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ABSTRACT Contemporary microwave design heavily relies on full-wave electromagnetic (EM) simulation
tools. This is especially the case for miniaturized devices where EM cross-coupling effects cannot be
adequately accounted for using equivalent network models. Unfortunately, EM analysis incurs considerable
computational expenses, which becomes a bottleneck whenever multiple evaluations are required. Common
simulation-based design tasks include parametric optimization and uncertainty quantification. These can be
accelerated using fast replacement models, among which the data-driven surrogates are the most popular.
Notwithstanding, a construction of approximation models for microwave components is hindered by the
dimensionality issues as well as high nonlinearity of system characteristics. A partial alleviation of the
mentioned difficulties can be achieved with the recently reported performance-driven modeling methods,
including the nested kriging framework. Therein, the computational benefits are obtained by appropriate
confinement of the surrogate model domain, spanned by a set of pre-optimized reference designs, and by
focusing on the parameter space region that contains high quality designs with respect to the considered
performance figures. This paper presents a methodology that incorporates the concept of nested kriging and
enhances it by explicit dimensionality reduction based on spectral decomposition of the reference design
set. Extensive verification studies conducted for a compact rat-race coupler and a three-section impedance
matching transformer demonstrate superiority of the presented approach over both the conventional tech-
niques and the nested kriging in terms of modeling accuracy. Design utility of our surrogates is corroborated
through application cases studies.

INDEX TERMS Microwave design, compact circuits, surrogate modeling, domain confinement, principal
component analysis, dimensionality reduction.

I. INTRODUCTION
Full-wave electromagnetic (EM) analysis is one of the most
important tools in the design of contemporary microwave
components. As a matter of fact, EM-simulation-driven
design has become imperative for a considerable number of
components and circuits [1]–[4]. On the one hand, the reason
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is reliability: analytical or network-equivalent models are
unable to describe adequately systems of increasing com-
plexity. On the other hand, for some circuits, parameterized
network models may not be available whatsoever. Minia-
turized microstrip components constitute a representative
class of structures for which the aforementioned issues are
especially pertinent. This is primarily due to considerable
EM-cross couplings present in tightly arranged layouts of
compact circuits, being a result of transmission line (TL)
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folding [5], the employment of compact microwave res-
onant cells (CMRCs) [6], or multi-layer implementation
(e.g., LTCC circuits [7], [8]).

Perhaps the most annoying inconvenience of EM-driven
design is its high computational cost, which manifests
itself especially in tasks that require a large number of
system simulations. These include parametric optimization
(also referred to as design closure) [9], multi-objective
design [10], global optimization [11], as well as uncer-
tainty quantification (statistical analysis [12], tolerance-
aware design [13]). High cost often prompts the researchers
to employ simplified design procedures, largely based on
parameter sweeping, or to consider special cases (e.g., worst-
case analysis instead of proper statistical analysis [14]),
which are manageable in terms of the entailed computa-
tional expenses but grossly inaccurate. Apart from strictly
algorithmic methods (e.g., gradient-based procedures with
sparse sensitivity updates [15], [16]), fast surrogate models
offer a way of expediting simulation-based design proce-
dures [17]–[19]. A number of surrogate-assisted methods
have been developed for local tuning purposes, where the
model is only constructed along the optimization path and
enhanced using the EM-simulation data acquired on the
way [20]–[26]. A sufficient generalization capability of such
models may be ensured by rendering them based on under-
lying lower-fidelity models (e.g., network equivalents) [20].
Space mapping [17] is probably the best know technique
of this kind in high-frequency electronics, whereas others
include various response correction techniques [23], [24],
and the feature-based technology [27]. For global optimiza-
tion, a popular approach is an iterative construction of the
surrogate involving sequential sampling methods [28], e.g.,
efficient global optimization (EGO) methods [29], machine
learning techniques [30], or surrogate-assisted population-
based metaheuristics [31], [32].

Owing to their attractive features (versatility and easy
access through various third-party toolboxes, e.g., [33], [34]),
data-driven models constitute the most popular class of surro-
gates. Furthermore, as approximation models are exclusively
based on sampled high-fidelity model data, it is straight-
forward to apply them in different engineering disciplines.
Among many available modeling methods, the following
ones are particularly popular: polynomial regression [35],
artificial neural networks [36], radial basis function interpo-
lation [37], kriging [38], support-vector regression [39], [40],
polynomial chaos expansion [41]–[43], and, recently, PC
kriging [44]. Unfortunately, data-driven surrogates exhibit
an important disadvantage, which is a rapid increase of the
number of training data samples required to ensure usable
accuracy of the model as a function of the number of inde-
pendent parameters and their ranges (a so-called curse of
dimensionality). In the case of microwave components, addi-
tional challenge is high nonlinearity of the system responses
as well as the necessity of modeling several characteris-
tics simultaneously over broad frequency spectrum. In some
cases, these issues can be addressed to a certain extent using

techniques such as high-dimensional model representation
(HDMR) [45], and orthogonal matching pursuit (OMP) [46].
Another option is the employment of variable-fidelity models
(e.g., co-kriging [47], two-stage Gaussian process regres-
sion [48], or Bayesian model fusion [49]).

