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Abstract: Shape memory alloys (SMAs) have become the most common choice for the development
of mini- and micro-type soft bio-inspired robots due to their high power-to-weight ratio, ability
to be installed and operated in limited space, silent and vibration-free operation, biocompatibility,
and corrosion resistance properties. Moreover, SMA spring-type actuators are used for developing
different continuum robots, exhibiting high degrees of freedom and flexibility. Spring- or any elastic-
material-based antagonistic or biasing force is mostly preferred among all other biasing techniques to
generate periodic oscillation of SMA actuator-based robotic body parts. In this model-based study,
SMA-based spring-type actuators were used to develop a carangiform-type robotic fishtail. Fin
size optimization for the maximization of forward thrust was performed for the developed system
by varying different parameters, such as caudal fin size, current through actuators, pulse-width
modulation signal (PWM), and operating depth. A caudal fin with a mixed fin pattern between the
Lunate and Fork “Lunafork” and a fin area of approximately 5000 mm2 was found to be the most
effective for the developed system. The maximum forward thrust developed by this fin was recorded
as 40 gmf at an operation depth of 12.5 cm in a body of still water.

Keywords: robotic fish; SMA; underwater robot; origami; smart material

1. Introduction

Currently, several underwater robots are being developed for exploring the behaviour
and continuous observation of the health conditions of smaller aquatic animals [1]. These
robots are also used for discovering new aquatic species, exploring oil, minerals, and other
discoveries that would be helpful for the welfare of humanity. A critical review of most
of the robotic fish developed in the last decade showed that servo motor-based robotic
fish have mostly been used for developing underwater robotic fish. Sound, vibration,
unbalancing during operation, and complexity in body structural design are some common
limitations of motor-based robotic fish. The silent, smooth, simple, and effective operation
of smart material actuators such as shape memory alloys (SMAs) [2–6], dielectric elastomer
actuators (DEA) [7,8], ionic polymer–metal composite (IPMC) actuators [9,10], etc., has
attracted the attention of researchers for developing smart-material-based robotic fish [11].
It has also been observed that among all smart-actuator-based robotic fishtails, SMA
spring-actuator-based robotic fishtails develop high forward thrust [12]. At the same
time, they have a higher power-to-weight ratio and take up minimal operating space [13].
Furthermore, corrosion is the biggest challenge to be addressed while developing an
underwater robotic fish. The SMA actuator showed high biocompatibility and excellent
corrosion resistance [14]. Among all other SMAs, Nitinol is chosen, as it has excellent
electrical and mechanical properties, a long fatigue life, high corrosion resistance, and is
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readily available on the market [15]. However, less forward thrust and corresponding speed
and a small operating cycle of fins are some limitations in the cases of smart-actuator-based
robotic fish.

Shaw and Thakur [16] fabricated and studied a stretched SMA-wired actuator-based
caudal fin for robotic fish. An SMA wire-based Bimorph mechanism (a cantilever used
for actuation or sensing, having two active layers with a passive layer between two active
layers for storing energy) was used to produce oscillation. The model (230 gm) achieved a
maximum speed of up to 2.6 cm·s−1. Zhang et al. [17] used SMA plat strips for developing
different robotic fish (3208 gm). The model achieved a maximum speed of 0.026 m·s−1.
Manta ray robotic fish were developed by Wang et al. [18]. Here, stretched SMA wire
(0.15 mm) was used to develop a flapping mechanism. A flexible robotic fish was devel-
oped, in which several wired actuators were attached along a flexible backbone made of
ABS material. Each wire of the developed model produced a pull force of 321 gm [19].
Continuous caudal fin oscillation using SMA wire (0.1 mm) and a GE strip-based rocking–
rocking mechanism was developed by Le et al. [2]. The model developed a maximum
forward thrust of 0.004 N. Rossi et al. [20] developed gear- and motor-less robotic fish, in
which stretched SMA wire is attached along a bending backbone made of a continuous
deformable structure. Phamduy et al. [21] developed a carangiform type of robotic fish, hav-
ing a body weight of 1.2 kg and a body length of 46 cm. Servo motors were used to produce
undulation at the fishtail. The maximum speed achieved was noted to be 13.7 cm/s. Zhong
et al. [22] developed wire-driven robotic fish; the measured weight and body length of
these robotic fish were 0.5 gm and 310 mm, respectively. Two wires were used to undulate
the fishtail using a servo motor. The maximum speed was 2.15 BL/s, and the flapping
frequency was 3 Hz. Katzschmann [23] designed and developed a soft robotic fish using a
hydraulic actuator. Piston-type hydraulic actuators were used to produce flapping of the
fishtail. The body length of the robotic fish was 470 mm and the maximum speed achieved
was 210 mm/s. Berlinger et al. [24] developed a DEA-based caudal fin attached at the rear
end of the fish body. The weight of the robot was 115 gm, and the length was 100 mm. The
maximum speed achieved was 55 mm/s. Le et al. [25] developed an SMA string-based
robotic fish. The elastic properties of SMA wire were used to produce oscillation using a
four-bar mechanism. The body size of the robotic fish was 26 cm, and the maximum speed
achieved by the robot was 1.6 cm/s. Furthermore, Muralidharan and Palani [12] developed
a sub-carangiform robotic fish using SMA spring-type actuators, having an actuator wire
diameter of 0.77 mm and a coil diameter of 5.69 mm. The forward speed developed by
the robotic fish was observed to be 24.5 mm·s−1. Coil-type SMA actuators were used in
the robotic fish, and the developed forward thrust was 0.39 N. This was the largest value
compared with the range of robotic fish propelled using SMA-based actuators. Despite
the larger forward thrust, the forward speed was found to be very small due to the lower
caudal fin oscillation frequency. At the same time, a large amount of energy dissipated due
to direct contact of the SMA spring actuators with water.

