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Detection of circulating tumor 
cells by means of machine learning 
using Smart‑Seq2 sequencing
Krzysztof Pastuszak 1,2,3*, Michał Sieczczyński 3, Marta Dzięgielewska 1, Rafał Wolniak 1, 
Agata Drewnowska 1, Marcel Korpal 1, Laura Zembrzuska 1, Anna Supernat 2,3 & 
Anna J. Żaczek 2*

Circulating tumor cells (CTCs) are tumor cells that separate from the solid tumor and enter the 
bloodstream, which can cause metastasis. Detection and enumeration of CTCs show promising 
potential as a predictor for prognosis in cancer patients. Furthermore, single‑cells sequencing is a 
technique that provides genetic information from individual cells and allows to classify them precisely 
and reliably. Sequencing data typically comprises thousands of gene expression reads per cell, which 
artificial intelligence algorithms can accurately analyze. This work presents machine‑learning‑based 
classifiers that differentiate CTCs from peripheral blood mononuclear cells (PBMCs) based on single 
cell RNA sequencing data. We developed four tree‑based models and we trained and tested them 
on a dataset consisting of Smart‑Seq2 sequenced data from primary tumor sections of breast cancer 
patients and PBMCs and on a public dataset with manually annotated CTC expression profiles from 34 
metastatic breast patients, including triple‑negative breast cancer. Our best models achieved about 
95% balanced accuracy on the CTC test set on per cell basis, correctly detecting 133 out of 138 CTCs 
and CTC‑PBMC clusters. Considering the non‑invasive character of the liquid biopsy examination and 
our accurate results, we can conclude that our work has potential application value.

Keywords Circulating tumor cells, CTC , Metastatic cancer, Single-cell sequencing, scRNA-seq, Machine 
learning, Artificial intelligence

Liquid biopsies are non-invasive biopsies in which the material comes from a liquid sample (typically blood) 
collected from a donor. They represent an emerging area of research dedicated to cancer detection, prognosis 
prediction and therapy personalization. Circulating tumor cells (CTCs) are cells that have separated from the 
tumor and entered the bloodstream. CTC enumeration is one of the first FDA-approved methods based on the 
liquid biopsies used for stratifying cancer patients according to their prognosis. Common approaches are based 
on image analysis. Circulating tumor cells constitute a very small subset of cells from the primary tumor and are 
very scarce within the bloodstream. Further research into the biology of CTCs is warranted since they remain 
one of the important mechanisms of metastasis formation and their profiles have been shown to differ from those 
of cells in the primary tumor. Fully isolating CTCs from a mixture containing PBMCs remains challenging, as 
conventional approaches often damage the cells or potentially affect their transcriptomic landscape. Hence, CTCs 
should remain intact in order to obtain accurate and reliable data on their transcriptomics. Simultaneously, data 
labeling required to train a machine learning classifier poses a challenge. In general, several methods are known 
in the literature to detect CTCs; however, most are image-based and focus on cell enumeration rather than 
isolation for further transcriptomic profiling. Classification based on the transcriptomic profiles would resolve 
this problem, as the only data missing would be the correct label, provided by the classifier itself. Classification 
driven by single markers specific to CTCs, such as EpCAM, is characterized by less than ideal  sensitivity1,2. Most 
of the markers commonly used in detection of CTCs are epithelial in nature, while a subset of CTCs demonstrate 
more mesenchymal  properties3. Furthermore, protein expression does not always correlate strongly with mRNA 
expression. We evaluate the feasibility of machine learning based approaches towards CTC classification based 
on their transcriptomic profiles from single-cell RNA sequencing (scRNA-seq) data.
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Gene expression data extracted during single-cell sequencing provides useful information about biological 
processes in a cell, enabling cell type identification and further analysis of their transcriptomic profiles without 
using aggressive isolation protocols, which could damage the cells affecting the results of further analysis. In 
contrast to a custom cytosensor-based approach, once extracted, data can be reused in many genetic analyses 
and this method only requires equipment that is already present in many medical centers.

