIV ⊕= , ,)0()0()0(bahIV =

Type V: (2×1-bit signed arguments)

2 1)1(signsignhIV ⊕= , ,)0()0()0(bahI =

The sizes and signs of for all combinations of i and j are
given in Table 1.

ji vw ⋅

Tab. 1. The bit sizes and signs of the partial products
Tab. 1. Rozmiary w bitach i znaki iloczynów częściowych

 0w
1
 w 2w

3w
4w

5w
6w

7
 w

0v 1,+ 2,+ 1,+ 1,± 1,- 2,- 1,- 1,±

1
 v 2,+ 3,+ 2,+ 2,± 2,- 3,± 2,- 2,±

2v 1,+ 2,+ 1,+ 1,± 1,- 2,- 1,- 1,±

3
 v 1,± 2,± 1,± 1,± 1,± 2,± 1,± 1,±

4v 1,- 2,- 1,- 1,± 1,+ 2,+ 1,+ 1,±

5
 v 2,- 3,± 2,± 2,± 2,+ 3,+ 1,± 2,±

6v 1,- 2,- 1,- 1,± 1,+ 1,± 1,+ 1,±

7v 1,± 2,± 1,± 1,± 1,± 2,± 1,± 1,±

3.3. Computation of , i = 0, 1, 2,...,7 iq

The computation of , i =0, 1, 2,...,7. by (9) requires
8-operand signed addition for each i. The operands are at most
3-bit with the sign and varying weights as it is seen in the rows of
the matrix G. The computation of involves the terms with
a fixed sign and terms with a variable sign. The use of 2’s
complement is ineffective due to the small number of nonzero bits
in the individual terms hence the grouping of addends is
performed in such a manner, that two groups are formed, one with
a fixed positive sign and the other with a fixed negative sign. The
variable sign terms are attached to both groups and they are
redirected to the proper group in dependence of the sign. This
redirection is performed by simple demultiplexers controlled by
the sign of the term.

iq

iq

The general formula for the computation of can be written as iq

ji
j

jii gzq

8

0
 ⋅= ∑

=

 (12)

Hence, for instance, for we receive the sums of the positive

and negative terms of , , , respectively:
0q

0q +
0q −

0q

6
0,0

2
4,0

1
7,0

5,05,03,03,01,01,00

222))(

)()()((

⋅+⋅+⋅+

+⋅+⋅+⋅=+

zzzS

zzSzzSzzSq
 (13a)

4
6,02,0

1
7,0

5,05,03,03,01,01,00

2)(2))(

)()()((

⋅++⋅+

+⋅+⋅+⋅=−

zzzS

zzSzzSzzSq
. (13b)

In the above formulas the dashed symbols represent the

negation and)(⋅S -denotes the sign of the term in parentheses
with 0 for the positive sign and 1 for the negative sign. After the
computation of (13a) and (13b), is transformed into its 2's
complement form and the addition is made. The structure
of an such adder is shown in Fig 1.

−
0q

−+ + 00 qq

Fig. 1. The full adder (FA) array for the computation of 0q
Rys. 1. Sumator do obliczania współczynnika 0q

The adders for and - as given by (8a) and (8b),

respectively, have been designed in the standard form [5] of
6-operand Wallace trees and the final carry-propagate adder has
the ripple-carry form.

reQ imQ

4. Numerical example

Assume two 4-bit complex numbers x=5+j12 and y=12+j9, with
the product 17739 jyxz +−=⋅= .

As shown above the numbers can be represented in the form of
polynomials W(k) and V(k) with the coefficients computed by (4).
The product of these polynomials allows to obtain the Q(k)
polynomial that represents the product of two complex numbers.
In the first step we have to decompose in accordance with (1) and
(2) the real and imaginary parts of both numbers. For n=4 such
decomposition leads to the segmentation of real and imaginary
parts of both numbers into 1-bit segments. For the assumed
complex numbers we obtain

)21212021(21202120 01230123 ⋅+⋅+⋅+⋅+⋅+⋅+⋅+⋅= jx
)21202021(20202121 01230123 ⋅+⋅+⋅+⋅+⋅+⋅+⋅+⋅= jy

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

PAK 4/2007 ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ 71

Thus we get
1 ,0 ,1 ,0 0123 ==== rrrr xxxx

1 ,1 ,0 ,1 0123 ==== iiii xxxx
0 ,0 ,1 ,1 0123 ==== rrrr yyyy

1 ,0 ,0 ,1 0123 ==== iiii yyyy

The coefficients of W(k) and V(k) are

.0,1
 ,2 ,0

,1 ,1
,1 ,0

00716

00514

22332

22130

=−=−=−=
−=−==−=
−=+−===

=+===

iri

irr

iri

irr

xxwxw
xxwxw
xxwxw

xxwxw

and

.1 ,0
 ,1 ,0

,1 ,1
 ,1 ,1

00716

00514

22332

22130

−=−==−=
−=−==−=
−=+−===

=+===

iri

irr

iri

irr

yyvyv
yyvyv
yyvyv

yyvyv

The circular matrix W has the following form

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

0 1 1 1- 0 2- 1- 0
0 0 1 1 1- 0 2- 1-
1- 0 0 1 1 1- 0 2-
2- 1- 0 0 1 1 1- 0
0 2- 1- 0 0 1 1 1-
1- 0 2- 1- 0 0 1 1
1- 1- 0 2- 1- 0 0 1
1 1 1- 0 2- 1- 0 0

W

and the V(k) coefficients have the values

(). 1 ,0 ,1 ,0 ,1 ,1 ,1 ,1),,,,,,,(76543210 −−−=vvvvvvvv

In the next step by using (11) we obtain the matrix Z

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

 0 0 1- 0 0 2- 1- 0
0 0 1- 0 1 0 2- 1-
1 0 0 0 1- 1- 0 2-
2 0 0 0 1- 1 1- 0
0 0 1 0 0 1 1 1-
1 0 2 0 0 0 1 1
1- 0 0 0 1 0 0 1
 1- 0 1 0 2 1- 0 0

Z

Then making use of (9) we obtain the coefficients of Q(k)

()
(32 ,14 ,78 ,49 ,34 ,75 ,32 ,12

,,,,,,, 76543210

−−−−=
== qqqqqqqqQ

)
.