In this study, our model was successfully realized and tested for forward thrust
development by exploring varying sizes of caudal fins and depths of water. It focused on
the optimization of SMA spring-based fishtail shapes and sizes for a given robotic fish.
Maximum forward thrust was observed for a given fin size, heating time, cooling time,
and water depth. An origami-based prismatic frustum-type skin was used to cover the
SMA spring, as well as to produce an antagonistic force against the actuators. This reduces
power loss due to the direct contact of SMA actuators with water. Mathematical modelling
was developed, which demonstrated the methodology used to increase SMA-based fishtail
oscillation. The technique of measuring the cyclic frequency of a SMA spring-based robotic
system is also discussed. Initially, only four actuators (two on the right side and two on the
left sides) were designed, and the central steel spring was replaced with an origami-based
prismatic flexible skin. The study-based design and characterization of Nitinol SMA spring
actuators have been performed [3]. After assembling all developed components, various
actuators and sensors were connected to the controller. Here, the optimization variables
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involved the oscillation frequency, the area of the caudal fin, the operating power required,
and the working depth. The objective of this study was to improve the flexibility of the
fishtail, reduce power loss through the SMA spring actuators, and optimize the size of the
caudal fin for maximum forward thrust developed by the given robotic system.

2. Materials and Methods
2.1. Actuator Design

Firstly, SMA wires were procured, and their characteristics as an SMA spring-type
actuator were studied. In order to achieve optimal actuation force, several experiments
were performed on different SMA wires having varying diameters and lengths [3]. Among
all SMA wires, Nitinol SMA wire with a wire diameter of 0.5 mm was selected for designing
SMA actuators [26]. For developing the SMA spring-type actuator, wires were wound
tightly around a bolt with a diameter of 3 mm (Figure 1a). Subsequently, the tightly held
set of SMA wire was kept in the furnace and heated at a temperature of 450 ◦C for one hour,
then cooled slowly in open air (Figure 1b). Then, based on the pre-design setup, the initial
trained SMA spring was cut into pieces (Figure 1c). Finally, a trained SMA spring actuator
was ready for further use. (Figure 2d).

Different tests pertaining to force, displacement, and power dissipation with respect
to current and corresponding temperature were performed on the final SMA actuator. The
characteristics and behaviour of the final actuator were used in the model. Specifications of
the spring-type actuator are detailed in Table 1.
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Figure 2. (a) The basic parts of the carangiform robotic tail body and the skeleton of the robotic tail.
(b) The origami-based flexible skin made of plastic and a balloon for waterproofing the whole system.
(c) The assembled inner part of the robotic fish containing an SMA spring, potentiometer, pin joint, and
enamelled copper wire. (d) The finally developed 1/3 backward part of the robotic fish ready to test.

Table 1. Specification of SMA spring actuator.

