Postprint of: Glinka M., Wojnowski W., Wasik A., Determination of aminoglycoside antibiotics: current status and future trends, Trends in Analytical Chemistry (2020), 116034, DOI: 10.1016/j.trac.2020.116034

© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

Journal Pre-proof

Determination of aminoglycoside antibiotics: current status and future trends

Marta Glinka, Wojciech Wojnowski, Andrzej Wasik

PII: S0165-9936(20)30263-6

DOI: https://doi.org/10.1016/j.trac.2020.116034

Reference: TRAC 116034

To appear in: Trends in Analytical Chemistry

Received Date: 3 August 2020

Revised Date: 31 August 2020

Accepted Date: 2 September 2020

Please cite this article as: M. Glinka, W. Wojnowski, A. Wasik, Determination of aminoglycoside antibiotics: current status and future trends, *Trends in Analytical Chemistry*, https://doi.org/10.1016/j.trac.2020.116034.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Elsevier B.V. All rights reserved.

1 Determination of aminoglycoside antibiotics: current status and future trends

- 2 Marta Glinka, Wojciech Wojnowski, and Andrzej Wasik*
- 3 Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology,
- 4 11/12 G. Narutowicza Street, 80-233 Gdańsk, Poland
- 5 *wasia@pg.edu.pl

6 Abstract

7 The use of aminoglycoside antibiotics is prevalent in medicine and agriculture. Their overuse increases their mobility in the environment, resulting in a need for reliable methods for their 8 9 determination in a variety of matrices. However, the properties of aminoglycosides, in particular their high polarity, make the development of such methods a non-trivial task, 10 inciting researchers to tackle this complex issue from different angles. The necessity to 11 determine aminoglycosides in complex matrices and at low concentration levels requires the 12 13 development of relatively elaborate sample preparation methods and the use of selective and sensitive detection techniques. Various modes of liquid chromatography coupled with tandem 14 mass spectrometry are usually the analytical methods of choice. However, the recent 15 developments in techniques such as bioassays, quantum dot-based colourimetric applications 16 and various aptasensors point towards the development of more easily accessible and user-17 friendly point-of-need tests for screening applications in food control and environmental 18 19 monitoring. This review summarizes the state-of-the-art in sample preparation protocols and the determination of aminoglycosides using various techniques and outlines the future trends 20 with an emphasis placed on the novel and emerging solutions in this area. 21

Keywords: aminoglycoside antibiotics, liquid chromatography, novel trends in samplepreparation, residue analysis.

24 Abbreviations

25	2D-LC	two-dimensional chromatography
26	ABS	Acid Chrome Black Special
27	AD	amperometric detector
28	AGs	aminoglycoside antibiotics
29	AMI	amikacin
30	APR	apramycin

_		
		Journal Pre-proof
31	AQC	6-aminoquinolyl-N-hydroxysuccinimidyl carbamate
32	AVI	avilamycin
33	BAC	bacitracin
34	BEK	bekanamycin
35	CAD	charged aerosol detection
36	CBX	carboxylic acid sorbent
37	CE	capillary electrophoresis
38	CFSE	6-carboxyfluorescein succinidyl ester
39	C^4D	contactless conductivity detection
40	DC-ELISA	direct competitive enzyme linked immunosorbent assay
41	DHSTR	dihydrostreptomycin
42	DMIP	dummy molecularly imprinted polymer
43	DSPE	dispersive solid phase extraction
44	ELISA	enzyme linked immunosorbent assay
45	ELSD	evaporative light scattering detection
46	FASS	field-amplified sample stacking
47	FDNB	1-fluoro-2,4-dinitrobenzene
48	FESI	field-enhanced sample injection
49	FIA	fluoroimmunoassay
50	FLD	fluorescence detector
51	FMOC	9-fluorenylmethyloxycarbonyl
52	GCB	graphitized carbon black
53	GEN	gentamycin
54	HFBA	heptafluorobutyric acid
55	HILIC	hydrophilic interaction chromatography
56	HLB	hydrophilic-lipophilic balance
57	HPLC	high performance liquid chromatography
58	HYG	hygromycin
59	IPLC	ion-pairing liquid chromatography
60	IC-ELISA	indirect competitive enzyme linked immunosorbent assay
61	ISE	ion-selective electrode
62	KAN	kanamycin
63	LIF	laser-induced fluorescence detection
64	LIN	lincomycin

