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Narutowicza Str., 80-233 Gdansk, Poland; tomasz.dymerski@pg.edu.pl

* Correspondence: marta.ferreiro@uca.es; Tel.: +34-956-01-6363

Abstract: This article introduces a novel approach to detecting honey adulteration by combining ultra-
fast gas chromatography (UF-GC) with advanced machine learning techniques. Machine learning
models, particularly support vector regression (SVR) and least absolute shrinkage and selection
operator (LASSO), were applied to predict adulteration in orange blossom (OB) and sunflower (SF)
honeys. The SVR model achieved R2 values above 0.90 for combined honey types. Treating OB and
SF honeys separately resulted in a significant accuracy improvement, with R2 values exceeding 0.99.
LASSO proved especially effective when honey types were treated individually. The integration of
UF-GC with machine learning not only provides a reliable method for detecting honey adulteration,
but also sets a precedent for future research in the application of this technique to other food products,
potentially enhancing food authenticity across the industry.

Keywords: honey; adulteration; ultra-fast gas chromatography; machine learning; regression;
classification; food control; volatile compounds

1. Introduction

Honey is a natural sweetener produced by Apis mellifera L. bees from the nectar of
plants or from secretions of living parts of plants or excretions of plant-sucking insects
on the living parts of plants [1]. The composition and properties of honey depend on the
botanical origin of the source of nectars or secretions, climatic conditions, environmental
factors, and bee farming practices. Honey can be classified into two categories depending
on the secretions of plants used for their synthesis: blossom honey made from the nectar of
flowers, and honeydew honey made from secretions of all living parts of plants other than
flowers or excretions of insects [2,3].

Monofloral honey is a type of honey produced from a single botanical source holding
distinctive organoleptic properties. [4]. Monofloral honey is generally considered to be
more valuable than multifloral honey because it is more difficult to produce, and it has a
unique flavor profile that is specific to the flower or plant from which it was derived. In the
case of orange blossom (OB) and sunflower (SF) honeys, their distinct flavors and aromas
make them highly desirable. OB honey has a delicate floral aroma and a sweet citrus
taste [5], while sunflower honey has a mild and pleasant flavor with a light floral aroma.

According to the European Union Council Directive 2001/110/EC [6] and FAO/WHO
Codex Alimentarius [1], honey is defined as a natural sweet product, so that the addition
of any foreign materials, and falsely declaring the botanical or geographical origins, are
all considered fraudulent practices. The addition of cheap sweeteners or lower quality
honey is a common form of honey adulteration, which aims to increase the volume and
sweetness of the product while reducing production costs [7,8]. However, this practice can
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also compromise the quality and safety of the honey. Additionally, adulterated honey may
have a different composition, taste, and aroma than pure honey [9,10].

To ensure the quality and safety of honey, various national and international orga-
nizations have established standards and guidelines for honey production, processing,
and labeling. The Codex Standard for Honey is a globally recognized standard that sets
the minimum quality and purity criteria for honey, including its moisture content, sugar
composition, and absence of additives and contaminants [1,11].

In recent years, several techniques have been developed to detect honey adulter-
ation, including stable carbon isotope ratio analysis (SCIRA) [12]; gas chromatography
(GC) [13,14]; ion mobility spectrometry (IMS) [15]; nuclear magnetic resonance (NMR) [16];
Fourier transform infrared spectroscopy with attenuated total reflectance accessory (FTIR-
ATR) [17]; UV–Visible (UV-Vis) [18], near-infrared (NIR) [19], Raman spectroscopy [20],
and thermographic images [21]; and biosensor technology [22]. These techniques have
been employed to detect the most common honey adulterants such as refined cane sugar,
beet sugar, or corn syrup. However, they have different strengths and limitations, and
the adulteration of high-cost honeys, including monofloral honeys, with low-cost honeys
is not easily detected using these techniques [23] (Table 1). SCIRA analyzes the ratio of
stable carbon isotopes and is limited in its ability to detect other types of adulteration. GC
separates and analyzes volatile honey components but may have limited sensitivity for
certain adulterants. IMS also identifies volatile compounds but also has limitations in sensi-
tivity. NMR provides detailed molecular information but requires expensive equipment
and complex data interpretation. FTIR-ATR analyzes the infrared spectrum and may have
limited sensitivity for certain adulterants. UV-Vis measures light absorption but has limited
specificity. NIR analyzes the near-infrared region and most organic compounds in food
samples contribute to the absorption in the NIR region. Therefore, as specific spectroscopic
regions with individual contributions from specific compounds are usually not available,
samples previously analyzed with a reference method should be used to prepare calibration
curves while developing analytical methods based on NIR spectroscopy, instead of the
regular calibration procedures with standards. Raman spectroscopy identifies chemical
bonds and structures but may require complex data analysis. Thermographic images
measure temperature variations but have limited specificity. Biosensor technology detects
specific adulterants but is limited to targeted adulterants and may require optimization.