During the literature review, we found multiple studies on CTC detection using artificial intelligence methods 
(not only based on scRNA-seq data)4–9. However, we observed several concerns regarding the reliability of the 
results presented in these studies. In particular, certain studies conducted testing with data derived from the 
same patients used for model training, potentially leading to the classifiers learning patient-specific cancer cell 
features rather than generalizable  traits6,7. Furthermore, some investigations employed notably small datasets, 
such as those containing only 67 cells’ gene expression profiles or relied on samples collected from an insuf-
ficient number of  patients8. Moreover, many authors failed to provide crucial metrics of their models, hindering 
comparisons between methods described in the papers.

There was a high level of variability in balance between sensitivity and specificity in analyzed papers, which 
made the direct comparison of results harder. Furthermore, focusing mainly on accuracy scores in case of imbal-
anced datasets (CTC datasets are usually highly imbalanced) makes it harder to evaluate and compare the meth-
ods. For example, if PBMCs are 9 times more prevalent in the dataset than CTCs, then a model, which classifies 
all cells as PBMCs, reaches an accuracy of 90%. Relatively high accuracy values do not necessarily correspond 
with models that perform  well10. Some studies on CTC detection addressed crucial aspects of the mentioned 
 problems8, but utilized image-based approaches.

In our work, we addressed all of the aforementioned issues. Instead of an accuracy score, we used balanced 
accuracy. We also included metrics: ROC AUC, precision, recall and F1 score. We used a dataset containing 
CTCs, PBMCs and CTC-PBMC clusters collected from 34 metastatic breast cancer patients. We have compared 
the performance of our models against the EpCAM based classification, which is one of the standards in CTC 
detection. Additionally, due to the scarcity of publicly available scRNA-seq data from CTCs, we decided to 
explore the feasibility of training a machine learning model focused on CTC detection using an artificial dataset 
comprised of a mixture of cells from primary tumor biopsies and PBMCs. We prepared a dataset spanning 29 
154 cells’ gene expression profiles, where 1534 cells were tumor cells, and the diseased to healthy cell count ratio 
corresponded to a possible realistic ratio following a less strict CTC isolation protocol. PBMC samples were 
collected from 6 patients. We tested the models against actual CTC and PBMC mixtures from metastatic breast 
cancer patients. In our work, we also compared many state-of-the-art machine learning algorithms and achieved 
promising results. We also analyzed different feature selection methods.

Materials and methods
An overview of the study design is presented in Fig. 1.

Datasets
We selected three publicly available datasets for the study. The first dataset (deposited in GEO under acces-
sion number GSE109761) consisted of a mixture of 262 CTCs, 14 CTC-PBMC clusters and 82 PBMCs gath-
ered from 34 metastatic breast cancer patients (including 5 triple-negative breast cancer patients, 16 ER+/PR+/
HER2− patients and 1 ER−/PR−/HER2+ patient) sequenced using  SmartSeq211. Dataset  GSE11838910 consisted 
of 1534 tumor cells gathered from 6 primary triple-negative breast cancer patients (TNBC) (one BRCA2 posi-
tive, four BRCA 1/2 negative, and one with unknown BRCA status). Cells were sequenced using  SmartSeq212. 
For the healthy cells, we selected 27,620 PBMCs from 6 healthy donors deposited in the Single Cell Expression 
Atlas (Census of Immune Cells experiment, id E-HCAD-4)13.

A primary tumor dataset was created using tumor cells from TNBC patients and PBMCs dataset, mimicking 
a mixture of CTCs and PBMCs. The constructed dataset featured a significant class imbalance, with a ratio of 
nearly 19:1 between healthy and diseased cells, which posed a challenge for the effective detection of outliers. 
This level of class disproportion is intended to represent the possible proportions between cell types in a less strict 
CTC isolation protocol, hence the chosen approach. To validate the results, algorithms were tested on a dataset 
containing single-cell expressions of CTCs and PBMCs from metastatic breast cancer patients. Visualization of 
the CTC dataset is presented in Supplementary Fig. 1.

Data preparation
Single cell RNA-seq datasets were integrated using Seurat R package (version, 4.2.0)14. Each cell was characterized 
by the same set of features consisting of normalized expression levels. Only features present in every dataset were 
considered. Integrated data were then normalized and log-transformed. Features represented across a low per-
centage of the cells were removed from the dataset. The analysis only included cells with more than 200 and less 
than 2,500 distinct features expressed. Cells with more than 5% of read counts originating from mitochondrial 
material were excluded from the analysis. Samples from test sets underwent the same normalization process as 
the data from the training sets.

