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Abstract: Automation of complex social behavior analysis of experimental animals would allow for
faster, more accurate and reliable research results in many biological, pharmacological, and medical
fields. However, there are behaviors that are not only difficult to detect for the computer, but also
for the human observer. Here, we present an analysis of the method for identifying aggressive
behavior in thermal images by detecting traces of saliva left on the animals’ fur after a bite, nape
attack, or grooming. We have checked the detection capabilities using simulations of social test
conditions inspired by real observations and measurements. Detection of simulated traces different
in size and temperature on single original frame revealed the dependence of the parameters of
commonly used corner detectors (R score, ranking) on the parameters of the traces. We have also
simulated temperature of saliva changes in time and proved that the detection time does not affect
the correctness of the approximation of the observed process. Furthermore, tracking the dynamics of
temperature changes of these traces allows to conclude about the exact moment of the aggressive
action. In conclusion, the proposed algorithm together with thermal imaging provides additional
data necessary to automate the analysis of social behavior in rodents.

Keywords: computer vision; image processing; biomedical engineering; social behavior

1. Introduction

Laborator animal behavior analysis is an issue of great value in such research branches
as medicine, pharmacology, biology, or neuroscience. The most commonly used species
of laboratory animals are rodents, whose wide range of social interactions enables con-
ducting researches on neurological diseases, social dysfunctions, drug discovery, or brain
functioning. To produce reliable data, analysis of the social behavior should be performed
by an experienced annotator on the basis of careful observations of the test scene [1]. The
problem, however, is the manual scoring, which is error-prone. Due to this limitation,
researchers have proposed different solutions for automation of animal behavior analysis.
The most common approach is to distinguish behavior on the basis of the mutual position
and the body displacement [2,3]. Other systems additionally track different key points like
nose, snout, or a base of the tail [4]. Few studies have been adopting statistical measures
for trajectory analysis [5–7]. Another solution uses detailed ethograms in combination with
multivariate approach known as T-pattern analysis [8].

Recently, there is a great interest in using machine learning and neural networks to
understand social behavior [9–11]. Lorbach in [12] presents a rat social interaction dataset
with results of using it as a training set for a method of recognizing interactions with rats.
The solution proposed in [13] detects attack, mounting, and close interaction between
two mice with different coat colors. Twenty-seven features were extracted from images
obtained from a traditional video camera as well as from depth camera to train the random
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model. The work in [14] describes the fine-tuning method of a pre-trained convolutional
neural network only for the recognition of exploration behavior. Crispim et al. [15], in turn,
present a method for behavior identification (locomotion, immobility, rearing, and groom-
ing) using multilayer perceptron networks. The authors claim that for proper recognition
of various behavior, training should be based on two types of input parameters: mor-
phological (e.g., animal’s body area or length) and kinematic (e.g., the distance traveled).
They also proved that statistically-guided input feature selection significantly improves
the classification performance.

However, very often these machine learning-based solutions give results similar
to simpler methods. This can suggest that learning-based algorithms require enriched
information and it is necessary to use more various features. There are two different ways
of enriching information.

The first one is more circumstantial feature detection. Parameters commonly used in
the training phase are body size and location, speed of movement, and mutual orientation
of animals. Based on the analysis of only these features, it is possible to create system
that can recognize general behaviors like grooming, exploration, chase, or approach. To
discern between more complex social behaviors, e.g., bite attack or social grooming, there
is, however, a need for detailed information about animals. Tracking certain regions of
interest like the snout or base of the tail is rare [12,16] but valuable for behavior recognition.

The second method of enriching input information is to use various data acquisition
and processing techniques and technologies. Some of the above-mentioned methods use
statistics to reveal and describe sequences of behavior [8], others have extended the usual
morphological feature set with kinematic [2,15] or 3D (depth) features [13,16]. There are
also systems that use thermal technology to obtain new information [3,17,18].