Name of Different Parameters Specifications of SMA Actuators

SMA wire diameter 0.5 mm

Mean diameter of actuators 3.5 mm

Number of effective coils 10

The contracted length of the actuator 10 mm

Normal length 50 mm

Extension of actuator 60 mm

Total length of wire 110 mm

2.2. Tail Body and Caudal Fin Design

The size of the robotic fish was selected based on a review of previously developed
similar kinds of robotic fish. It was observed that for a given forward thrust and corre-
sponding speed, the body size of almost all the robotic fish lay in the range of 30 cm to
40 cm. It was decided to develop a carangiform-type robotic fish [27], with a body length of
39 cm and a flexible tail length of 13 cm. A streamlined body shape with a minimum (0.04)
drag coefficient is selected. The model was designed on Solidworks (2018) and printed
using a Makerbot 3D printer(Stratasys, Edina, MN, USA), using Poly Lactic acid (PLA) [28]
as the work material. In order to cover the SMA actuator, an origami-based prismatic
frustum and bellow-type skin, equivalent to a vertebral biasing spring for a carangiform
type robotic tail, was developed (Figure 2b). This creates antagonistic force against the
application of the unidirectional bending force produced by the SMA actuators. At the
same time, it yields radial strength against the hydrostatic pressure developed during
the operation. Temperatures of 80–90 ◦C are developed in each SMA actuator. Metallic
wire holders are framed up to the cross-sectional body structure, as shown in Figure 2a.
The oscillating part of the tail body is connected via a pin joint with the other part. The
entire tail body is covered, in order to make the whole system waterproof. The rear part
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of the body structure accommodated the caudal fin attached to a flexible peduncle, which
oscillated about the friction-less hinged joint to produce forward thrust.

The caudal fin was attached to the body structure via a cylindrical peduncle made of
Ethylene-vinyl acetate (EVA) copolymers. The caudal fin with a mixed fin pattern between the
Fork and Lunate [29] was made of PLA. Table 2 shows the specifications of the robotic tail.

Table 2. Specification of the SMA-based robotic tail.

Name of Different Parts Specifications of the Parts of Robotic Fish

Weight of the flexible tail 170 gm

Length 140 mm

Material used PLA (tail body), EVA (peduncle), and PP
(origami skin)

The maximum length of the axis of an elliptical
cross-sectional plate 90 mm × 80 mm

2.3. Experimental Setup Design

The experimental setup involved assembling of all the required devices and compo-
nents, as shown in Figure 3. A DC power supply of 16V was used. The maximum output
current was measured using a multi-meter. Initially, all the components were temporarily
arranged on a wooden frame. A load cell (Xcluma 1 kg load cell weight sensor with HX711
ADC, Bytesware Electronics, Bengaluru, India) was used for measuring forward thrust. The
depth of the tail was controlled manually. The turning angle of the fish tail was measured
using a potentiometer attached inside the tail body; the corresponding frequency was
measured using a stopwatch.
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2.4. Mathematical Modelling and Characterization

To simplify motion analysis of the developed robotic fishtail (Figure 2d), a basic
schematic diagram of the robotic fishtail system was drawn (Figure 4a,b). Caudal fin
oscillation was produced by the linear alternating actuation of SMA spring actuators. The
authors focused on the relationship between the motion of the fishtail, the shear modulus
of the SMA spring, and the stiffness of the central spring (the bellow-type flexible origami
skin behaved like a central spring).
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In Figure 4, x0 is the initial length of the pre-stretched SMA spring actuator, x1 is the
length of stretched SMA springs when they are fixed to the fishtail system, and the shear
modulus of the stretched SMA spring is Gn. The robotic tail system (Figure 4a) remained at
its initial position (x1) when no actuation of the actuators took place.

When SMA actuators on the right-hand side of the fishtail system were actuated, the
caudal fin reached a new position (x). For this position, the forces developed by different
springs can be determined.

The generalized equation of force developed by the hot spring (right-hand side) can
be represented by

Fh(x) = Gnh(x − x0) (1)

At the same time, the equation of antagonistic force developed by the cold spring and
central spring at the same position can be represented by

Fc(x) = Gnc(x0 + 2∆ − x) + Ksθ (2)

where Gnh and Gnc are the shear modulus of the hot SMA spring and cold SMA spring,
respectively, θ is the angle of deflection of the central spring (caudal fin), and Ks is the
stiffness of the central spring.