Finally by (8a) and (8b), we get the real and imaginary parts of the
product

392/2/2/2/ 754310 −=+−−−+= qqqqqqQre
,

and
1772/2/2/2/ 765321 =−−−++= qqqqqqQim

.

5. Analysis of hardware amount and delay

The multiplier in the proposed configuration consists of four
main blocks. The first block (CC) computes the and

coefficients,

iw iv

7,...,2,1,0=i , the second block (WV) performs the
multiplications , jivw 7,...,2,1,0, =ji , the third block (Q)
calculates the coefficients, and finally the fourth
one (PR) determines and . The hardware amount of the
4-bit multiplier can be expressed in the following manner:

iq 7,...,2,1,0=i
reQ imQ

PRUWVCCMULT AAAAA +++= . (14)

The area of CC block, ACC is neglected as its area is very small.

The WV block requires 4 22× multipliers (7.98 GE) , 16 - 12 ×
multipliers(2.66 GE) and 16 - 11× multipliers (1.33 GE) , and 22 .

11× signed multipliers (4.33 GE) and 6 12 × signed
multipliers(5.66 GE). In total, the WV block uses 224.88 GE
which corresponds to 24.98 (with =9GE [7]). The adders
that compute , i=1,2,..7, require approximately 1120 and
the two adders for the final calculation of and , call for 78

. Hence,we finally obtain about 222.98 .

FAA FAA

iq FAA

reQ imQ

FAA FA

The
A

44× complex multiplier delay at the logical level can here
be estimated in the following manner:

PRQWVACCMULT ttttt +++= (15)

where FACC tt 7.0≅ , FANANDINVWV tttt 7.02 3 ≅⋅+= , FAPR tt 8= ,

. FAqq ttt
i

 10)(max ==

Finally we obtain FAMULT tt 4.19= .

6. Conclusions

The design procedure of a complex multiplier based on
Skavantzos and Stouraitis decomposition algorithm is presented.
For larger complex multipliers this algorithm represents
a decomposition tool, i.e. instead of 4 -bit binary multipliers,
64

nn ×
4/4/ nn × -bit, 4/14/ nn ×+ or 14/14/ +×+ nn -bit

multipliers can be applied. The obtained results indicate that the
hardware structure may be more regular than in the case of direct
decomposition of the large multiplier. This is due to the realization
of addition because after computation of partial multiplication
results, irrespective of the multiplier size, 8 multi-operand parallel
additions and next two 6-operand additions in parallel have to be
carried out. The multiplier implementation with the use of the
presented procedure becomes more effective with the growth of n,
since the part connected with the realization of partial
multiplications becomes dominant. The algorithm is not suitable
for small n, because of relatively large number of additions.

7. References

[1] R. E. Blahut: Fast Algorithms for Digital Signal Processing, Addison-

Wesley, 1987.
[2] S. Winograd :On the time required to perform multiplication, Journal

of the ACM, vol 14, pp. 793-802.
[3] R.P. Brent, H.T. Kung: The chip complexity of binary arithmetic,

Proceedings of the 12th Annual ACM Symposium on the Theory of
Computers, 1980.

[4] A.Skavantzos, T. Stouraitis: Decomposition of Complex Multipliers
Using Polynomial Encoding, IEEE Transactions on Computers, Vol.
41, No. 10, October 1992.

[5] K:Hwang.: Computer Arithmetic, Wiley, 1979.
[6] Smyk R., Czyżak M., Ulman Z. : Complex multiplier based on

polynomial residue number system, IC-SPETO 2005, XXVIII
Międzynarodowa Konferencja z Podstaw Elektrotechniki i Teorii
Obwodów, Gliwice-Ustroń, 11-14.05. 2005, s. 215-219.

[7] Samsung Electronics: Standard Cell Logic Library STDL 130, 2005.

Artykuł recenzowany

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

	The algorithm consists of the following steps:
	The coefficients , , i = 0,1,...,7 can be computed as given in (4), , , k = 0,1,2,...,7, are 1-bit. Thus and may be at most 2-bit with the extra sign bit. The sign-magnitude form is assumed. The coefficients are computed using logic functions. The logic equations are given only for , i = 0,1,...,7, since for they have the same form with , replaced with , .
	c) ,
	Due to the sign-magnitude representation, the signs can be multiplied separately, hence three types of simple multipliers are needed, namely 1-bit multiplier (Type I), 2(1-bit multiplier (Type II), a 2(2-bit multiplier (Type III), signed 1-bit multiplier (Type IV) and signed 2(2-bit multiplier (Type V). The respective logic functions have the following form:
	
	and the V(k) coefficients have the values
	 .
	
	In the next step by using (11) we obtain the matrix
	
	
	Then making use of (9) we obtain the coefficients of Q(k)
	
	Finally by (8a) and (8b), we get the real and imaginary parts of the product