Recently, an alternative way of alleviating the diffi-
culties pertinent to parameter ranges and dimensionality
has been proposed through domain confinement [50]. The
performance-driven modeling methods [50]–[53] explore the
fact that the parameter sets being optimum with respect to
the performance specifications pertinent to a design task at
hand normally occupy small regions of the traditional box-
constrained parameter spaces. This is due to considerable
correlations between the parameters that need to be tuned
in a synchronized manner when, for example, re-designing
a device for different operating frequency, bandwidth, or dif-
ferent substrate parameters [51]. From the point of view of
design utility, allocating training samples outside such high-
quality regions would be a waste of computational resources.
Based on this idea, surrogate modeling by domain confine-
ment has been proposed in [50], where the approximation
of the optimum design regions is obtained using a set of
pre-optimized reference points. This initial method was only
capable of handling one or two figures of interest and did not
provide mechanisms for uniform data sampling. The nested
kriging framework presented in [52] effectively resolved
these issues by defining the surrogate model domain using
the first-level model acting on the objective space of the com-
ponent under considerations. Performance-driven modeling
methods [50]–[53] have been shown superior over conven-
tional techniques by rendering reliable models at low compu-
tational costs and alleviating the issue of dimensionality and
parameter ranges.

Although nested kriging brings in some important bene-
fits, among others, a simple procedure for uniform design
of experiments and easy surrogate model optimization [52],
the model domain dimensionality is intact as compared to
the original parameter space. This has a negative effect
on the model scalability but also predictive power for
higher-dimensional problems (e.g., multi-section CMRC-
based compact circuits [53]). In this paper, the nested kriging
framework [52] is enhanced by explicit reduction of the
model domain dimensionality. This is implemented at the
level of orthogonal extension of the objective space image
through the first-level model, which, in [52] has been car-
ried out using the entire set of normal vectors. In the pre-
sented approach, it is realized using only the most dominant
directions extracted from the principal components of the
reference design set. Comprehensive numerical validation
conducted for a miniaturized rat-race coupler and a compact
three-section impedance matching transformer indicate that
the proposed modeling methods leads to a further improve-
ment of the surrogate predictive power (as compared to the
nested kriging framework). At the same time, the models
retain their design utility, which is corroborated by the appli-
cation case studies.
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II. METHODOLOGY: PERFORMANCE-DRIVEN MODELING
WITH DIMENSIONALITY REDUCTION
The purpose of this section is to formulate the modelling
methodology discussed in this work. One of its components is
nested kriging [52], the recent performance-driven approach,
in which the domain of the surrogate model is confined to
the region containing high-quality designs (w.r.t. the selected
figures of interest). Implementation-wise, the domain is
determined using the so-called first-level model identified
using the set of pre-optimized reference designs. The major
enhancement introduced in this work is that the orthogonal
extension of the objective space image through the first-level
model is only conducted along a small subset of normal
vectors calculated based on the principal components of the
reference set. This allows for explicit reduction of the model
domain and is in contrast to the nested kriging framework
where the extension was conducted using all normal vectors.
As demonstrated in Section III, the result is further improve-
ment of the predictive power of the surrogate (as compared to
nested kriging) and enhanced model scalability.

A. FUNDAMENTAL COMPONENTS OF
MODELLING PROCESS
The modelling process is conducted with respect to the
adjustable parameters of the structure at hand, denoted as
x = [x1 . . . xn]T . The standard (box constrained) parameter
space X is defined using the lower and upper bounds on these
parameters, l = [l1 . . . , ln]T and u = [u1 . . . , un]T , so that
xk ∈ [lkuk ] for k = 1, . . . , n. The modeling process also
assumed a certain number of figures of interest, denoted
as f = [f1 . . . fN ]T , which form the objective space F . The
objective space is delimited using the ranges of interest, fk.min
and fk.max, so that fk.min ≤ fk ≤ fk.max, for k = 1, . . . ,N .
Some examples of the figures of interest include an operating
frequency of the circuit, power split ratio (in the case of
couplers), fractional bandwidth (e.g., in the case of filters),
etc. The performance figures may be also related to material
parameters, e.g., the height and relative permittivity of a
dielectric substrate used to implement the structure on.