However, for the equilibrium of the fishtail system at this position, e.g., at x2 (rightmost
position of caudal fin),

Fh(x2) = Fc(x2) (3)

By solving the above equation, we can derive

x2 = x0 +
Ksθm + 2∆Gnc

Gnc + Gnh
(4)
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Similarly, for position x3 (leftmost position of caudal fin),

x3 = x0 +
Ksθm + 2∆Gnh

Gnc + Gnh
(5)

It is possible to determine out any positions between x2 and x3 using Equation (5).
The maximum deformation from the mean position can be represented by

δmax = (x3 − x0) =
Ksθm + 2∆Knh

Gnc + Gnh
(6)

An oscillation stroke of the caudal fin is given by

S = (x3 − x2) =
2∆(G nh − Gnc)

Gnc + Gnh
(7)

It is apparent from the robotic fishtail system that the deflection of origami below
flexible skin (∆) is inversely proportional to the stiffness of the central spring (Ks):

∆ ∝
1

Ks
(8)

By inserting the value of Equation (8) into Equation (7), the equation of oscillating
stroke becomes

S =
2(G nh − Gnc)

Ks(Gnc + Gnh)
(9)

Therefore, from the above results, it is clear that the oscillating stroke of the fin is
inversely proportional to the stiffness of the central spring (bellow-type flexible skin) and
the sum of the share modulus of hot and cold SMA springs. At the same time, the oscillating
stroke is directly proportional to the difference in the shear modulus of hot and cold SMA
spring actuators.

2.4.1. Technique to Enhance the Cyclic Frequency

The mathematical model for the robotic fishtail is shown in Equation (9).

S ∝
2(G nh − Gnc)

Ks(Gnc + Gnh)

The oscillating frequency of caudal fin is the rate of cyclic change of stroke. From the
above equation, it is clear that the rate of change in oscillating stroke is directly proportional
to the difference of rate of change of rigidity of SMA spring actuators.

.
S ∝

( .
Gnh −

.
Gnc

)
(10)

It is observed that the rate of change in the rigidity of SMA spring actuators is directly
proportional to the rate of heating of SMA wire actuators, and inversely proportional to the
rate of cooling of SMA wire actuators:

.
Gn ∝

.
Qh (11)

.
Gn ∝

1
.

Qc
(12)

However, it is very well established that heat dissipation by SMA wire is

.
Q = I2R − hA (TSMA − Tamb) (13)
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where I2R is the heat power developed by DC current passing through the wire per unit
time, h is the heat transfer coefficient, A is the surface area of the SMA wire actuator, TSMA
is the temperature of SMA wire, and Tamb is the temperature of the surrounding air [30].

During the heat dissipation by SMA wire, when it is lubricated by liquid mist, heat
remaining or stored in the wire per unit time can be calculated as

.
Q = I2R − mcp

dT
dt

(14)

where m is the mass of lubricated liquid and cp is the heat capacity of liquids.
For enhancing the rate of change in oscillating stroke or the oscillating frequency

of SMA spring-actuator-based fishtail systems, the cooling rate need to be enhanced.
Additionally, if the cooling rate increases, less heat will be stored in the SMA wire; therefore,
damping of the caudal fin oscillation will not take place. Cooling of the SMA spring-type
actuators can be enhanced by sprays of water mist, alcohol mist, or mist of any other liquid.
The heat capacity (cp) of the spraying materials should be high, but the lubricated boiling
point should be lower.

2.4.2. Forward Thrust Developed Due to Drag Force

The rowing speed of the caudal fin attached to the SMA spring actuators-based tail
system is very slow. The forward thrust developed by the robotic fish is due to the drag
force developed in the water. To develop forward thrust, SMA spring-type actuators apply
alternative forces on each side of the fishtail. The tail structure is similar to a seesaw
mechanism (Figure 4a). An electro-mechanical force is applied on either side, during the
alternate actuation of SMA spring actuators. Considering the second-class lever mechanism,
with force applied at the side ends, a fulcrum at the caudal fin, and load at the centre along
the vertebrae of fish, the following equation can be written:

The mechanical advantage of tail structure =
f orward thrust

applied f orce by actuators
=

rc + rw

rc
(15)

It is well established that drag f orce(Fd) =
1
2

Cd ρ a f inV2 (16)

The applied force required by the actuators is equal to the drag force developed at the
caudal fin to induce constant forward velocity of the robotic fish.