Table 1. Summary of limitations and challenges in major techniques used for detecting honey
adulterations.

Technique Principle/Compounds Involved Limitations and Challenges

Stable Carbon Isotope Ratio
Analysis (SCIRA) Isotopic ratios of sugars Limited resolution,

expensive equipment

Gas Chromatography (GC) Analysis of volatile compounds Miss non-volatile adulterants,
complex sample preparation

Ion Mobility–Mass
Spectrometry (IMS) Analysis of volatile compounds Limited resolution,

quantification challenges
Nuclear Magnetic
Resonance (NMR)

Joint spectra mainly
from sugars

Limited sensitivity, high cost,
skill-dependent

Fourier Infrared Spectroscopy
with ATR (FTIR-ATR)

Joint spectra mainly
from sugars

Limited specificity, vulnerable
to impurities

UV–Visible (UV-Vis) and
Near-Infrared (NIR) Spectroscopy

Joint spectra mainly
from sugars

Lack of specificity, need for
comprehensive databases

Raman Spectroscopy Joint spectra mainly
from sugars

Limited penetration, sensitivity to
sample properties

Thermographic Images Surface temperature mapping Limited applicability,
interpretation challenges

Ultra-fast gas chromatography (UF-GC) is a powerful analytical tool that allows the
rapid and sensitive analysis of individual volatile compounds in complex mixtures such as
honey. Unlike traditional gas chromatography, which can be time-consuming and costly,
UF-GC completes its detection process in just a few hundred seconds, providing rapid
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results [24]. The most common approach in the analysis of the volatile fraction using gas
chromatography is the identification and determination of target compounds. Such an
approach is not possible when using ultra-fast gas chromatography due to the short length
of chromatographic columns and steep temperature ramps. In these cases, a non-targeted
chemical analysis approach can be used instead [25]. Machine learning (ML) algorithms
have been previously employed for detection of adulterants in honey with other tech-
niques [26]. In most cases, honey adulteration involves the addition of artificial sweeteners
or syrups [17,27]. However, in this study, we focused on adulterating high-value honey
with cheaper varieties. Detecting this type of honey-to-honey adulteration is more chal-
lenging and requires advanced techniques. We employed UF-GC combined with machine
learning algorithms as a novel approach for developing precise and reliable models to
identify adulterants in food, in this case, lower-value honey mixed into higher-value honey.

The aim of this study was to evaluate the ability of different ML algorithms in combi-
nation with UF-GC to predict the level of adulteration in orange blossom and sunflower
honeys. The following algorithms were evaluated: least absolute shrinkage and selec-
tion operator (LASSO), ridge regression (RIDGE), elastic net (ENET), partial least squares
(PLS), random forest (RF), and support vector regression (SVR). These ML algorithms have
demonstrated successful applications in the detection and quantification of adulterations in
honey using Vis-NIR [28]. This study is the first to examine and compare the performance
of some ML regression techniques for the determination of honey adulteration.

2. Materials and Methods
2.1. Samples

In order to cover the widest heterogeneity, a mixture of OB honey was prepared by
mixing 13 different pure OB honeys. Likewise, a mixture of SF honey was prepared by
mixing 7 different pure SF honeys. The pure OB and SF honeys were provided by the
Andalusian Agency for Agricultural and Fisheries Management (AGAPA) from the An-
dalusian Government as a part of the collection in the Wine and Food Research Institute
(IVAGRO) at the University of Cádiz (Spain), code NPM21-IVAGRO. The adulterated sam-
ples were prepared by mixing each type of honey (OB and SF) with a different proportion
of adulterant. A mixture in equal proportions of eucalyptus, rosemary, and thousand
flower honeys were used as the adulterant. These honeys were selected as adulterants
for their affordability and availability in local markets. The quantity of adulterant in the
resulting adulterated samples ranged from 5% to 50%. Each type of sample was prepared
in duplicate, so a total of n = 44 samples were prepared for analysis. The samples were
labeled according to the code XY_N_M, where XY could be SF (sunflower honey) or OB
(orange blossom honey), N could be 5, 10, 15, 20, 25, 30, 35, 40, 45, or 50% of adulterant,
and M could be 1 or 2 (duplicated samples).