One of the biggest advantages of thermal recordings in animal studies is undoubtedly
the limitation of stress caused by artificial lighting required for recordings with visible
light cameras. Many social behaviors of nocturnal animals are not possible in the strong
light. Another benefit is the image of heat distribution. The value and dynamics of
body temperature can visualize different physiological processes and may indicate the
occurrence of behaviors such as fear or stress [19,20]. Finally, the warmth distribution can
also be an individual identifier [21].

Another, less frequently used advantage of thermal imaging is the possibility of
observing phenomena that are beyond human natural perception. Therefore, thermal
imaging is a great tool for visualizing areas not available in visible-light imaging. Examples
of such areas include water or saliva traces on an animal’s fur, body regions with higher
temperature values (e.g., due to more intensive thermoregulation processes), etc.

The human eye, unlike the thermal camera, is unable to spot the trace of water or
saliva applied on the rodent’s fur, and the trace of saliva can be the only evidence of a bite
or social grooming event occurrence [18].

Crucial information for behavior recognition is a pose estimation, which involves
an assessment of the geometrical configuration of the body parts. Tracking certain body
parts has been shown to improve behavior recognition [22]. Lorbach and others proved
in [23] that precise localization of body parts is beneficial for recognizing interactions
described by a specific pose. They have examined the impact of animal misidentification
and errors due to inaccurate localization of the interesting points. Incorrect tracking of
three points (the nose, the center of gravity, and the tail-base) turned out to have a huge
impact on the operation of the six off-the-shelf classifiers during the recognition of eight
animal behaviors. They also pointed out that there do exist some unresolved confusion
that persists even with perfect tracking. Some behaviors are very ambiguous in their
appearance (for example, allogrooming, nape attacking, pinning, and social nose contact)
and thus the classifier needs more data or features to separate classes properly. The main
conclusion from this work emphasizes that feature quality, rather than classifier, largely
determines the algorithms’ performance.
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Here, we show methods to support the automation of animal aggressive behavior
analysis using thermal imaging techniques. In this paper, we have decided to propose
data simulation methods, as it is very difficult to obtain real measurements with various
properties of the animal behavior, their mutual interaction, and different parameters of
saliva traces. We further used the simulated thermal sequences to do the following.

• Investigate the influence of corner detector parameters on the detection of interesting
points related to saliva traces.

• Investigate the influence of the properties of the simulated saliva traces on the detec-
tion results.

• Investigate the conditions when the cooling–heating model describing the temperature
behavior of the saliva trace could be successfully fitted to the observable data.

• Answer the question if the cooling-heating model could be potentially used to estimate
the exact bite time even, when the bite event is not directly recorded (e.g., as one
animal covers another, due to the limited camera frame rate, etc.).

This paper is organized as follows. In Section 2, we describe the data used for the
analysis: the measured thermal data (Section 2.1) on the basis of which simulations were
created (Section 2.2). The research was divided into two parts: the static and temporal
analysis. Section 3 describes the methodology of both those analysis separately. The
experiment results are presented in Section 4 and discussed in Section 5. We conclude in
Section 6.

2. Materials and Methods

For the purposes of the analysis, data were collected in the form of thermal sequences
measured on animals during social testing, as well as in the form of simulated data.

2.1. Thermal Data Acquisition

Thermal sequences of the animal interactions were recorded during social tests [24].
A single test lasted 15 min and consisted of observing two adult male Wistar rats placed
in a plexiglas cage. Image sequences were recorded using the FLIR A320G camera (FLIR
Systems, Inc., Wilsonville, OR, USA) situated 120 cm above the cage with the spatial
resolution of 320 × 240 pixels, 60 fps, and 16-bit image presentation. The animals were not
illuminated. The whole thermal database consists of almost 300 min of recordings with 14
different individuals. All details about the database are presented in [18,25].

Animals bred, specifically for laboratory purposes, may have disturbed reactions that
determine survival in the wild. This was observed during the recording of tests on a certain
batch of rats. Sometimes they were not interested in establishing hierarchy and showed
no aggressive behavior. To test proposed algorithms and solutions in fixed conditions, the
data that can be adjusted were needed. For this purpose, we have created simulated data
of animals test recording on the basis of which we can conclude about the detection results.