Thus, the forward thrust experienced by the robotic fish will be

Ft = (Fd)
rc + rw

rc
=

rc + rw

2rc
Cd ρ a f inV2 (17)

where a f in is the area of the caudal fin and V is the rowing velocity of the caudal fin.

Forward thrust experienced by the robotic fish =
∫ rc + rw

2rc
Cd ρa f inV2 sin 2θm dθ (18)

From the Equation (18), it is clear that the forward thrust depends upon the size of the
fishtail structure of robotic fishtail, drag coefficient, area of the fin, velocity of the fin, and
the effective angle rowed by the fin, which also depends upon the flexibility of the fin.

Utilising Equation (18), the area (a f in) of the fin can also be calculated if the other
parameters are known.

3. Results
3.1. Calculation of Cyclic Frequency for a Given Signal

An alternating square wave was generated with different cyclic frequencies. Figure 5c
shows the characteristic graph plot (obtained using MATLAB R2018b) of an SMA spring
attached to the left side of the fishtail system as an actuator. In this figure, the positive x-axis

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Sensors 2024, 24, 544 9 of 14

indicates the time, the positive y-axis indicates the turning angle in the right side, and the
negative y-axis indicates the turning angle obtained on the left side. The turning angle was
measured using a potentiometer as a radial position sensor. When a direct current passes
through single or multiple SMA actuators, attached to any one side of the robotic body
for duration of one or two seconds, a sudden contraction of the corresponding robotic tail
takes place, because of the heat developed into that actuator.
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Figure 5. (a) Schematic of the robotic tail. (b) Working model of the robotic tail. (c) The signal
obtained by the potentiometer attached inside the robotic tail using MATLAB.

Figure 5c depicts the signal when a 7.05-ampere current passes through the two
parallelly connected SMA spring-type actuators for 2 s; sudden contraction of the actuators
takes place due to heat developed in the wires. Furthermore, the very next moment,
when the power supply is stopped, gradual cooling of the actuators takes place, and
the corresponding angle of the caudal fin starts decreasing due to the antagonistic force
developed by the central spring system. At a certain angle (represented by the green line,
about 15 degrees) of the caudal fin, the force developed by the central spring and the force
developed by the SMA spring actuators become equal to each other. This angle is denoted
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by a straight line called the equilibrium force line. The position of the equilibrium force
line may change based on the number of SMA spring actuators used. The area below this
line is called the dead zone, as no biasing force acts on the caudal fin until the application
of the next actuation signal. The signal on the other side can also be analysed.

As discussed earlier, the developed system requires an alternating square-wave-type
signal for the continuous oscillation of the caudal fin. Based on the signals obtained for
different actuators, the corresponding alternating square wave is mathematically calculated
so that none of the actuators contain residual stress due to heat left in the actuator body
before the next heating operation takes place, as shown in Figure 6a,b.
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3.2. Fin Design and Test to Achieve Maximum Forward Thrust

As stated in the Introduction, a similar type of robotic fishtail was developed by
Muralidharan and Palani [12], which produced a forward thrust of 39 gmf. In this study,
the authors aimed to design a modified version of the carangiform-type robotic fish tail,
which uses less operating power and can produce forward thrust of up to 40 gmf.

Based on the above information of the robotic system, the area of the fin may be
calculated for improved forward thrust. For solely developing forward thrust (Ft = 40 gmf),
the theoretical fin area (a f in) can be calculated.

The maximum bending angle (Figure 5b) is observed: 2θm = 60
◦
.

Thus, the calculated area of the SMA spring-based fin (a f in) will be

a f in =
Ft

rc+rw
2rc

Cd ρV2
∫

sin 2θm d θ

a f in =
0.4

rc+rw
2rc

Cd ρV2
∫

sin 2θm d θ
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The linear velocity of the caudal fin can be calculated using the maximum swept angle,
θ = π

180 ∗ 60◦; the angular velocity, ω = θ
t rad/s, swept time (t) = 0.3 s (observed); and

linear velocity, V = rcω m/s = 0.21 m/s.
Inputting the values of, rc = 0.06 m, rw = 0.03 m, Cd = 1.1(rectangular thin disk),

ρ = 1000 gk/m3, the area of the fin was calculated: 0.00637 m2 = 6370 mm2.
Based on the above theoretical results, a caudal fin with a mixed fin pattern between

the Lunate and Fork “Lunafork” [29] was designed. The areas of the caudal fins are taken
as fin a = 7000 mm2, fin b = 6000 mm2, fin c = 5000 mm2, and fin d = 4000 mm2.