The ranges fk.min and fk.max define the region of validity
of the surrogate model that is to be rendered, i.e., we are
interested in constructing the model that will be an accurate
representation of the circuit in the parameter space areas that
contains designs that are optimum or nearly optimum for
all f ∈ F . The design optimality is understood as follows.
We define a scalar merit function U (x, f), which assesses the
quality of the design represented by the parameter vector x
in regards to the objective vector f. Minimizing this function
yields the design x∗ that is optimum with respect to f as

x∗ = UF ( f ) = argmin
x
U (x, f) (1)

The set of all designs UF ( f ), denoted as UF (F) = {UF ( f ) :
f ∈ F} form a subset of the parameter space X , which is,
in general an N -dimensional object (e.g., a surface in the case
of two-objective space F).

The following example illustrates the aforementioned con-
cepts. Let us consider a microwave coupler that is supposed
to operate at a frequency f0. The optimum design is under-
stood in the sense of maximizing the bandwidth B (sym-
metric w.r.t. f0); at the same time, the power split at f0,
|S21| − |S31| [dB], should attain the target value KP. Given
these specifications, the figures of interest, according to the
notation introduced earlier, would be f1 = f0 and f2 = KP,
whereas the cost function U may be defined as follows

U (x, f) = −2min{fB2(x)− f0, f0 − fB2(x)}

+β [KP − [|S21(x, f0)| − |S31(x, f0)|]]2 (2)

In (2), the frequencies fB1 and fB2 mark the lower and
the upper edge of the −20 dB bandwidth, which is under-
stood here as the range of frequencies where max{|S11(x)|,
|S41(x)|} ≤ −20 dB. The function U also contains a penalty
term. The latter serves as a regularization factor enforcing
the condition KP = |S21| − |S31| at f0 (here, β is a penalty
coefficient).

As mentioned before, within the performance-driven mod-
eling methods [50]–[53], the modeling process is restricted
to the vicinity of the optimum design set UF (F). A particular
implementation of this restriction is method-dependent but in
all cases, the regionUF (F) is approximated using a set of ref-
erence designs x(j) = [x(j)1 . . . x(j)n ]T j = 1, . . . , p, which are
obtained asUF (f(j)), with f(j) = [f (j)1 . . . f (j)N ] being the target
vectors allocated within the objective space F . The origin
of the reference points may be twofold: (i) designs rendered
specifically for the sake of constructing the surrogate model,
and (ii) designs available as a result of prior optimization
of a microwave structure at hand for various performance
specifications.

Spectral decomposition of the reference design set can be
used to yield important insight into correlations between the
design objective and the optimum parameter sets. We will
utilize this information later (Section II.B) in the definition
of the surrogate model domain. Let

xm =
1
p

p∑
k=1

x(k) (3)

be a reference design set center. We define the covariance
matrix Sp of {x(k)} as

Sp =
1

p− 1

p∑
k=1

(x(k) − xm)(x(k) − xm)T (4)

Let ak , k = 1, . . . , n be the eigenvectors of Sp, and λk be
the corresponding eigenvalues [54]. Without loss of gener-
ality, we can assume that the eigenvalues are arranged in a
descending order, i.e., we have λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0.
The eigenvectors ak are the principal components of the
reference design set and they establish the directions of the
most important correlations between the structure parameters
at the locations of the optimum designs within the objective
space F . The eigenvalues λk represent the variance of the
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reference set in the eigenspace. Using these, we also define
the matrices

Ak = [a1 . . . ak ] (5)

which contain the first k eigenvectors as columns. The matrix
constructed using all eigenvectors will be denoted as A= An.

B. SURROGATE MODEL DOMAIN DEFINITION:
FIRST-LEVEL MODEL AND ORTHOGONAL EXTENSION
The basis for constructing the surrogate model domain is the
initial step of the procedure employed by the nested kriging
framework [52], i.e., the first-level surrogate sI ( f ) : F → X ,
rendered using the set of reference points and the associated
objective vectors {f(j), x(j)}, j = 1, . . . , p. The model itself is
a kriging interpolation surrogate, and it is, in fact, an inverse
model because of mapping the figures of interest (space F)
into the parameter space X of the structure at hand.
The initial approximation of the optimum design setUF (F)

is obtained as the image of the objective space through the
first-level model, i.e., sI (F). The two sets agree perfectly for
all f(j) associated with the reference designs. Notwithstand-
ing, as the number of reference designs is normally small,
sI (F) generally does not coincide with UF (F). In the nested
kriging framework, these discrepancies are accommodated by
extending sI (F) in all directions {v