2.2. Data Simulation Methods

We have simulated shapes, the texture of the fur, animal motion, and bite marks
left on the fur. Our goal was not to perfectly simulate kinematics or other parameters of
the rodents, but to augment the image dataset used in the interesting points detection
study. The controlled simulations allow obtaining images representing different scenarios
important for further analysis.

2.2.1. Shape Simulation

The body shape has been simulated by four circles, the mutual positions of which
were determined by certain relationships developed during animals observation in the
laboratory. Figure 1 demonstrates examples of calculated objects with boundaries. The two
largest inner circles form the body of the animal, the smaller outer circle is the head, and
the smallest outer circle simulates the tail. After creating the general shape, tangents were
defined for each of the two neighboring circles that marked the boundary of the object.
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(a) (b)
Figure 1. Examples of two simulated objects of (a) normal and (b) elongated shapes. Four green circles
represent the body (the two largest circles in the center), the head (medium-sized circle), and the tail
(smallest circle), respectively. Their relative positions determine the shape of the animal’s body.

2.2.2. Texture Simulation

The simulation of the surface temperature distribution on an object is composed of
two stages:

1. Division of the area into subregions—uses skeletonization method based on the
parallel thinning of the object described in [26]. This algorithm iteratively removes
external pixels in such a way that the object (Figure 2a) shrinks to the middle line
(dorsum). Figure 2b presents this method with each iteration marked with different
color. The color is distributed linearly.

2. Assigning temperature to each subregion—a process of sampling Gaussian distribu-
tion (Figure 2c) according to the number of iteration steps and normalization to the
surface temperature of the body range. Each subsequent subdivision determined by
the skeletonization algorithm is given the next temperature value according to the
created distribution (Figure 2d). The degree of variability of the simulated texture can
be adjusted by the value of the distribution variance.

Figure 2 presents the simulation of the body texture, in this particular case—simulation
of the surface temperature distribution. This distribution is not equal in every part of the
body. The highest temperature can be observed in the middle of the object (along the
ridge), the lowest—near the object’s boundaries. The temperature changes gradually. The
characteristic points of the body are places on the rodent body with a distinctly different
temperature than the rest of the body area, like nose and eyes.The nose was simulated by
a circular, low-temperature gradient, and the eyes, in turn, by an ellipse with a gradient
texture. Figure 3a,b presents the images after applying the characteristic points on the
calculated texture.

(a) (b)

(c) (d)

Figure 2. Stages of texture simulation: (a) the initial shape, (b) shape after skeletonization with linear
labeling of each iteration, (c) choosing the distribution for labeling, and (d) applying distribution to a
thinned texture.
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(a) (b) (c) (d)
Figure 3. Images of motion simulation: (a) frame t and (b) frame t + 1 of two animals; (c) first and (d) second shape in
frame t (filled circles) and in frame t + 1 (unfilled circles).

2.2.3. Motion Simulation

The motion of the shape in the t + 1 frame is calculated based on the head direction
relative to the front part of the body in t frame. In practice, the body follows the head.
The position of the head at time t + 1 is randomly chosen in the specified range around
the body.

A simulation of two consecutive frames of two rats in the cage is shown in Figure 3
(Figure 3b follows Figure 3a). Figure 3a,d presents the position of the body in t + 1 frame
(unfilled circles) that is calculated based on its position in t frame (filled circles). Both
shapes are calculated independently of each other according to the previously presented
relations between circles and successive frames. Those shapes are then transferred into
one image, and intersections are detected. During the recordings, animal bodies have been
overlapping each other as a result of, e.g., climbing or offensive position, therefore, in the
simulations, collisions, and intersections of objects are allowed.