Data splits
For the development of classifiers trained on actual CTC data, we randomly selected 50% of the CTC data-
set, maintaining class proportions for training and validation purposes, while using the remaining cells as an 
independent test set. CTC-PBMC clusters were considered as CTCs. We employed a threefold cross-validation 
during the training process. The same splits were utilized for each combination of algorithm and feature prese-
lection method. Consequently, our stratified validation set comprised 1/3 of the training set and varied with 
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each cross-validation iteration. We further assessed the performance of the developed models using the primary 
tumor dataset. The details of dataset splits are presented in Table 1.

Additionally, we conducted experiments in which we used only the primary tumor dataset to train the models, 
with the entire CTC dataset serving as an independent test set.

Feature selection
After the initial prefiltering of transcripts during the quality control and dataset integration process, the datasets 
remained highly dimensional, containing over 15,000 features. This substantial imbalance between the number of 
features and the number of samples may lead to reduced performance of the developed classifiers. Additionally, a 
significant percentage of transcript expression levels were predominantly close to zero. As a result, we conducted 
further dimensionality reduction on the datasets.

Our focus was on reducing the number of transcripts included in the analysis, rather than computing projec-
tions of original features on artificial ones. To prevent potential information leakage, only the training set was 
subjected to statistical analysis. We evaluated two approaches for feature selection. In the selection based on mean 
expression per class, we eliminated features with mean expression levels above the assumed threshold in each 
class. In the second approach, using two criteria for selection, we incorporated features characterized by mean 

Figure 1.  Overview of the study design.

Table 1.  Overview of the data splits used in the study.

Training and validation Test set I Test set II

CTC dataset CTC dataset Primary tumor dataset

Cancer cells 130 + 8 clusters 132 + 6 clusters 1534

Blood cells 38 43 27,620

Source 50% of GSE109761 50% of GSE109761 GSE118389 + E-HCAD-4
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expression above the cutoff in the entire dataset and high expression levels in at least one cell. The thresholds 
were determined experimentally using training and validation data.

Following the feature selection process, the datasets contained between 46 and 67 transcripts, depending on 
the dataset and filtering method. The exact feature numbers are presented in Supplementary Table 1. Supple-
mentary Fig. 1 displays the t-SNE visualization of CTC training set after filtering, and additional visualizations 
are provided in Supplementary Figs. 2 and 3.

Model reduction
After building and validating the models in the previous stages, we identified the top-performing ones for both 
scenarios (training on the primary tumor dataset and training on a subset of real CTC data). We then analyzed 
the feature importance of these models, including only those features that surpassed the predetermined threshold 
in the final feature sets. Subsequently, we trained new models on these reduced feature sets.

Classification algorithms
The data under consideration is tabular. Our focus was on tree based and gradient boosting based classification 
algorithms, which tend to perform well on the tabular  data15 and allow for relatively easy analysis of feature 
importance and enable a relatively straightforward analysis of feature importance. We included in the study four 
different machine learning algorithms: Extreme Gradient Boosting (XGBoost, version 1.6.2)16, Light Gradient 
Boosting Machine (LightGBM, version 3.3.3)17, Random Forest (as implemented in scikit-learn, version 1.3.1)18 
and Balanced Random Forest (as implemented in imbalanced-learn, version 0.11.0)19.

Results
Experiments
We conducted a series of experiments on both types of training data, employing a threefold cross-validation 
method for each of the algorithms. Specifically, the training set was divided into three parts, and three models 
were trained such that the validation set contained one unique part for each model, while the remaining data 
was used for training. The final results were an average of the individual model results. Due to the small size of 
the CTC training set and the highly imbalanced data, the number of folds was limited to 3. A larger number of 
folds might have led to an insufficient number of samples for each class in individual folds, potentially negatively 
impacting the training process. To evaluate the models, we used well-established metrics: balanced accuracy, 
area under the ROC curve (AUC), recall, precision, and F1 score.