(k)
n ( f )}, k = 1, . . . , n−N ,

that are normal to sI (F) at f ∈ F [52]. The scope of extension
is determined by a so-called thickness coefficient D. The
rule of thumb is to ensure that the lateral size of the domain
is five to ten percent of the tangential size (the latter can
be inferred from the span of the reference designs), which
normally allows for the majority ofUF (F) to become a subset
of the model domain. It should be noted that within the
aforementioned setup, the dimensionality of the domain is the
same as the dimensionality of the parameter space X .
The purpose of this work is to employ the spectral analysis

of the reference set (cf. (3)-(5)) in order to provide explicit
reduction of the domain dimensionality. Towards this end,
the orthogonal extension of the first-level model image will
be conducted only with respect to a few normal vectors cor-
responding to the most significant directions as determined
by the eigenvectors ak (cf. Section II.A). We will denote the
number of such directions as K ≤ n. It should be observed
thatK has to be larger than the dimensionality of the objective
space N to ensure that the extension is non-trivial.
Having K , the task is to obtain the extension vectors using

the eigenvectors ak , k = 1, . . . ,K . To this end, we denote
as tj( f ), j = 1, . . . ,N , the vectors tangent to sI (F) at the
objective vector f. The first step is to represent {tj( f )}j=1,...,N
with respect to the eigenvectors {ak}k=1,...,K , which can be
obtained as[

t̄1( f ) . . . t̄N ( f )
]
= ATK [t1( f ) . . . tN ( f )] (6)

In (6), the matrix AK is defined according to (5). The size of
vectors t̄j( f ) is K × 1, in other words, we want to restrict our
considerations (in particular, the surrogate model domain) to
the K -dimensional subspace spanned by the columns of AK .

The next step is to find a set of vectors normal to sI (F)
but within the subspace spanned by AK . Towards this end,
consider the matrix T( f )

T( f ) =
[
t̄1( f ) . . . t̄N ( f ) eN+1 eN+2 . . . eK

]
(7)

which is a complement of
[
t̄1( f ) . . . t̄N ( f )

]
to a squareK×K

matrix, where ej = [0 . . . 0 1 0 . . . 0]T with 1 at the jth posi-
tion. At this point, we apply a Gram-Schmidt procedure [55]
to T( f ) in order to render an orthonormal basis of K vectors
TGS of the form

TGS ( f ) =
[
t̃1( f ) . . . t̃N ( f ) w1( f ) . . . wK−N ( f )

]
(8)

The matrix (8) has two parts, the second consisting of the
vectors wj(f), j = 1, . . . ,K − N , which will be used to carry
out the orthogonal extension of sI (F). It can be observed that
because the tangent vectors tj( f ) are generally well aligned
with the eigenvectors aj, j = 1, . . . ,N , the vectors t̃j( f ) are
close to t̄j( f ). Also, it has to be emphasized that the vectors
wj( f ) are functions of the objective vector f, so that they have
to be computed separately for each f ∈ F . Selecting an appro-
priate dimensionality K is an important consideration, which
can be facilitated by means of analyzing the eigenvalues λk .
Typically, K = N + 1 or N + 2 is sufficient. An extended
discussion of this issue will be provided in Section III.

The final step is to define the surrogate model domain
itself, here, denoted at XS , which involves both the first-level
model sI () and the vectors wj. We have

XS =

 x = sI ( f )+ T
K−N∑
k=1

αkw(k)
n ( f ) : f ∈ F,

−1 ≤ αk ≤ 1, k = 1, . . . , n− N

 (9)

It should be noted thatXS consists of all points of the form x =
sI ( f )+T

∑K−N
k=1 αkw

(k)
n ( f ), which are generated for all f ∈ F

and all combinations of coefficients αk with−1 ≤ αk ≤ 1 for
k = 1, . . . ,K − N . The parameter T used in (9) plays a role
similar to that of the thickness parameterD of nested kriging.
In general, it is possible to employ separate coefficients for
all expansion directions (i.e., Tk , k = 1, . . . ,K − N , instead
of a common T ), which would allow to distinguish between
the relative importance of particular directions (e.g., based
on the corresponding eigenvalues). However, in the verifica-
tion experiments presented in Section III, a joint parameter
T is utilized for the sake of simplicity. It is set to a few
percent of the reference set size towards the most dominant
eigenvector a1; furthermore, it is adjusted to account for the
relationships between the eigenvalues λk .