2.2. Honey Analysis

Honey samples were analyzed using a Heracles II ultra-fast gas chromatography
system equipped with an HS100 autosampler (Alpha M.O.S., Toulouse, France). The
system was equipped with two parallel 10 m columns with different polarity (MXT-5
and MXT-1701) (Restek, Bellefonte, PA, USA). The MXT-5 column features a low-polarity
phase (diphenyl dimethyl polysiloxane) for separating nonpolar and moderately polar com-
pounds, while the MXT-1701 column has a higher-polarity stationary phase (cyanopropy-
lmethyl phenylmethyl polysiloxane) suitable for both polar and nonpolar compounds.
MXT-5 is ideal for hydrocarbons and volatile compounds, while MXT-1701 is versatile and
can be used for food, environmental analysis, and compounds like alcohols and esters.
Each column was coupled to a micro flame-ionization detector (µFID). The carrier gas was
hydrogen having 6N purity and provided by a Precision Hydrogen Trace 250 generator
(Peak Scientific Instruments, Inchinnan, UK).

Honey samples weighing 1.5 g were mixed with 5 mL of a solution containing 30%
salt in water. The mixture was then poured into glass vials with a headspace of 20 mL,
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and the vials were sealed with caps lined with a membrane made of silicon and PTFE. The
sealed vials were incubated at a temperature of 40 ◦C for 20 min, while being stirred at
500 rpm. The injector temperature was 200 ◦C. The injected headspace sampling volume
was 2500 µL at 250 µL/s. Analytes were trapped in a Tenax® TA sorptive material at 40 ◦C,
and were then thermally desorbed at 240 ◦C. The total process took 20 s.

The oven temperature was programmed to hold 40 ◦C during 2 s, and then increase
from 40 to 270 ◦C at a rate of 3 ◦C s−1, with a final hold of 18 s, and the FID detector
temperature was set to 270 ◦C. The time of data acquisition was 100 s and the sampling
rate was 100 samples s−1. Considering the incubation time, the final time of analysis was
approximately 25 min.

2.3. Data Analysis

Data analyses from UF-GC results were performed with RStudio (R version 4.0.5,
Boston, MA, USA). The dataset was obtained by concatenating chromatographic data from
both FIDs, which resulted in a two-dimension data matrix (Dnxp) of D44x20002, where p is
the number of variables (retention times), and n is the number of samples (adulterated and
unadulterated OB and SF honey).

Several RStudio packages were used during the analysis, including Boruta [29] for
variable selection, factoextra [30] for hierarchical cluster analysis, ggplot2 [31] for graphical
visualizations, and caret [32] for creating machine learning models for both classification
and regression: LASSO [33], RIDGE [34], ENET [35], PLS [36], RF [37], SVR, and SVM [38].
A paired t-test was conducted to compare the predictive performance using RMSE in each
pair of ML models at a 95% level of significance.

The regression models were assessed using metrics such as R-squared (R2), root mean
square error (RMSE), and the ratio of predicted deviation (RPD). R2 represents the model’s
goodness of fit, with higher values indicating better fits, while RMSE measures the average
difference between actual and predicted values, with lower values indicating better fits.
RPD was used to evaluate model effectiveness, with the following categories: excellent
for RPD > 2.5, very good for RPD between 2 and 2.5, good for RPD between 1.8 and 2,
moderate for RPD between 1.4 and 1.8, weak for RPD between 1 and 1.4, and very poor for
RPD < 1 [27]. To evaluate the classification models’ performance, the accuracy metric was
used, which was calculated as the number of accurately classified instances divided by the
total number of instances.

3. Results
3.1. Exploratory Analysis

First, the aim was to study whether there was any tendency of the honey samples to be
classified according to the botanic origin and/or the level of adulteration based on UF-GC
results. To do so, the raw data matrix containing OB and SF honey samples (D44x20002)
without applying any pre-treatment was subjected to hierarchical cluster analysis (HCA).
Euclidean distances were used to determine the similarity between samples. The linkage
method, used to merge or split clusters based on their similarity, was selected by comparing
different methods (single, full, average, Ward, and centroid). Since HCA was performed
without pre-treatment and concatenating information obtained by both columns in order to
understand raw tendencies, values in the linkage method ranged from 0.6216 to 0.7474. The
average method obtained the best result (0.7474). The results from HCA are represented
in a dendrogram in Figure 1. In general, it can be observed that samples with the same
botanical origin are located in related clusters, and the level of the adulteration conditions
the location in the dendrogram. The four main clusters identified are A, B, C, and D. The
unadulterated samples of OB honey are grouped in cluster A, while unadulterated SF
samples are grouped in cluster C. On the other hand, adulterated OB samples are grouped
in cluster B and adulterated SF samples are grouped in cluster D. Adulterated SF samples
showed a slight trend to cluster by their level of adulteration in subclusters. Nonetheless,
this trend was less evident in the case of OB samples.
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Figure 1. Circular dendrogram resulting from the hierarchical cluster analysis (HCA) of the dataset
(D44x20002) with UF-GC; The names of the honey samples are colored according to their botanical
origin: sunflower (purple) and orange blossom (orange). The four main clusters have been colored
and labeled with letters A, B, C, and D. The average method with Euclidean distances was used.