		Journal Pre-proof
65	LIV	lividomycin
66	LLE	liquid-liquid extraction
67	MCX	medium cationic exchangers
68	MIP	molecularly imprinted polymers
69	MS	mass spectrometry
70	MSB	moving substitution boundary
71	MS/MS	tandem mass spectrometry
72	NEO	neomycin
73	NET	netilmicin
74	NITC	1-naphthyl isothiocyanate
75	NMR	nuclear magnetic resonance spectroscopy
76	NP	nanoparticle
77	OPA	o-phthalaldehyde
78	OPD	o-phenylenediamine
79	PAD	pulsed amperometric detection
80	PAR	paromomycin
81	PBS	phosphate-buffered saline
82	PCX	polymeric cation exchanger
83	PFPA	pentafluoropropionic acid
84	PSA	primary-secondary amine
85	PTFE	polytetrafluoroethylene
86	QD	quantum dots
87	RIA	radioimmunoassay
88	RIB	ribostamycin
89	SCX	strong cation exchange
90	SIS	sismocin
91	SPC	spectinomycin
92	SPE	solid phase extraction
93	STR	streptomycin
94	TFA	trifluoroacetic acid
95	TMB	3,39,5,59-tetramethylbenzidine
96	TOB	tobramycin
97	VAL	validamycin
98	WCX	weak cationic exchangers

- 99 ZIC-HILIC stationary phases with zwitterionic groups covalently bound to the surface of
- 100 silica particles
- 101

102 **1. Introduction**

Aminoglycosides antibiotics (AGs) are a group of pharmaceuticals with a broad spectrum 103 of therapeutic applications [1]. AGs are mainly used against infections caused by Gram-104 negative and less often Gram-positive bacteria. The first AG was discovered by A. Schatz and 105 S. Waksman in 1943. They, for the first time, isolated streptomycin from Streptomyces 106 107 griseus microorganisms and noted its antimicrobial properties. Their discovery was honoured with the Nobel Prize in 1952. With regard to their origin, AGs are classified into two groups: 108 natural (e.g. neomycin, gentamycin, kanamycin, streptomycin, tobramycin, sisomycin) and 109 semi-synthetic (e.g. amikacin, dibekacin, isepamycin, netilmycin, arbekacin) antibiotics. 110

111 Aminoglycoside antibiotics are a group of drugs with very uniform pharmacokinetic properties. They are used both in human therapy and in veterinary treatment. The spectrum of 112 therapeutic usages of AGs includes infections of the urinary system, respiratory tract and also 113 bones, joints and skin infections. AGs are also used in ophthalmology as well as for 114 sterilization of the gastrointestinal tract prior to surgery. Moreover, they are used to 115 116 supplement feed intended for farm animals and in gardening for pest control [2,3]. Due to the 117 polycationic character of their molecules, AGs are characterized by poor absorption after oral administration. Therefore, AGs are administered intramuscularly (injections), through the skin 118 119 (creams) and directly into the eyes and ears (drops). The mechanism of AGs action consists of their bonding with A-site of bacterial ribosome (or protein ribosome) and disrupting protein 120 121 translation which ultimately leads to bacteria's cell death [1].

Despite their high antimicrobial efficiency, aminoglycosides are also classified as toxic 122 substances with low therapeutic indices. For example, the ratio of tobramycin concentration in 123 plasma causing toxic effects to the therapeutic range is approximately 50% [4]. Furthermore, 124 125 AGs are able to accumulate in parenchymal tissues e.g. in the renal cortex (by bonding to glycoproteins, like megalin), which negatively affects the urinary tract function. Side effects 126 127 of AGs include oto- and nephrotoxicity, and damage to the digestive and nervous system. Additionally, AGs may cause fetal damage due to their ability to pass through the placenta. 128 129 Therefore, the kind of AG and its dosage must be strictly controlled.

Due to their low cost, there is a danger of the overuse of these drugs in commercial animal farms. AGs are used not only for the animals' treatment but also as preventive measures and as growth promotors, especially in large-scale farms, with the use of AGs in veterinary applications amounting to approx. 3.5% of the overall antibiotics use [5]. If not