The surrogate model domain dimensionality is controlled
by the parameter K (the number of principal components ak
used in the domain definition). In particular, setting K = n
(the maximum number of components, equal to the dimen-
sionality of the parameter space) is almost equivalent to going
back to the original nested kriging. As a matter of fact,
the latter is used later in the work (Section III) as one of the
benchmark techniques, in order to demonstrate the benefits
of dimensionality reduction.
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FIGURE 1. Performance-driven modeling with explicit dimensionality
reduction: basic components. For clarity, the concepts are shown using a
two-dimensional objective space and the three-dimensional parameter
space: (a) objective space F , (b) parameter space X , the reference
designs, the optimum design set UF (F ), and the first-level model image
sI (F ) (gray-shaded surface). The picture also shows two exemplary points
sI (f ) along with their corresponding tangent vectors t1 and t2, and the
normal vector w1 obtained as in (8). In general, the target dimensionality
K of the domain XS is smaller than the dimensionality n of X . However,
as shown in the picture, K = n to enable a graphical representation.

FIGURE 2. Construction of the extension basis {wi (f )} of (8) – graphical
illustration. The visualization is provided assuming three-dimensional
parameter space and two-dimensional objective space (cf. Fig. 1), as well
K = n (the number of domain-defining principal components equal to the
dimensionality of the parameter space) to make the illustration possible.
Shown are: the set sI (F ) along with a selected reference design, its
corresponding tangent vectors {tj }, and zoom onto the construction
procedure shown in the inset. The projected vectors t̄j (f ) are obtained as
in (6). The extension vectors wi are obtained using the Gram-Schmidt
procedure (cf. (7) and (8)).

The fundamental components of the presented modeling
procedure have been illustrated in Fig. 1. A graphical illus-
tration of constructing the extension vectors {wi( f )} can be
found in Fig. 2.

C. CONSTRUCTING THE SURROGATE. DOMAIN
SAMPLING AND SURROGATE OPTIMIZATION
Having the domain XS defined as in Section II.C , the actual
surrogate model s(x) is constructed in a conventional manner,

FIGURE 3. Performance-driven modeling with dimensionality reduction:
flow diagram.

here, using kriging interpolation [56]. The training data pairs
will be denoted as {x(k)B , R(x(k)B )}k=1,...,NB, where x

(k)
B ∈ XS

are the samples, whereas R(x(k)B ) are the evaluations of the
full-wave EM-simulation model of the structure being mod-
eled. The flow diagram of the modeling process has been
shown in Fig. 3.

There are two direct benefits of constraining the sur-
rogate model domain. On the one hand, because the vol-
ume of XS is significantly smaller than that of the original
parameter space X , the modeling accuracy is expected to
be considerably improved (assuming the same training data
set sizes) [52]. On the other hand, the accuracy improve-
ment is achieved without formally restricting neither the
ranges of geometry nor operating parameters of the struc-
ture. These advantages are even more noticeable in higher-
dimensional cases where conventional modeling (i.e., within
the domain X ) is infeasible, whereas reliable performance-
driven surrogates can still be rendered. Reduction of the
domain dimensionality as proposed in this work is a supple-
mentary advantage. As demonstrated in Section III, it leads to
a further improvement of the model predictive power but also
modeling error scalability with respect to the training data set
size.

A few comments should be made at this point about the
design of experiments (DoE). Space-filling DoE in XS is not
straightforward due to the complex geometry of the domain.
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In this work, we follow the approach presented in [52],
directly based on the domain definition, and adopted for our
needs. More specifically, we employ a surjective mapping
between the unit interval [0, 1]K and the domain XS . Let us
assume that {z(k)}, k = 1, . . . ,NB, is a training data set,
with the samples uniformly distributed in [0, 1]K by means
of, e.g., Latin Hypercube Sampling [57]. A transformation
H : [0, 1]K → XS is defined as

x = H (z) = H ([z1 . . . zn]T ) = sI
(
fz
)

+T
∑K−N

k=1
(−1+ 2zN+k )w(k)

n (fz) (10)

in which

fz =

 f1.min + z1(f1.max − f1.min)
...

fN .min + zN (fN .max − fN .min)

 (11)

The uniformly distributed sample set {x(k)B } in XS is then
obtained using the transformation H as

x(k)B = H (z(k)), k = 1, . . . ,NB (12)

It is important to mention that the sample set is uni-
form with respect to the objective space F , i.e., the points
fz(z(k)), k = 1, . . . ,NB, obtained using (11) are uniformly
filling F . This means, in particular, that if f1 represents, e.g.,
the operating frequency of a coupler, the sample set unifor-
mity refers to equal representation of the coupler designs
corresponding to the different operating frequencies ranging
from f1.min to f1.max.

The mapping H can also be used to facilitate applications
of the surrogate model to solving design tasks such as para-
metric optimization. Let us consider the design problem (1)
featuring the merit function U and the target vector ft . The
problem can be formulated as follows

x∗ = arg min
x∈[0,1]K

U (H (z), ft ) (13)

and solved over the normalized interval [0,1]K . The first-level
surrogate sI can be then used to identify a good initial design
as (cf. [52])

x(0) = sI (ft ) (14)

The vector x(0) is the best possible approximation of the
design x∗ = UF (ft ) one can extract from the data contained
in the reference designs.