2.2.4. Bite Event Simulation

The traces of saliva are randomly placed on the body when the intersection of the
snout of one individual and the body of another appears (Figure 3a,b). In the following
frames, the mark must still be in the same place on the body, so its position is calculated
according to the rules described in Section 2.2.3. During the overlap, the underlying object
is not visible, as well as all its bite marks. Fading of the trace is simulated by a sudden drop
and then gradual increase in temperature in subsequent frames according to the results
in [25] shown in Figure 4.

Figure 4. The plot of saliva temperature changes simulation (blue dashed line) and measurement
(green line). Exemplary images for frames no 2, 4, and 7 show the visualization of traces during
the cooling process. Frames no 13, 19, and 25 present the saliva in the heating process. Images
demonstrate different traces.
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2.2.5. Temporal Changes Simulation

The trace of saliva, however, unlike other characteristic points on the body, has
fluctuating temperatures and eventually dries up. A relatively small increase in body
surface temperature could introduce significant changes in quality of the interesting point
detection [18]. The observation of temporal changes in a saliva trace on a rodent’s fur could
be modeled by two separate processes that affect the traces [25] (see Figure 4—green line):

• cooling—very short and often unnoticeable, associated with the rapid heat dissipation
by the liquid;

• heating—long-lasting temperature increase up to the ambient temperature caused
by the drying, results in a gradual deterioration of visibility until the trace disap-
pears completely.

Therefore, to investigate the influence of temporal changes in the saliva trace appear-
ance and related performance of the interesting points detection we decided to introduce
additional social test simulation.

The simulation of the trace dynamics consisted in marking the animal’s body with
a trace that changed in time in accordance with the observations described in the [25].
All marks were in same size (2 px) and temperature (299 K). The introduced simulated
temperature changes over time are presented in the graph in Figure 4 and marked using
the blue dashed line. The green line shows an example of the measured temperature in
time. Other measurements of temperature changes showed that the dynamics and visibility
time of the traces are varied, but all measurements showed the best fit to the second order
polynomial. During the simulation, the same temperature versus time function was used
for all traces. Six selected frames in Figure 4 are illustrating the view of the simulated
saliva traces on the animal’s body. At first, the temperature is high, higher than the surface
of the body on which it is located and can be easily spotted as the bright yellow mark.
However, then it drops quickly and turns blue in the image. This is followed by a slower
drying process, in which the temperature of the trace rises to the temperature of the body
surface and finally reaching the steady-state temperature before a bite. The boundaries of
the traces have been blurred and adjusted to the body temperature to resemble natural
marks as much as possible.

3. Data Analysis Methods

In this section, we present methods applied to real and simulated data to evalu-
ate the influence of trace and corner detectors parameters on the detection results. We
also investigate the possibilities of identifying trends in temperature changes of traces
in simulations.

3.1. Corner Detection

Analysis of behavior based on recordings is usually reduced to perceiving behaviors as
a set of image features. The decision on the similarity of two behaviors is thus replaced with
the appropriate detection and description of the set of features. Presentation of the image
as parameters of selected regions or points turned out to be more effective in behavior
recognition than presentation as parameters of the whole image [27].

There are many methods for detecting spatial points of interest described, for example,
in [28]. Corner detectors find pixels with the largest variation in intensity in a neighborhood,
that means points of a definitely different temperature than the surroundings—for thermal
images. In our experiments, we have been using thermal images and tested three corner
detectors: Harris [29], Shi-Tomasi [30], and FAST [31]. The preliminary results are described
in [18].

Based on the previous experiments and other studies, we used two measures of point
detection quality:
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• the Corner Response Score (R score),
for Harris detector defined as

R = λ1λ2 − k(λ1 + λ2)
2 (1)

where
λ1 i λ2—eigenvalues of the covariance matrix of the pixel intensity gradient,
k—tunable sensitivity parameter.

• rank—the position on the list of corners sorted in a descending order by the R score.

All detectors were applied to the simulated static images of rodents with saliva traces
and to the simulated images with temporal changes of saliva traces. The detected corners
were not only the points of traces, but also other points with a large temperature gradient
in the neighborhood. The method of identifying traces among all corners may use, e.g.,
tracking temperature changes in consecutive frames and is described in detail in the
Section 3.3.