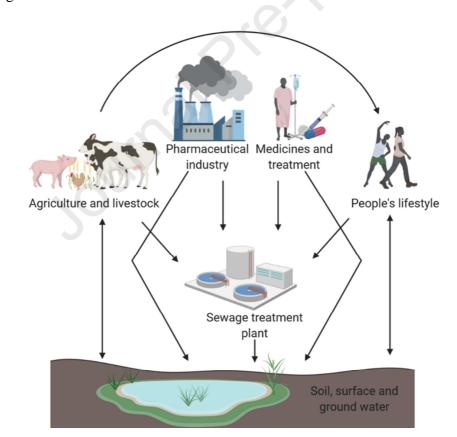

managed properly, this can have an adverse impact on the environment, since AGs are non-134 metabolizable agents and are thus excreted as unchanged molecules [6]. The release of large 135 amounts of AGs into the environment leads to the increase of antibiotic resistance in some 136 strains of bacteria (especially enteric bacteria) [7]. Half-lives of AGs range from 2 to 3 hours 137 in plasma and from 30 to 700 hours in tissues [8]. Since they accumulate in animal tissues, 138 AGs may be found in food of animal origin. The awareness of this issue has been raised 139 following the publicised issue of agricultural antibiotics overuse in North Carolina (USA), 140 where large-scale breeding farms are located, which led to significant amounts of antibiotics 141 being found in wastewater from farms, soil and animal tissues. In response, many countries 142 have introduced legislation which sets limits on the maximum residue content of antibiotics in 143 foods of animal origin (see Table 1). Additionally, the largest restaurant franchises such as 144 McDonald's, KFC and Subway are now claiming that the food that they offer does not 145 146 contain antibiotics.

Table 1. Maximum residue limits (MRL) of selected aminoglycoside antibiotics in food ofanimal origin set by the EU regulations [9].

Aminoglycoside	Food origin (animal species)	MRL [µg/kg]
	~?	20000 (kidney)
APR	Bovine	10000 (liver)
		1000 (fat, muscle)
	Ruminants	1000 (kidney)
STR	Rabbit	500 (fat, liver, muscle)
	Porcine	200 (ruminants milk)
	Ruminants	1000 (kidney)
DHSTR	Rabbit	500 (fat, liver, muscle)
	Porcine	200 (ruminants milk)
		50000 (kidney)
NEO	All species	500 (fat, liver, muscle, eggs)
		1500 (milk)
GEN	Dereine	750 (kidney)
(sum of C1, C1a,	Bovine	50 (muscle, fat)
C2 and C2a)	Porcine	200 (liver)
AVI	Porcine	200 (kidney)

	Journal Pre-pro-	of
	Poultry	100 (fat)
	Rabbit	50 (muscle)
		300 (liver)
		2500 (kidney)
VAN	All appeales (avoont finfich)	100 (muscle)
KAN	All species (except finfish)	600 (liver)
		150 (milk)

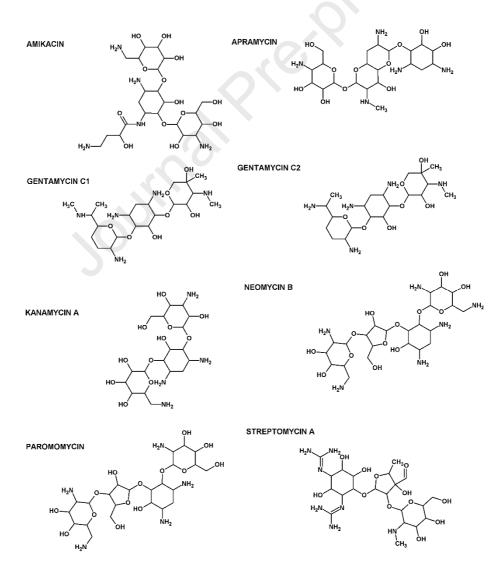
The excretion of AGs in the unchanged forms and inflow of AGs-containing wastewaters from the pharmaceutical industry and hospitals facilitates their mobility in the environment and increases the levels of surface waters and soil pollution. Appropriate handling of this type of pollutants is a critical problem and requires special both dedicated legislation and specialised treatment facilities. Schematic illustration of AGs' mobility in the environment is shown in Fig. 1.

Fig. 1. Mobility of aminoglycoside antibiotics in the environment. Created with BioRender.com.

AGs are weak bases consisting of two or more molecules of aminosugars (D-glucosamine, D-kanosamine) connected by glycosidic bond with cyclitol in the form of (i) streptidine (e.g

155

156


157

158

159

streptomycin), (ii) 4,5-di-substituted deoxystreptamine (e.g. neomycin) or (iii) 4,6-di-160 substituted deoxystreptamine (e.g. kanamycin) (see Fig. 2). They are characterized by high 161 polarity and hydrophilicity (logP values in the range from -4 to -9), very soluble in water, 162 slightly soluble in methanol and insoluble in non-polar organic solvents. Some of AGs occur 163 in the form of complexes, composed of several different chemical compounds. For example, 164 gentamycin consists of 4 main compounds, such as gentamycin C1 (477.6 g/mol), gentamycin 165 C1A (449.5 g/mol) and gentamycin C2 in the form of two stereoisomers A and B (463 g/mol). 166 Another example is neomycin, which consists of two stereoisomers B and C, where only 167 neomycin B has found therapeutical usage [8]. Due to their high polarity, polycationic 168 character and lack of chromophores, the analysis of aminoglycosides is a challenging task 169 both at the sample preparation and final determination stages. 170

171

172

MOST WIEDZY Downloaded from mostwiedzy.pl

Fig. 2. Structures of selected aminoglycoside antibiotics.