III. VERIFICATION STUDIES
The purpose of this section is to provide numerical verifica-
tion of the modelling procedure presented in Section II. It is
based on two miniaturized microwave components, a rat-race
coupler and a three-section impedance matching transformer.
For the sake of benchmarking, the section also includes
comparisons with conventional modelling approaches and
the nested kriging of [52]. Application case studies are also
discussed in order to demonstrate the design utility of the pro-
posed approach. Here, we assume that the designer already

establishes the topology of the device at hand during the early
stages of the design process and through the initial parametric
studies. That includes the structure parameterization, which is
therefore assumed to be fixed.

A. CASE 1: THREE-SECTION CMRC-BASED IMPEDANCE
MATCHING TRANSFORMER
Consider a compact three-section 50-to-100 Ohm impedance
matching transformer of [58]. The circuit geometry has been
shown in Fig. 4(a). The fundamental building blocks of the
transformer are compact microstrip resonant cells (CMRCs)
shown in Fig. 4(b). Their purpose is to reduce the over-
all length of the structure as compared to the implemen-
tation based on conventional transmission lines. The cir-
cuit is implemented on RF-35 substrate (εr = 3.5, h =
0.762 mm, tanδ = 0.018). Its geometry is described by
fifteen parameters x = [l1.1 l1.2 w1.1 w1.2 w1.0 l2.1 l2.2 w2.1
w2.2 w2.0 l3.1 l3.2 w3.1 w3.2 w3.0]T . The computational model
is simulated in CST Microwave Studio using its transient
solver (∼280,000 mesh cells, simulation time 2.5 min). The
frequency simulation range is from 0.5 GHz to 7.5 GHz.

FIGURE 4. Verification case study 1: compact CMRC-based 3-section
impedance matching transformer: (a) circuit topology, (b) parameterized
geometry of the compact microstrip resonant cell (CMRC).

The modeling goals are the following. We aim at con-
structing the surrogate that is valid for the operating bands
[f1 f2] defined by the requirement |S11| ≤ −20 dB, with
1.5 GHz ≤ f1 ≤ 3.5 GHz, and 4.5 GHz ≤ f2 ≤ 6.5 GHz.
The conventional parameter space X is defined using the
lower and upper bounds l = [2.0 0.15 0.65 0.35 0.30 2.70
0.15 0.44 0.15 0.30 3.2 0.15 0.30 0.15 0.30]T , and u = [3.4
0.50 0.80 0.55 1.90 4.00 0.50 0.67 0.50 1.55 4.5 0.26 0.46
0.27 1.75]T . The first-level model is constructed using nine
reference points, optimized for all combinations of f1 ∈ {1.5,
2.5, 3.5} GHz and f2 ∈ {4.5, 5.5, 6.5} GHz.
The verification experiments have been set up as described

below. The proposed surrogate is constructed using several
training sets of sizes 50, 100, 200, 400, and 800 samples. The
split sample method [56] based on 100 random test points
is employed to estimate the modeling error. The assumed
metric is the average value of the relative RMS error, defined
as ||Rf (x) − Rs(x)||/||Rf (x)||, where Rf and Rs stand for
the EM-simulated and surrogate model outputs, respectively.
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The benchmark methods include conventional kriging and
radial basis function (RBF, [37]) models (both within the
interval [l, u]), as well as the nested kriging model of [52]
constructed for the thickness parameter D = 0.05. In addi-
tion to that, the proposed model was considered in several
variants, corresponding to the following numbers of principal
directions: K = 3, 4, and 5. For all cases, the extension
parameter T was set to 0.25 mm, which was set up as follows.
The overall span of the conventional domain X calculated as
||u− l|| is about 3.5 mm, whereas the fourth eigenvalue λ4 is
about four percent of the largest one λ1. Thus, T = 0.25 mm
(i.e., orthogonal span of the domain XS ) corresponds to about
seven percent of the overall span, which is comparable to
the amount of information carried by the fourth principal
component (here, for the sake of example, the second one that
contributes to the orthogonal extension of sI (F)).

TABLE 1. Verification case 1: modeling results for the impedance
matching transformer.

FIGURE 5. Verification case 1: reflection characteristics of the impedance
matching transformer of Fig. 4(a) at the selected test designs:
EM model (—), proposed surrogate set up for K = 4 and N = 200 training
data samples (o).