This analysis suggests that the UF-GC technique can be used to effectively distinguish
between unadulterated and adulterated honey samples, as well as differentiate between
different botanical origins. However, it was not possible to classify the samples according
to the level of adulteration by this exploratory analysis. For this reason, and in order to
develop a model capable of predicting and quantifying future samples of adulterated honey,
different supervised techniques were evaluated.

3.2. Supervised Models for Prediction of Level of Adulterant

The application of supervised regression methods, such as LASSO, RIDGE, ENET, PLS,
SVR, and RF, can help in developing models to predict the percentage of adulterant in honey
samples based on the data obtained through UF-GC. Through the application of these
regression methods, this study not only facilitates the detection of potential adulteration,
but also identifies the most dependable method for making predictions, contributing to the
quality control and authenticity of honey in the market.

To develop robust predictive models and to avoid overfitting, some data pre-treatment
was performed. Boruta is a feature selection algorithm designed for identifying relevant
features in high-dimensional datasets and categorizes features as “important”, “unimpor-
tant”, or “tentative”. The Boruta algorithm assesses the importance of each feature in an
original dataset by comparing its score to a set of shadow attributes, representing noise,
using a RF classifier. Features that are significantly more important in the original dataset,
compared to the shadow dataset, are considered relevant and are retained for the model.
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This iterative process helps to select the most informative features, reducing the risk of
overfitting and enhancing model performance. It enhances the quality of predictive models
by effectively identifying the most relevant features while mitigating the risk of overfitting.
It contributes to the overall reliability and accuracy of models dealing with UF-GC data
and the prediction of adulterant percentages in honey samples.

In this case, the feature selection algorithm Boruta was applied to identify the most
relevant features generated by combining data from both columns of UF-GC. For all the
regression models, the dataset containing the concatenated information of both sensors
(D44x20002) was randomly split into a 75% training set (n = 33) and a 25% test set (n = 11), only
considering the level of adulteration (5–50%) and excluding the botanical origin. The test set
contained independent samples that were not used in the model and was used for external
validation to obtain an unbiased error estimate for all trained models. Then, only the
training set (D33x20002) was pre-processed using the Boruta algorithm and 30 features were
selected (D33x30) and employed to build the models. Parameter optimization was assessed
by 5-fold cross-validation (CV) on the training set. Tables 2 and 3 include the optimized
parameters, the 5-fold CV performance of regression models, and the performance of
regression models on the training and test sets, respectively. These models were applied
to all honey samples, as well as specifically to OB and SF honey. Model performance was
evaluated in both tables using RMSE and R2. RPD is also include in Table 3 to evaluate
model effectiveness.

Table 2. Optimized parameters and 5-fold CV performance of regression models applied to all
honey samples and to OB and SF honeys. LASSO = least absolute shrinkage and selection op-
erator; RIDGE = ridge regression; ENET = elastic net regression; PLS = partial least squares re-
gression; LVs = latent variables; RF = random forest; SVR = support vector regression with ra-
dial kernel; ALL = containing all botanical origin honey samples; OB = orange blossom honey;
SF = sunflower honey.

Algorithm Dataset Hyperparameters
5-Fold CV Performance

RMSE R2

LASSO
All λ = 0.132 4.041 0.937
OB λ = 0.305 2.340 0.990
SF λ = 0.201 2.712 0.992

RIDGE
All λ = 10 6.353 0.901
OB λ = 10 3.508 0.973
SF λ = 10 3.404 0.991

ENET
All α = 0.03 λ = 1 4.041 0.937
OB α = 0.1 λ = 0.923 2.297 0.989
SF α = 0.1 λ = 0.100 2.631 0.993