3.2. Static Analysis

The static approach was a simulation of saliva trace on the original, single image of
the animal. Different simulations of traces were applied into the original images obtained
from the camera. Traces differed in terms of

• temperature: 297, 299, 301, and 303 K (Figure 5),
• size and pixel intensity gradient—four stages (Figure 6): radius equal 1, 2, 3, or

4 pixels.

Figure 5. An original observed image with simulated circular trace of the biggest size (4 px) and
different temperatures from 297 K (on the left) to 303 K (on the right).

Figure 6. Images of simulated traces in four sizes, from the left: 1, 2, 3, and 4 px.

All the above parameters were proposed on the basis of observations in order to best
reflect the actual traces. The simulated marks were of Gaussian distribution in both planes
(Figure 7). Traces with greater variance were characterized by a larger size and a less steep
slope (and thus a smaller gradient of pixel intensity in the neighborhood) than traces of
smaller variance. Every circular trace had the same variance in both planes (Figure 6).

Figure 7. Circular trace with temperature 297 K and size 4 px. The trace in matrix (left), trace cross
section (center), and the imposition of a trace on the image (right).
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Harris and FAST detectors were used to detect simulated traces in real images. The
Shi–Tomasi algorithm was not used in this analysis due to the results being very similar to
the Harris algorithm [32]. Four different sizes of detector filters (3 × 3, 5 × 5, 7 × 7, and
9 × 9) were used to study the influence of detector parameters on the detection quality. The
detectors were applied to the 400 simulated images representing 16 tested configurations
of parameters: a combinations of 4 temperature values and 4 size of traces.

The rank and the R score calculated on the basis of Equation (1) for the Harris algo-
rithm and the number of points satisfying the condition of the appropriate pixel intensity for
the FAST algorithm [31] were adopted as quantitative parameters describing the detection.

3.3. Temporal Analysis

The goal of temporal analysis was the observation of interesting points temperature
changes in time.

The Harris corner detector with a filter size equal 5 and a minimum accepted quality
of corners set to 0.000001 was used for the simulated image sequences. The low accepted
quality value requirement was caused by the lack of a clear trace border, which was neither
observed in the real recordings. The final algorithm of identification saliva trace among all
detected corners should include the following steps:

1. computing the significance of corners using a specific measure, e.g., R score or
ranking—rejection of irrelevant points,

2. elimination of corners that do not meet certain conditions: e.g., temperature value
within a certain range, location on the animal’s body, and

3. prediction of trace localization based on the animal’s displacement vectors from
previous frames.

Here, a simplified detection algorithm has been adopted, because the research is aimed
at checking the possibility of finding the trend of temperature changes for incomplete
observations and not the detection itself. The saliva trace detection in this work has the
advantage that the exact location of the simulated trace is known. It consists in searching
for a corner at a certain distance from the known simulation place. Setting the search area
instead of the exact location of the trace allows for detection similar to the real one, when
another point with a large gradient (object boundary, body parts with extreme temperature)
located a close distance from the trace is detected with better score.

The generated traces of saliva were applied to the objects during movement simulation
and, therefore, may be incomplete as a result of covering one body by another. Here, we
introduce a length ratio (LR) which is defined as the ratio of the time period within which
the saliva trace was detected to the time period when the saliva trace was simulated:

LR =
time period of the detected saliva trace

time period of the simulated saliva trace
(2)

Here, both periods are measured in the number of frames. Time period of detected
trace determines the time the trace was visible to the corner detector. The period of time
for the simulated data is equal 27 frames (see Figure 4).

The bite action always takes place during close contact, and often the trace can be
spotted only when animals move away from each other. This makes the exact moment
of the bite very hard to notice when observing the interaction of animals in the visible
light frequency. A fading trace of saliva left on the fur is an evidence of being bitten or
groomed. The curve fitted to the corner temperature measurements would additionally
allow to calculate the exact moment of these actions.