Performance of ML models
In the first set of experiments, algorithms were trained using the CTC dataset, with half of the CTC data allo-
cated for training and validation purposes. The performance was then assessed on both the remaining portion 
of the real CTC dataset and the primary tumor dataset (Table 2). In both test sets, the balanced random forest 
algorithm outperformed the other methods. The performance of the balanced random forest classifiers was 
notably high, achieving over 95% balanced accuracy on the CTC test set and 99% on the primary tumor set. The 
efficacy of both feature preselection methods was comparable when combined with the balanced random forest. 
Confusion matrices and ROC curves are displayed in Figs. 2 and 3 for the CTC test set and primary tumor test 
set, respectively. Boxplots illustrating the distribution of raw classification scores can be found in Supplementary 
Figs. 4 and 5. Interestingly, class separation was more evident in the real CTC data compared to the primary 
tumor dataset. Test set results for each combination of algorithm and feature preselection method are provided 
in Supplementary Table 2.

Feature importance analysis
In order to further enhance and validate the model, we examined the feature importance of variables incorporated 
in the constructed model. We chose 22 features with an importance level greater than 0.01 and used them to 
train a reduced-size model. The list of included features along with their importance levels can be found in Sup-
plementary Table 4. The detailed performance of the final model is displayed in Table 3. Despite the reduction in 
the number of features, the final model achieved a performance similar to the original one. Confusion matrices, 

Table 2.  Performance of balanced random forest with different feature preselection methods for the classifiers 
trained and validated on the subset of CTC data. The classifiers were trained using half of the real CTC data.

Two criteria selection

Balanced accuracy ROC AUC Precision Recall F1 score

CTC test set 0.96 0.99 0.99 0.96 0.97

Primary tumor test set 0.99 0.99 0.99 0.99 0.99

Selection based on mean expression per class

Balanced accuracy ROC AUC Precision Recall F1 score

CTC test set 0.95 0.99 0.98 0.96 0.97

Primary tumor test set 0.99 0.99 0.99 0.99 0.99
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Figure 2.  Performance of balanced random forest model trained on the CTC data as tested on the remaining 
part of the CTC dataset. (A) Confusion matrix. (B) ROC curve.

Figure 3.  Performance of balanced random forest model trained on the real CTC data as tested on the primary 
tumor dataset. (A) Confusion matrix. (B) ROC curve.

Table 3.  Performance of model trained using the reduced feature sets.

Balanced random forest trained on CTC data

Balanced accuracy ROC AUC Precision Recall F1 score

CTC test set 0.96 0.98 0.99 0.97 0.98

Primary tumor test set 0.99 1 0.88 0.99 0.94
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ROC curves, and boxplots illustrating the distribution of raw classification scores for the final model are shown 
in Supplementary Figs. 6 and 7 for the CTC test set and primary tumor test set, respectively.

EpCAM based classification
To confirm the utility of machine learning-based models in detecting CTCs, their performance was compared 
with EpCAM-based classification. EpCAM is a marker commonly used in detection of  CTCs1. The threshold 
for decision-making was set at the level of EpCAM characterized by the maximum value of the Youden’s index. 
EpCAM driven classification managed to reach 91% AUC with 89% balanced accuracy on the CTC test set and 
only 53.7% AUC on primary tumor set, as opposed to 95% balanced accuracy on the CTC test set and 99% on 
the primary tumor set. Detailed results are presented in Supplementary Table 5.

External validation
To further validate the obtained results, additional tests were conducted with CTC and PBMC samples from 
public datasets aggregated in  ctcRbase20. It should be noted that some of the constituent datasets were prepared 
using different laboratory techniques than the ones used in CTC dataset in this study. Models based on features 
from two criteria selection outperformed models based on features from mean expression per class selection. 
Despite the potential bias, each model trained with features from two criteria selection exceeded 94% AUC 
and 92% balanced accuracy, with the best models reaching 99% AUC with 97% specificity and 96% sensitivity. 
Detailed results are presented in Supplementary Table 6. ROC curves are depicted in Supplementary Fig. 8.