PLS
All 3 LVs 2.978 0.972
OB 3 LVs 2.112 0.996
SF 3 LVs 2.710 0.995

RF
All Mtry = 1 6.095 0.881
OB Mtry = 46 4.452 0.986
SF Mtry = 40 3.399 0.980

SVR

All γ = 1.381 × 10−3

C = 1024
2.953 0.973

OB γ = 9.766 × 10−4

C = 32
3.099 0.989

SF γ = 3.906 × 10−3

C = 45.255
2.036 0.992
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Table 3. Performance of regression models applied to all honey samples and to OB and SF honeys on
the training and test set. LASSO = least absolute shrinkage and selection operator; RIDGE = ridge
regression; ENET = elastic net regression; PLS = partial least squares regression; RF = random forest;
VM = support vector regression with radial kernel; ALL = containing all botanical origin honey
samples; OB = orange blossom honey; SF = sunflower honey. Subscripts refer to significance between
models assessed by paired t-test.

Algorithm Dataset Training Set Performance
(n = 33)

Test Set Performance
(n = 11)

RMSE R2 RPD RMSE R2 RPD

LASSO
AllA 3.745 0.943 4.235 6.335 0.874 2.707
OB 1.615 0.990 10.507 1.306 0.994 16.120
SF 1.956 0.985 8.365 1.357 0.999 12.667

RIDGE
AllB 5.480 0.877 2.894 6.726 0.836 2.550
OB 3.737 0.977 4.468 5.026 0.984 4.181
SF 3.293 0.979 4.999 2.300 0.998 7.572

ENET
AllA 2.898 0.966 5.473 6.941 0.882 2.471
OB 1.603 0.990 9.944 1.365 0.994 14.340
SF 3.668 0.948 8.058 1.399 0.999 12.295

PLS
AllA 2.883 0.966 0.714 7.308 0.875 2.347
OB 1.737 0.987 9.534 1.732 0.992 13.273
SF 2.159 0.982 7.629 1.518 0.999 11.420

RF
AllC 3.430 0.953 4.623 6.284 0.868 2.729
OB 4.666 0.988 7.789 5.112 0.964 3.976
SF 1.983 0.989 8.752 2.100 0.996 7.785

SVR
AllA 2.700 0.970 5.872 6.336 0.909 2.706
OB 1.639 0.990 9.743 1.435 0.995 12.19
SF 1.452 0.992 11.516 1.928 0.999 9.359

3.2.1. Least Absolute Shrinkage and Selection Operator (LASSO)

LASSO is a linear regression method that performs both regularization and variable
selection by applying a penalty to the regression coefficients, which shrinks some coeffi-
cients to zero and sets corresponding variables to be excluded from the model. The degree
of penalty is controlled by the hyperparameter lambda (λ). Higher values of λ result in
stronger regularization, meaning that more coefficients will be forced to be exactly zero.
This reduces model complexity and reduces overfitting. However, it can introduce bias
because it may underfit the data by setting too many coefficients to zero. Decreasing λ
weakens the regularization effect, allowing more coefficients to remain non-zero, leading
to higher model complexity, which might result in overfitting, increased variance, and
reduced bias.

A predictive model was developed using regularization with an optimized λ value of
0.132. Lambda was optimized by a grid search method using exponential sequences from
10−5 to 10 every 100. The model achieved good performance, with an RMSE of 4.041 and
an R2 of 0.937 on an independent dataset. On the training and test sets, the RMSE obtained
was 3.745 and 6.335, and R2 values were 0.943 and 0.874, respectively. The method selected
2 out of the resulting 30 variables after applying feature selection with Boruta.

3.2.2. Ridge Regression (RIDGE)

In RIDGE, the value of the hyperparameter lambda (λ) controls the amount of shrink-
age applied to the coefficients. Larger values of lambda result in more shrinkage and smaller
coefficients, but coefficients of less-important features are never reduced to 0. RIDGE re-
duces the magnitude of the coefficients and eliminates multicollinearity by spreading the
influence of correlated features. This results in a reduction in variance, which can help
with overfitting, while introducing some bias due to the coefficient shrinkage. Decreasing
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λ in RIDGE reduces the regularization effect, allowing the model to have larger coefficient
values. This can lead to increased model complexity and higher variance, which might
make the model more prone to overfitting and less biased.

The optimal value of lambda obtained by a grid search method using exponential
sequences from 10−5 to 10 every 100 was in this case 10, which resulted in an RMSE of
6.353 and an R2 of 0.901. The RMSE and R2 values for the training set were 5.480 and 0.877,
respectively, while for the test set, the RMSE and R2 were 6.726 and 0.836, respectively.