For each measurement of the detected corners we have applied the curve fitting
procedure. It was followed by the coefficient of determination (R2) calculation between
the measures (fitted curve) and the simulated polynomial function.The definition of the
coefficient of determination is

R2 = 1 − SSres

SStot
(3)
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where
SSres = ∑i(yi − fi)

2 is the residual sum of squares,
yi—measurements, fi—modeled values,
SStot = ∑i(yi − y)2 is the total sum of squares,
y—mean of the observed data.
We have also used the Pearson correlation coefficient to measure the linear correlation

between the length of the trace and the fitting quality:

ρ =
1

N − 1

N

∑
i=1

(
yi − µy

σy

)( fi − µ f

σf

)
(4)

where
N is the number of observations,
µy and σy are the mean and standard deviation of measurements,
µ f and σf are the mean and standard deviation of the modeled values.

4. Results
4.1. Static Analysis

Table 1 presents the results of three-way ANOVA to determine if the means of the R
score and the ranking differ with respect to groups of three factors for the Harris detector
(temperature, trace size, and filter size) and two factors for the FAST algorithm (temperature
and the trace size). The FAST algorithm does not have a filter size parameter; therefore, this
factor was not included in the ANOVA analysis for this detector. The p-values are presented
in the table and the significance level was assumed as 0.05 (confidence level 95%).

Table 1. The p-values of three-way ANOVA for the R score and the ranking for Harris and FAST
algorithms. If the p-value is less than 10−17, it is replaced with 0 in the Table. Symbol (∗) denotes the
results of interaction between factors.

Harris FAST

R Score Rank R Score Rank

temperature 0 0 0 0

size of a trace 0 0 0 0

filter size 0 0.1241 - -

temperature ∗ size of a trace 0 0 0 0

temperature ∗ filter size 0 0.0023 - -

size of a trace ∗ filter size 0 0.0165 - -

temperature ∗ size of a trace ∗ filter size 0 0.3671 - -

An exemplary 2-factor comparisons are presented in Figure 8. Figure 8a shows the
influence of temperature and the trace size on R score, while the dependence of the filter
and trace size on the ranking is shown in Figure 8b.

Two exemplary images of simulated traces and results of Harris corner detector are
presented in Figure 9.
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(a) (b)
Figure 8. Multiple comparisons of (a) R score for the temperature and the trace size, (b) ranking for trace and the filter size.
T stands for temperature, S for the trace size and F for the filter size.

(a) (b) (c) (d)
Figure 9. The results of Harris corner detector on the real images with simulated saliva trace of size
(a) 2 pixels and (c) 3 pixels. The trace is marked with a black rectangle. Panels (b,d) are the detected
corners are marked with red crosses.

4.2. Temporal Analysis

Figure 10 shows two simulated images with traces and the results of Harris detector.
The simulated trace was superimposed on the simulated shape during simulated motion of
two objects, therefore sometimes the trace was covered by the body of the other individual.
A small proportion (7.6%) of all simulated trace sequences had only one measurement
per process (the trace was visible for only one frame during whole process) and were
therefore excluded from further analysis. Nearly one-fifth (18.9%) of cooling and 9.4% of
heating processes achieved negative coefficient of determination value, indicating poor
fitting of the data to the model. In fact, a negative result was often caused by one wrong
measurement and/or a small number of all measurements (see Figure 11b cooling). The
average length ratio LR for the rest of measurements was 0.44 ± 0.12 and 0.47 ± 0.25.

(a) (b) (c) (d)
Figure 10. The results of Harris corner detector (b,d) on the simulated images (a,c) in the (a,b) 7th
and (c,d) 19th frame of simulation. The trace is marked with a red rectangle and the detected corners
are marked with red crosses.
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The mean values of coefficient of determination (R2) between the observations and
simulated values for the rest of traces was 0.87 ± 0.22 for cooling and 0.81 ± 0.23 for
heating processes.