Enrichment analysis
We performed Gene Ontology (GO)21 and  Reactome22 pathway enrichment analysis for the set of final features. 
The results are presented in Fig. 4. The most enriched GO pathways were related to cell adhesion or immune 
function. Reactome analysis also revealed enrichment related to cell signaling processes, platelet activation and 
cell-to-cell communication. The observed patterns are consistent with the literature dedicated to CTCs. Interac-
tions between CTCs and immune system, either in form of direct cell-to-cell interaction, or indirectly through 
released molecules, have been shown to be essential for CTC survival in  blood23. The adhesion of platelets to 
CTCs is considered one of the significant mechanisms enabling CTCs to evade recognition and destruction 
by NK  cells24. Most aggressive CTCs capable of metastasis induction seem to be characterized by high cell 
 plasticity3. Both epithelial-to-mesenchymal transition (EMT) and mesenchymal-to-epithelial transition (MET) 
are observed in  CTCs3,25.

Training model on primary tumor dataset
We conducted an additional set of experiments where we utilized the primary tumor dataset for training and 
validation purposes to investigate the feasibility of training CTC detection algorithms on data coming from 
tumor biopsies. The entire CTC dataset was employed as the independent test set.

Gradient-based models demonstrated the best performance, with XGBoost slightly surpassing LightGBM 
(91% AUC vs 89% AUC). Detailed performance metrics are presented in Table 4. The confusion matrix and 
ROC curve for the test set, representing the best combination of methods, are shown in Fig. 5. Boxplots depict-
ing distribution of raw classification scores among classes are presented in Supplementary Fig. 9. Results on the 
independent test set (whole CTC dataset) for each combination of algorithm and feature preselection method 
are presented in Supplementary Table 3.

Discussion
There are only a few studies on a machine learning based classification of CTC gene expression  profiles4,8,26,27. One study 
achieved a mean accuracy of approximately 93% for CTC versus PBMC classification using the Gradient Boosting 
Machines  algorithm8, which is notably lower than the results obtained with our best approach. Another study reported 
an accuracy of 81.9% for CTC classification; however, this was based on gene expression microarray data. In a related 
study using similar microarray data, accuracies of 95.16% and 96.05% were attained for classifying healthy control 
groups versus non-metastatic patient  groups26 and control groups versus metastatic cancer  groups26, respectively. 
Nevertheless, the data in these studies were derived from cancer tissue rather than CTCs.

A superior score was obtained by incorporating additional knowledge from biological  networks4, where an 
average AUC score of 99.95% was achieved using the SVC-RBF (Support Vector Classifier using Radial Basis 
Function as a kernel function) algorithm for CTC versus PBMC classification. However, the dataset employed in 
this study was quite limited, containing only eight PBMC profiles and five CTC profiles, which likely significantly 
impacted the score. Despite this, the utilization of a biological network encoding gene  proximities4 presents an 
interesting concept that could potentially enhance the classification metrics based on gene expression data in 
future research.

Our top-performing model outperformed many machine learning models that employed various types of 
data 6,9,28. A neural network trained on fluorescence microscopy images achieved a sensitivity of 92.6% and 
specificity of 90.8% in CTC identification 6, while a convolutional neural network utilized for CTC detection 
on microscopy images obtained a sensitivity of 90.3% and a specificity of 91.3% 9. In contrast, another study 
reported lower results, with 63% sensitivity and 68.4% specificity, using immunofluorescence images of CTCs 
and artificial intelligence  methods19. Furthermore, research has been conducted on CTC detection using Raman 
 spectroscopy29–31. The most effective CTC detection models identified in our review achieved a sensitivity of 
97.8% and specificity of 100% on serum biofluid data collected from prostate cancer  patients29,30 as well as a 
sensitivity of 94.4% and specificity of 100% on plasma biofluid data from esophageal cancer  patients29,31. However, 
the similarity of cancer cells might have influenced the classification scores in these cases. Both studies employed 
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Figure 4.  Enrichment analysis for the final feature set. (A) Gene ontology. (B) Reactome.

Table 4.  Performance of models trained on primary tumor dataset, as tested on the entire CTC dataset. 
Performance of the best performing model is in bold.