Table 1 provides the numerical results for the proposed
and the benchmark modeling techniques. The surrogate and
EM-simulated transformer responses at the selected test loca-
tions have been shown in Fig. 5. The results of Table 1 clearly
indicate superiority of both the nested kriging and the pro-
posed approach over the conventional methods. Both conven-
tional kriging and RBF surrogates exhibit poor performance
even for the largest considered data sets of 800 samples.
The proposed surrogate is considerably better than the nested
kriging model for K = 3 and 4, and comparable for K = 5;
however, for all considered values of K , it is more reliable

FIGURE 6. Application cases studies (design optimization) for impedance
matching transformer of Fig. 4(a): proposed surrogate (o), nested kriging
model [44] (�), and EM simulation at the design produced by the
proposed model (—). The vertical lines denote the target operating
frequency range: (a) f1 = 2.0 GHz, f2 = 5.0 GHz, (b) f1 = 1.8 GHz,
f2 = 6.4 GHz, (c) f1 = 1.8 GHz, f2 = 5.8 GHz, (d) f1 = 3.2 GHz,
f2 = 6.5 GHz.

for small training data set sizes of 50 to 200 samples (around
twice as accurate for K = 3). The question arises whether
going beyond K = 4 is justified at all. The first six nor-
malized eigenvalues of the reference set for this problem are
λ1 = 1.00, λ2 = 0.76, λ3 = 0.15, λ4 = 0.041, λ5 = 0.008,
λ6 = 0.003. This indicates that using more than three or four
eigenvectors is not necessary as the information brought by
including subsequent dimensions becomes negligible.

In order to verify the design utility of the proposed model-
ing procedure, the model obtained with K = 4 and N = 400
has been optimized for several target bandwidths, and com-
pared to the results obtained by means of the nested krig-
ing model (for the same objectives). The results have been
visualized in Fig. 6, clearly demonstrating that dimension-
ality reduction does not negatively affect the design quality.
Table 2 contains the values of the geometry parameters at the
optimized designs.

B. CASE 2: MINIATURIZED RAT-RACE COUPLER
The second verification case is a miniaturized micro-
strip rat-race coupler (RRC) [59], also implemented on
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TABLE 2. Application case studies: optimization of the impedance
transformer of Fig. 4(a).

FIGURE 7. Verification case study 2: miniaturized microstrip rat-race
coupler (RRC) [59].

RF-35 substrate (εr = 3.5, h = 0.762 mm, tan δ = 0.0018).
The circuit geometry, shown in Fig. 7, is parametrized by
the variable vector x = [l1 l2 l3 d w w1]T ; the remaining
dimensions are d1 = d + |w − w1|, d = 1.0, w0 = 1.7,
and l0 = 15 fixed (all in mm). The computational model
is simulated in CST Microwave Studio using its frequency
solver (∼120,000 mesh cells, simulation time 2.5 min) within
the simulation range from 0.5 GHz to 2.5 GHz.

Here, the purpose is to construct the surrogatemodel cover-
ing the range of operating frequencies f0 between 1 GHz and
2GHz, as well as the power split ratioKP from−6 dB to 0 dB.
The optimum design of the coupler is understood in the sense
of (i) maintaining the required power split at the operating
frequency, i.e., |S21| − |S31| = KP, and (ii) minimization
of the matching |S11| and isolation |S41|, also at f0. The cost
function quantifying the aforementioned requirements takes
the form of

U (x, f) = max{|S11(x, f0)|, |S41(x, f0)|}

+β [KP − [|S21(x, f0)| − |S31(x, f0)|]]2 (15)

where the primary objective is minimization of the match-
ing/isolation responses at f0, whereas the penalty term is to
ensure that KP = |S21| − |S31| at f0 (cf. (2), Section II.A).

The reference designs are optimized for the following pairs
of the operating frequency and power split ratio {f0,K}:
{1.0,0.0}, {1.0,−2.0}, {1.0,−6.0}, {1.2,−4.0}, {1.3,0.0},
{1.5,−5.0}, {1.5,−2.0}, {1.7,−6.0}, {1.7,0.0}, {1.8,−3.0},
{2.0,0.0}, {2.0,−6.0} (frequency in GHz, power split in dB).
Based on these designs, the parameter space X is established
and delimited by the lower bounds l = [2.0 7.0 12.5 0.2 0.7
0.2]T , and the upper bounds u= [4.5 12.5 22.0 0.65 1.5 0.9]T .
The verification experiments have been set up similarly

as in Section III.A. The proposed surrogate is constructed
using the training sets of sizes from 50 to 800 samples, and,
in each case, for the following two domain dimensionalities,

K = 3 and K = 4. Using K = 5 as for the previous example
was not quite relevant due to the parameter space dimension-
ality being n = 6. The extension parameter T was set to
0.25 mm, based on similar considerations as presented for
the previous example. The overall span of the conventional
domain X , ||u − l|| is about 11.3 mm, whereas already the
third eigenvalue λ3 is about three percent of the largest one λ1.
Thus, T = 0.25 mm (i.e., orthogonal span of the domain XS )
corresponds to less than four percent of the overall span,
which is comparable to the amount of information carried by
the third principal component.