The effect of the trace length on the R2 value was calculated using the correlation
coefficient, which was equal to 0.15 for cooling and 0.08 for heating. The scatter plots for
both processes are presented in Figure 12.

Figure 11 shows some curves fitted to the corners detected by the Harris algorithm.
Black circles denote detected corners, and the blue dashed line is the curve best fitted to
the observed corners. The red solid line presents the simulated (modeled) curve. The
coefficient of determination presented for each process measures the quality of fitting the
temperature of detected corners to the simulated data. We have chosen one example of a
good fit (Figure 11a) and one example of a poor fitting (Figure 11b).

(a) (b)
Figure 11. Fitting examples of cooling (top graph) and heating (bottom graph) for four different traces: (a) with high value
of R2 for both processes: 1 and 0.99, respectively, (b) with negative value for cooling (R2 = −1.14) and positive for heating
(R2 = 0.81).

(a) (b)
Figure 12. Scatter plots of trace length (LR) effect on the R2 value for (a) cooling and (b) heating processes.

A visualization of summary statistics for the R score and the ranking grouped by the
simulation frame number are presented in Figure 13 as a box plot. The bottom and the
top of each box are the 25th and 75th percentiles of the sample, respectively. The red line
inside each box is the sample median. The whiskers extend to the adjacent values, which
correspond to approximately ±2.7σ. Observations beyond the whisker length are outliers
marked as a red + sign only in Figure 13b. Outliers for R score were omitted in Figure 13a
so as not to clutter the image.
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(a) (b)

Figure 13. Box and whisker plots of (a) R score and (b) ranking for all 27 frames of simulations.

5. Discussion
5.1. Static Analysis

The detection results are strongly dependent on the saliva trace parameters—temperature
and size. This is confirmed by the results of the three-way ANOVA test presented in Table 1.
The results for all factors as well as for the interaction between them allow us to reject
the hypothesis that they do not influence the R score for both detectors. The p-value of
0.1241 indicates that the mean rankings for different Harris filter sizes are not significantly
diverse. Similarly, the p-value of 0.3671 indicates that the mean rankings for interaction
between all factors are not significantly different. However, p-values of 0.0023 and 0.0156
as well as 0 are small enough to conclude that the mean rankings are significantly different
for the levels of temperature, trace size, and factor interactions (temperature and the trace
size, temperature and the filter size, trace size, and filter size), respectively. This means that
the selection of detector parameters will not significantly affect the ranking results. On the
other hand, R score and ranking are likely to reach different values depending on the trace
parameters. This may enable trace recognition based on R score and ranking values.

The relationship between the size of the trace and the R score can be seen in Figure 8a.
The smaller the size, the greater the values of R score, mainly due to the larger trace
temperature gradient. The blurring of object boundaries, which is highly characteristic
for thermal images, negatively affects the results of algorithms based on the detection of
changes in pixel intensity. Therefore, in the future, it is planned to compare the results
of the algorithm on the super-resolution images [33]. The temperature has a smaller but
also visible influence on the R values. The size of the trace affects the ranking as well
(Figure 8b). However, ranking changes are not related with the filter size variations.

5.2. Temporal Analysis

As it can be seen from Figure 12, the length of the trace (LR) does not influence the
quality of fitting detection to the simulation. Correlation coefficients (0.15 and 0.08) imply
that there is no linear correlation between those variables. Even traces containing less than
30% of the observations can fit correctly. The saliva trace does not have to be visible for a
long time in order to fit it to the proposed cooling-heating model. However, the necessary
condition is visibility in both processes, i.e., cooling and heating separately. Too few real
bite marks made it impossible to define possible relationships between the processes. In
this study, the possibility of adjusting the cooling curve by observing the heating process
only, and vice versa, was not investigated. The location of the saliva trace has a greater
impact on the quality of fitting the model to the observation than the trace time (LR). If
there are other regions with a high-temperature gradient in the trace neighborhood, then
in moments of lower visibility of the trace the temperatures of these elements could be
considered as an observation (see Figure 11b heating). As the animal moves, the motionless
trace placed on the fur changes its position in relation to other characteristic points and
body boundaries. In practice, it turned out that the most common cause of detection
errors was the proximity of the object boundary. The incorrect detection was also observed
during the analysis of the saliva traces located on the head, where there are numerous
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points with extreme temperatures. In turn, correct detection was often observed for traces
with a temperature close to the ambient temperature and invisible to humans without an
appropriate change of contrast (see frame 25th in Figure 4).