Different experiments were performed using the developed carangiform-type SMA-
based robotic tail in various conditions; the corresponding results were plotted. Four
similar types of caudal fins with different surface areas were designed in Solidworks and
printed using a 3D printer. Figure 7a shows the variation in maximum forward thrust with
the variation in the area of caudal fins for a given tail system and corresponding power
supply.
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For the given tail system receiving similar signals (same heating and cooling times),
at comparable operating depths and environments, the 5000 mm2 caudal fin developed
the highest forward thrust. The fins with an area less 5000 mm2 did not cause sufficient
drag force, and hence, produced forward thrust. However, caudal fins with a surface area
over 5000 mm2 did not receive sufficient power to overcome the drag force developed
during operation.

For different caudal fins, the forward thrust is measured with the manual variation
in depth of the robotic tail from the surface of the water (Figure 7b). The recorded values
of forwarding thrust with operating depth are plotted. With the increment in depth, the
forward thrust increased up to a certain value and then decreased. It is a well-known fact
that hydrostatic pressure can be calculated as follows:

P = ρ g hd, where hd = operating depth

Thus, with depth, the hydrostatic pressure increases, which increases the correspond-
ing forward thrust up to certain level due to the increased reaction force. However, over a
certain depth, pressure is too high for the tail system to overcome. In this system, the maxi-
mum forward thrust was recorded up to 13 cm depth for fin c. The obtained results justify
the fact that a given robotic fish system can only operate effectively up to certain depth.

Figure 7c shows the variation in forward thrust with current for different caudal fin
areas in similar environmental conditions. Initially, when a very small current passed
through the SMA actuators (two SMA spring-type actuators parallelly connected in our
case), less heat develops in the wires, which results in less corresponding thrust. Addition-
ally, the transition temperature of the SMA spring actuator is around 45–55 ◦C, which can
be achieved by passing currents of 1 amp to 1.5 amp through each actuator.

After passing a certain amount of current through SMA actuators for 2 s (30 s was
chosen for cooling the actuators in the air so that no stress remained in the actuators), the
forward thrust started increasing. Increasing PWM direct current, from around 2 amperes
to 3.5 amperes, the forward thrust increased. At the same time, it was found that increasing
the heat at a constant cooling time reduced the forward thrust. With the increase in the
area of the fins, initially, the forward thrust increased up to a certain value, but after that, it
started reducing for the developed robotic system.

Figure 7d shows the variation in forward thrust with increasing heating time for the
caudal fin. Although the PWM signal with 2 s heating and 30 s cooling developed the
highest forward thrust up to a certain current range, above a certain current range, the
forward thrust started reducing due to the insufficient cooling time.

Here, the whole current supplied at one time was divided into two parts for each
SMA actuator. A maximum current of 7 ampere was supplied by the power system at one
time, giving only 3.5 ampere current to each actuator, which took sufficiently longer to
heat the actuators. This is the reason behind the increments in caudal fin rowing times and
reductions in the expected forward thrust.

4. Conclusions and Future Scope

In this study, the SMA spring-actuator-based carangiform robotic tail design, corre-
sponding mathematical modelling of the fishtail, square wave signal generation, drag-force-
based caudal fin design, and their testing for better forward thrust have been performed.
Based on the above design, modelling, experiments, and corresponding findings, the
following conclusions can be drawn.

A fin area of approximately 6370 mm2 was calculated to provide a forward thrust of
0.4 N. For the developed robotic fishtail system, the optimal value of area was recorded to
be around 5000 mm2. For the developed robotic system, a 12.5 cm depth was found to be
most effective for the fish to move at maximum speed. At this depth, about 40 gmf of 0.4 N
forward thrust was developed by fin c.

The low operating frequency of the SMA actuator-based system was found to be the
biggest drawback. Based on the above techniques, fin shapes and sizes could be designed
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and developed for any specific robotic system. In turn, the oscillation frequency can be
increased by optimizing the rate of rigidity change using various cooling methods. This
technique can also be used in other SMA-based bioinspired robots inspired by different
animals, such as starfish, jellyfish, and octopuses.
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