3.2.3. Elastic Net (ENET)

ENET is a regularization technique that combines both LASSO and ridge regular-
ization, with two hyperparameters to optimize: lambda (λ), which controls the overall
strength of the penalty, and alpha (α), which determines the balance between the two types
of penalties. When alpha is closer to 1, elastic net is similar to LASSO regularization, while
when alpha approaches 0, it becomes closer to ridge regularization. Elastic net can generate
reduced models by generating zero-valued coefficients, similar to LASSO regularization.
The hyperparameter α allows the adjustment of the trade-off between feature selection
(LASSO) and coefficient shrinkage (RIDGE).

The optimal combination for this model is a λ value of 0.029 and an α of 1, indicating
that the model is similar to LASSO. The RMSE and R2 for the model were 4.041 and 0.937,
respectively. On the training set, an RMSE of 2.898 and R2 of 0.966 were obtained, while on
the test set, an R2 of 0.882 and an RMSE of 6.941 were obtained.

A comparison of nine machine learning techniques for quantitative determination of
adulterant in honey using Fourier transform infrared spectroscopy with attenuated total
reflectance (FTIR-ATR) found the ENET model was the best for determination of corn, cane,
beet, and rice adulterants in honey. ENET also outperformed PLS, which is the traditional
technique employed for multivariate regression in honey adulteration analysis [17].

3.2.4. Partial Least Square (PLS)

PLS is a regression model that uses orthogonal principal components to optimize the
explained power of response variables. It estimates regression coefficients for each latent
variable and determines the optimal number of latent variables by minimizing the RMSE
between predicted and observed response variables.

The final value of number of components used for the PLS model and determined by
CV was 3, with an RMSE of 2.977 and an R2 of 0.972. On the training set, the RMSE was
2.882 and the R2 was 0.966. On the test set, the RMSE was 7.308 and the R2 was 0.875.

3.2.5. Random Forest (RF)

RF combines multiple decision trees to improve the accuracy and robustness of the
model. Each decision tree in the RF model is trained on a bootstrap sample of the original
dataset, meaning that some data points are left out of the training process and used as out-
of-bag (OOB) samples. RF randomly selects a subset of features before evaluating each split
in an individual tree, which reduces the correlation between trees and prevents overfitting.
The hyperparameter mtry determines the number of features randomly sampled at each
split. The mtry parameter determines the size of this subset. It sets the maximum number
of features that can be considered when deciding the best split at each node of a decision
tree. A larger mtry value allows more features to be considered at each node. This can
lead to more complex individual trees but can also lead to overfitting. Setting a smaller
value of mtry, each tree is built using a limited set of features. This can enhance model
interpretability because it leads to simpler trees and it is easier to understand the importance
of specific features. However, it can result in a less diverse and potentially less powerful
ensemble. The mtry value was chosen by trying different values and selecting the one that
results in the best performance, using 5-fold CV. The best mtry value using a grid search
method from 1 to 30 was 1, and the number of trees was established at 500. The number of
trees in a random forest is an important hyperparameter, and it has a significant impact on
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the model’s performance. Increasing the number of trees generally improves the model’s
accuracy. Random forests work by aggregating the predictions from multiple decision trees,
and the ability of the model to generalize from the data tends to improve. This can lead
to a reduction in both bias and variance, resulting in a more robust and accurate model.
However, the computational cost increases significantly. In this case, the number of trees
selected was a good balance between accuracy and computational cost.

The RMSE and R2 achieved by the model were 6.095 and 0.881, respectively. On the
training set, an RMSE of 3.430 and R2 of 0.953 were obtained, while on the test set, an R2 of
0.869 and an RMSE of 6.285 were obtained.

3.2.6. Support Vector Regression (SVR)

SVR is a supervised machine learning algorithm that uses a hyperplane to approximate
a mapping function between the input variables and the output variables. To find the
hyperplane that maximizes the margin between the closest points in the training set and
the hyperplane, SVR uses two important parameters that have to be tuned: the cost of
loss function (C) and kernel function (γ). The C parameter is the regularization parameter
that controls the trade-off between model complexity and error. High C values make the
model fit the training data more closely, potentially overfitting, while lower C values lead
to a wider margin and less overfitting. The hyperparameter γ determines the width of the
kernel and influences the decision boundary. Higher values of gamma result in a more
localized and flexible kernel, while lower values lead to a smoother and more extended
kernel. This adaptability allows the model to be fine-tuned and enables control over the
trade-off between bias and variance. In this study, SVR was used with a radial basis
function (RBF) kernel against a lineal kernel. The RBF kernel is highly effective at capturing
non-linear relationships in the data. It allows SVR to model complex, non-linear patterns,
which can be particularly beneficial when the relationship between the input features and
the target variable is not adequately represented by a linear model.