The model accuracy (average relative RMS error) has been
assessed using the split sample approach. The benchmark
includes kriging and radial basis function (RBF) models
established over the domain X , as well as the nested krig-
ing model of [52] constructed for the thickness parameter
D = 0.05.

TABLE 3. Verification case 2: modeling results for the rat-race coupler.

FIGURE 8. Verification case 2: responses |S11|, |S21|, |S31| and |S41| of
the rat-race coupler of Fig. 7 at the selected test designs: EM simulated
response (—), proposed surrogate set up with K = 3 and N = 400 training
samples (o).

The numerical results for the proposed and the benchmark
modeling techniques have been gathered in Table 3. Figure 8
visualizes the coupler characteristics for the proposed
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FIGURE 9. Application case studies (design optimization) for the rat-race
coupler of Fig. 7: proposed surrogate (o), nested kriging model [44] (gray
solid lines) and EM simulation at the design produced by the proposed
model (—). The vertical lines denote the target operating frequencies:
(a) f0 = 1.2 GHz, KP = −2 dB, (b) f0 = 1.5 GHz, KP = −3 dB,
(c) f0 = 1.5 GHz, KP = 0 dB, (d) f0 = 1.7 GHz, KP = −4 dB.

surrogate and EM simulation model; the agreement between
these two data sets is excellent. Similarly as for the previous
example, both the nested kriging and the proposed modeling
technique are significantly better than the surrogates con-
structed using conventional methods. Furthermore, the pre-
sented approach exhibits the predictive power better than the
nested kriging forK = 3. ForK = 4, the accuracy of both the
nested kriging and the proposed surrogate are comparable but
one needs to consider that the model domain volume is much
larger for the proposed technique with K = 4 than for the
nested kriging. Overall, the benefits are not as pronounced as
for the transformer of Section III.A because dimensionality
reduction for the coupler is limited (with respect to the origi-
nal parameter space dimensionality of six).

Similarly as for the previous case, the eigenvalue analysis
clearly indicate that the right choice of the parameter K is

three. The normalized eigenvalues of the reference set for
this problem are λ1 = 1.00, λ2 = 0.12, λ3 = 0.035,
λ4 = 0.0036, λ5 = 0.0009, λ6 = 0.0001. Thus, the third
eigenvalue is less than four percent of the first one, whereas
the fourth one is an order of magnitude smaller than the third.
Hence, involving another dimension (K = 4) would not bring
meaningful information.
Verification of the design utility of the proposed modeling

procedure was carried out the same way as in Section III.A,
i.e., by optimizing the surrogate (here, obtained with K = 3
and N = 400) for several target operating frequencies
and power split ratios. The results were compared to those
obtained with the nested kriging model, cf. Fig. 9. It can be
observed that that dimensionality reduction does not lead to
design quality degradation. The geometry parameter values
at the optimized designs can be found in Table 4.

TABLE 4. Application case studies: optimization of the rat-race coupler
of Fig. 7.

IV. CONCLUSION
This work discussed a new approach to computationally-
efficient and accurate surrogate modelling of compact
microwave components. Our methodology employs two
major components: a recently proposed nested kriging frame-
work, and spectral decomposition of the reference design set.
The knowledge of the correlations between the figures of
interest pertinent to the structure at hand and the reference
points permits reduction of the surrogate model domain
dimensionality as compared to the nested kriging. This leads
to a further improvement of the model predictive power.
The analytical formulation of the presented method includes
procedures for convenient design of experiments (uniform
data sampling), optimization of the surrogate model, as well
as generation of a good initial design for a given target vector
of performance specifications.

Our modelling technique has been validated using two
miniaturized microstrip components, an impedance match-
ing transformer described by fifteen geometry parameters,
and a rat-race coupler described by six parameters. In both
cases, the surrogates were rendered over broad ranges of
parameters and operating conditions. Furthermore, compar-
isons with conventional modelling techniques (kriging and
radial basis function interpolation, both over unconstrained
domain) as well as the nested kriging have been included. The
results demonstrate superiority of our approach in terms of
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the surrogate model reliability across the considered training
data sets of various sizes. The method of selecting the model
domain dimensionality based on the eigenvalue analysis was
discussed as well.

Finally, the paper presented applications of the mod-
els for design optimization (parameter tuning), as a way
of demonstrating the design utility of the proposed tech-
nique. The conclusion from these experiments is that neither
domain confinement nor dimensionality reduction have neg-
ative effects on the quality of the designs obtained using our
approach.
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