The average positive coefficients of determination achieved quite high values of 0.87
and 0.81 for observations covering not even half of the total simulation (LRcooling = 0.44,
LRheating = 0.47). The statistical values of the trace detection parameters during the
simulated process are shown in Figure 13. The changes in the R score over time (Figure 13a)
clearly reflect the changes in the trace temperature. During cooling, the R value increases
as the temperature decreases until it reaches its maximum value for the 7th frame in which
the trace achieves the lowest temperature. The increase in temperature during drying, in
turn, causes a slow disappearance of the trace in the fur and a decrease in the R score. The
trends of changes are similar to the simulated temperature dynamics except for the result
for the frame No 1, for which the R score was equal 0.7. This different from the other result
was probably influenced by the small amount of data for the 1st frame (only 8.8% of all
detections) caused by frequent coverings during social interactions. The ranking plot shows
no similarity to the time dependence of simulation temperature as shown in Figure 13b.
This result is inconsistent with the static analysis where the ranking was shown to be
dependent on the saliva trace temperature for individual frames. However, other corners
in the image also affect the ranking score. Depending on how the other high gradient
points are visible, the rankings for traces with similar parameters can vary significantly.

6. Conclusions

Establishing hierarchy and social behaviors, including aggressive ones, is still a bot-
tleneck of behavior recognition. Attention should be paid to both correct detection of
the body’s characteristic points and enriching the data with the new features. Such an
additional feature is the temperature and the accurate detection of aggressive events related
to biting, aggressive grooming, nape attack and more.

In this paper, we investigated the influence of different parameters of detectors and
the properties of the analyzed rodent appearance in thermal images on the interesting
points detection results.

It was shown that it is possible to fit the cooling-heating model to most of the simulated
sequences with saliva traces. It was achieved even for such sequences that contain frames
with non visible saliva traces due to interaction of the animals (e.g., one animal partially
covers another so the trace is not observable). The model allows the identification of the
bite time even, when the bite event is not directly recorded (e.g., one animal covers another,
limited camera frame rate, etc.). Therefore, the proposed method of bite detection not only
allows for the detection of this phenomenon usually invisible to human observers, but
also for estimating the moment of its occurrence and provides related dynamic properties
(e.g., temperature change that could be proportional to the intensity of the attack, etc.). The
future investigation of mutual relation between the cooling and heating phases (and the
related parameters) could potentially provide more interesting information describing the
behavior of the animals.

It was also verified that it is not possible to effectively fit the model to data when the
saliva trace is not observable in the vast majority of frames (due to the intensive animals’
interaction). In such situations, the mutual interaction between animals could be analyzed
(e.g., using instance segmentation) and other data analysis methods should be investigated.

It was shown that the influence of the temperature and size of the trace on the detection
results allows for automatic recognition of the interesting points. However, the influence
of other inconstant image characteristic points on the ranking value demonstrated during
the temporal analysis (see Figure 13b) may sometimes appear. For this reason, the R score
value, a measure independent from the neighborhood, is more useful parameter than the
ranking. In the future, it would be interesting to investigate if deep learning based instance
segmentation or object detection algorithms could be effectively used to detect and track
the saliva traces considering the dynamic character of such traces. Additionally, it would
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be also interesting to check if the combination of a convolutional neural network with
a recurrent neural network could allow the estimation of the saliva trace dynamics and
the precise identification of the exact bite time for sequences with limited observation of
the saliva trace. However, to perform such analysis, much more real observations should
be acquired.
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