Both hyperparameters (C, γ) were optimized by a grid search method using exponen-
tially sequences from log2γ, log2C in a range of [−10, 10] every 0.5. The best results were
obtained for a γ of 1.381× 10−3 and a C of 1024, which achieved an RMSE of 2.953 and an
R2 of 0.973. On the training set, the RMSE was 2.700 and the R2 of 0.970, while for the test
set, the RMSE was 6.336 and the R2 0.909.

In summary, all models were evaluated as excellent in terms of effectiveness, achieving
RPD values greater than 2.5. SVR outperformed other regression models in predicting the
level of the adulterant in honey samples using a dataset containing OB and SF, considering
the values achieved in all the metrics. Nevertheless, the results of the paired t-test showed
no statistically significant difference (p > 0.05) between SVR, LASSO, and PLS using RSME.

The differences in the performances of the models can be attributed to the character-
istics of the various machine learning algorithms. LASSO and RIDGE are regularization
techniques that help to prevent overfitting by penalizing large coefficients but may struggle
with non-linear patterns in complex datasets like honey composition. ENET combines
LASSO and RIDGE penalties, balancing feature selection and coefficient shrinkage. How-
ever, it may still face challenges with highly non-linear data. PLS is useful for reducing
dimensionality and handling multicollinearity, though it may not capture intricate non-
linear relationships well. Although RF captures non-linear patterns and interactions by
averaging decision trees, it can be computationally intensive and prone to overfitting with
small datasets. In contrast, SVR is known for handling high-dimensional, complex data
and can model non-linear relationships through kernel functions, which likely contributed
to its superior performance in this study.

This result agrees with previously reported research using SVR applied to NIR spec-
troscopic data for the determination of adulteration in honeys [28]. Adulteration in honey
can be influenced by various factors, and these relationships are often non-linear. In a study
on the identification of the botanical origin and quantification of honey adulteration using
Raman spectroscopy to compare PLS, SVR, and a convolutional neural network (CNN),
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the performance of the CNN models was significantly better than that of PLS and SVR.
However, the predicted results of SVR were better than those of PLS [39].

3.3. Honey Botanical Origin Classification

An approach that can be used to improve the performance of regression models is
to classify honey samples based on their botanical origin first, and then apply regression
models separately. Discrimination of honey samples according to their botanical origin can
help to ensure that the regression models are trained on data that are more homogeneous;
the regression models can better capture the relationships between the different types
of honey, and this can lead to more accurate predictions of the level of adulteration in
honey samples.

3.3.1. Principal Component Analysis (PCA)

PCA was performed to identify differences between OB and SF honey (D44x20002).
Figure 2 shows the scores obtained by the samples for the first two principal components
(PCs). The first principal component (PC1) and the second principal component (PC2)
represented 86.7% and 7.5% of the cumulative variance, respectively, covering 94.2% of the
total variance of the dataset. In the score graph (Figure 2), the samples of different botanical
origin were distributed in two clearly differentiated areas based on their scores with respect
to PC1 and PC2.
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The first principal component (PC1) was found to be the most important in the
explanation of the total variance in the dataset. Samples with positive scores on PC1 were
associated with OB honey, while negative scores corresponded to SF honey. Additionally,
the proximity of a sample’s PC1 value to 0 appears to be related to its adulteration level,
with samples having higher levels of adulterants having values closer to 0. This trend
is a consequence of the greater similarity among samples with higher adulterant levels,
resulting in their proximity. The second principal component (PC2) did not provide
significant additional information beyond PC1. It must be noted that PC2 contributes 7.5%
of the total variance, whilst PC1 accounts for 86.7%. Other PCs were explored but did not
provide additional insights into the data.
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3.3.2. Supervised Models for Classification According to Botanical Origin

PCA can be a useful first step in identifying patterns in data. In this case, it seems that
the two groups are clearly separable based on the data obtained by UF-GC. However, to
accurately classify new samples into one of the two groups, it is necessary to apply ML.
SVM and RF are nonparametric techniques that can be used for building predictive models.

For classification purposes based on the botanic origin (OB and SF), the dataset
(D44x20002) was randomly split into a 75% training set (n = 33) and a 25% test set (n = 11).
Then, the training set was pre-processed in the same way as for the regression models,
using the Boruta algorithm. In this case, 330 features were selected as relevant in the
determination of the botanical origin of honeys, resulting in a reduced training dataset
of D33x330. Model performance was also assessed by 5-fold-CV, and the metric used to
evaluate the performance of the generated SVM and RF models was the accuracy, which
was calculated as the number of correctly classified instances divided by the total number
of instances.