Classifier/metric

Two criteria selection

Balanced accuracy ROC AUC Precision Recall F1 score

XGBoost 0.72 0.85 0.96 0.52 0.67

LightGBM 0.83 0.9 0.97 0.74 0.84

Classifier/metric

Selection based on mean expression per class

Balanced accuracy ROC AUC Precision Recall F1 score

XGBoost 0.85 0.91 0.98 0.76 0.85

LightGBM 0.83 0.89 0.96 0.76 0.85
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Support Vector Machine (SVM)  models29–31. Additionally, SVM classification from impedance cytometer data 
attained a sensitivity of 96.6% and specificity of 99.8% in the classification of white blood cells (WBCs) versus 
breast tumor cells from the MCF7 cell  line7.

The AdnaTest is a commonly used CE-IVD system for CTC isolation and  detection32,33. However, it examines 
only a limited number of tumor-specific marker  genes33, including one gene, ERBB2, which is common to our 
panel. The AdnaTest has a detection frequency of 62%33, which is comparable to other available  methods32,33 
but yields lower scores than our approach. Machine learning classification of gene expression profiles allows 
for predictions based on a substantially larger number of biomarkers, where each gene possesses a probabilistic 
correlation with a cell type. Moreover, artificial intelligence (AI) techniques are proficient in identifying more 
complex relationships between genes and the target attribute. Consequently, AI algorithms employed in gene-
based predictions hold significant potential to substantially enhance cancer diagnosis, including methods cur-
rently available on the market.

Models trained on actual CTC data demonstrated superior performance compared to those trained on arti-
ficial datasets. This discrepancy may be attributed to multiple factors. CTCs are cells that have undergone a 
selection process based on their molecular properties and might not represent typical primary tumor cells. 
Furthermore, primary tumor sections were acquired from triple-negative breast cancer (TNBC) patients, while 
CTCs were obtained from patients with a mix of molecular breast cancer subtypes, which constitutes a limitation 
of the study. The sections could also comprise various healthy cells, such as fibroblasts or normal breast tissue 
cells, which likely impact the results. Based on our findings, we conclude that it is more beneficial to use real 
CTC data to train classification models in future studies. Another limitation of the study is the small number of 
CTC datasets utilized, primarily due to the scarcity of publicly available data.

We further validated the final model by performing enrichment analysis. Features included in the model 
were related to the immune function, which is expected in case of PBMCs, signaling pathways, which are often 
highly abnormal in cancer  cells34 and cell-to-cell adhesion.

It should be noted that machine learning methods often exhibit sensitivity to the presence of batch effects. 
Caution should be prioritized when applying developed models to data stemming from experiments where the 
laboratory protocols significantly diverge from those employed in the datasets under consideration within this 
study. Validation experiments on public datasets, varying in laboratory methodologies used, have demonstrated 
the robustness of the developed models’ performance.

Nevertheless, prior to applying the developed algorithms to cells sequenced via alternative techniques, it 
is advised to conduct additional validation of the models using datasets prepared with the aforementioned 
laboratory methodologies. This precaution becomes particularly important when the employed method results 
in significantly different distributions of acquired reads, as exemplified in the case of Chromium 10x platform, 
where cells typically exhibit considerably lower read counts compared to the SmartSeq method.

Figure 5.  Performance of XGBoost model trained on the primary tumor dataset as tested on the whole CTC 
dataset. (A) Confusion matrix. (B) ROC curve.
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Conclusions
In this article, we presented accurate methods for CTC detection using machine learning algorithms based on 
single-cell sequencing data. Specifically, we analyzed two feature selection methods and four classification algo-
rithms. Our best-performing solution was tested using a dataset containing CTC and PBMC expression profiles 
from a cohort of 34 metastatic breast cancer patients and a primary tumor dataset constructed by merging 
PBMC datasets with tumor sections from TNBC patients. The algorithm achieved a balanced accuracy close to 
96% on the real CTC data. Our models outperformed EpCAM based classification and their performance was 
confirmed on external datasets. Our best results were obtained for models with a significantly reduced number 
of features, which not only increased the accuracy of our solution but also its speed. Considering the advantages 
of our results, we conclude that it has potential application value.

Data availability
The data that was used in the study are openly available in GEO under accession number GSE109761, at https:// 
www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE10 9761.

Code availability
Code available at https:// github. com/ meleh ean/ CTC- Detec tion.
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