A summary of the accuracy achieved by these models and the optimized parameters
is shown in Table 4. As can be seen, both algorithms achieved an accuracy of 100% in the
5-fold CV, training set, and test set.

Table 4. Summary of botanical origin classification models on honey samples. RF = random forest;
SVM = support vector regression with radial kernel.

Algorithm Hyperparameters 5-Fold CV
Accuracy (%)

Training Set
(n = 33)

Accuracy (%)

Test Set
(n = 11)

Accuracy (%)

RF mtry = 19
γ = 4.883 × 10−4 100 100 100

SVM C = 0.5 100 100 100

The results obtained through the RF and SVM models confirmed the applicability of
these techniques for the discrimination of honey according to their botanical origin. In this
study, other classification techniques, i.e., LASSO, RIDGE, and PLS, were explored but not
included. They also obtained an accuracy of 100%.

A preview study demonstrated that a combination of isotope ratios and elements,
along with a random forest algorithm, can effectively distinguish the botanical origin of
Chinese honeys. The study found that the random forest model had a superior prediction
accuracy of 96.5%, compared to other popular algorithms like SVM (91.5%), LDA (88.8%),
and CART (82.1%). Overall, the random forest algorithm showed higher classification
accuracy and greater robustness compared to the other typical algorithms [40].

3.3.3. Prediction of Level of Adulterant in Orange Blossom and Sunflower Honey

Once the floral origin was identified, the next step was to establish the level of adulter-
ation in each type of honey. For this, the Boruta variable selection algorithm was applied to
the dataset belonging to each type of honey. In the case of OB honey, 50 variables (D22x50)
were selected, and 59 variables were selected for SF honey (D22x59). Finally, the same
regression algorithms previously used for the dataset containing all the honey samples
were evaluated. Hyperparameter tuning, using grid search, random search, or Bayesian op-
timization, is crucial for finding the best hyperparameters to optimize model performance.
In this case, a grid search strategy was selected. A summary of the optimized parameters,
the performance of the regression models, and the performance in the training and test sets
applied to all honey samples, and only to OB and SF honey, is shown in Tables 2 and 3.

It should be noted that only the SVM regression model was previously selected as
the best model for all honey samples, with an RMSE of 6.336 and an R2 of 0.909, since
the other models provided R2 values less than 0.9. However, when the honey samples
were treated separately, the performance of all the regression models improved, obtaining
values of R2 greater than 0.95. These results suggest that treating OB and SF honey samples
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separately can lead to improved model performance compared to using all the honey
samples together.

The results also suggest that all the regression models tested in OB and SF honey
separately obtained a similar performance, with an R2 in the test set higher than 0.990,
except for the RIDGE model in OB honey (0.9843). In the case of RMSE in the test set, LASSO
was found to be the best model for predicting the properties of both OB and SF honey,
obtaining RSME values of 1.306 and 1.357, respectively. This highlights the importance
of considering different regression models and selecting the one that performs best for a
specific dataset. However, the paired t-test indicated no statistically significant differences
(p > 0.05) regarding RSME in all the ML models.

This highlights the importance of considering different regression models and selecting
the one that performs best for a specific dataset. Also, the performance of each machine
learning technique greatly depends on the selection and values of its parameters, and it
is important to note that the parameter selection can be a limitation of machine learning
algorithms, as suboptimal parameter choices may lead to poor model performance. We
implemented a grid search method to address this limitation in our ML models. Another
approach to enhance the performance of this methodology is to use stacking ensembles,
which integrate predictions from multiple ML algorithms for potentially improved accuracy.
However, implementing stacking can be complex. In a previous study [17], the effectiveness
of a stacked ensemble approach was tested, but it did not outperform the ENET regression
technique. Probably, more research concerning stacking ensembles is still needed.

4. Conclusions

This research highlights the potential of machine learning models, particularly support
vector regression (SVR) and LASSO, in enhancing the detection of the adulteration of
higher-value honey with lower-value honey. This study developed predictive models,
specifically a support vector regression (SVR) model, which achieved R2 values above
0.90 on a combined dataset of orange blossom (OB) and sunflower (SF) honey. Treating
OB and SF honey separately further improved model performance, reaching R2 values
over 0.99. Among the models, LASSO showed strong potential for predicting adulteration
when applied to each honey type individually. These methods may significantly enhance
adulteration detection and serve as a screening tool for local labs and food safety authorities.
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