174 2. Determination of aminoglycosides using liquid chromatography coupled to various 175 detectors

176 Liquid chromatography (LC) remains the gold standard in the separation of AGs prior to their determination. This is not only due to the fact that it is a well-established technique with 177 plenty of literature to fall upon when confronted with the issue of analysing a particular type 178 of samples but also due to the possibility to analyse several AGs at the same time – a trait 179 common to perhaps only capillary electrophoresis in the context of the analysis of 180 aminoglycosides in complex matrices. While the choice of the most suitable method 181 necessarily depends on the analytical task at hand and the type of the sample, LC-based 182 183 techniques seem to be the most commonly used due to their high resolution, selectivity and sensitivity. 184

185 *2.1. Sample preparation and clean-up methods for LC analysis*

186 The physicochemical properties of aminoglycosides and the complexity of the usual matrices 187 is the source of numerous issues with their determination, leading to irreproducible and 188 inaccurate results, and so sample preparation is a crucial step in the analytical process.

In the case of relatively simple matrices such as pharmaceutical formulations, the 189 sample preparation protocol is usually limited to the sample dissolution with deionized water, 190 or with the mobile phase used in further LC investigation. In particular, such procedures are 191 used for e.g. eye drops, tablets (after grinding) and some types of medicated animal feed [10-192 13]. In the case of creams and ointments, additional de-fatting step is usually required. 193 Various non-polar organic solvents (e.g. DCM) are used for this purpose [11]. When it comes 194 to matrices such as foods of animal origin, the sample preparation procedures tend to be more 195 complicated. For instance, honey, consisting mainly of sugars, may cause problems during 196 sample clean-up and analysis due to the presence of enzymes as well as polyphenols [14]. In 197 the case of milk or animal material foods, the substantial amounts of proteins, fats, salts, 198 vitamins and minerals may also interfere with isolation and determination of AGs. The 199 established and emerging sample preparation methods used for determination of AGs in a 200 variety of matrices are summarized in Table 2, while a generalised sample preparation scheme 201 is shown in Fig. 3. It should be noted, however, that the optimal approach to sample treatment 202 203 for the determination of AGs necessarily depends on numerous factors such as the desired 204 application, complexity of the sample matrix, concentration of analytes, etc. As such, there is

- 205 no one-approach-fits-all solution, and the particular considerations which should be made
- when selecting the sample treatment approach are outlined in the following sub-sections.

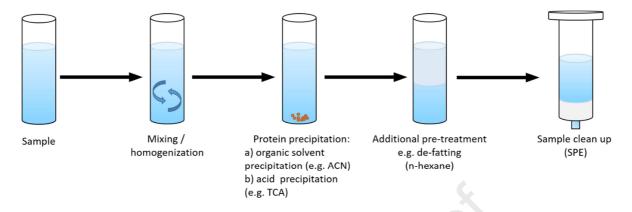


Fig. 3. Generalised scheme of sample treatment for subsequent determination ofaminoglycosides.

210 *Sample pre-treatment*

207

The first step in the sample preparation protocol is usually sample mixing and 211 homogenization or grinding. If large amounts of proteins are present, they are removed by 212 precipitation, either with the use of organic solvents such as methanol, or acetonitrile [15–18]. 213 It has to be noted, however, that AGs are poorly soluble in mixtures containing high amounts 214 of organic solvents which can lead to their losses during protein precipitation. On the other 215 hand, AGs show high stability and good solubility in acidic aqueous solutions. Acid 216 precipitation seems therefore to be a safer alternative for protein removal in the context of 217 AGs determination. Chlorinated or fluorinated organic acids such as trichloroacetic acid 218 219 (TCA), trifluoroacetic acid (TFA) or heptafluorobutyric acid (HFBA) [18–27] are commonly used for this purpose due to their high efficiency at relatively low concentrations. It seems 220 that TCA is the most frequently used precipitating agent owing to its low price and fast action. 221 Typically, 2÷5% TCA solutions are used [28]. Precipitating solutions may contain other 222 components, such as chelating agents (EDTA) to break down AGs complexes with polyvalent 223 ions [22,24,27,29], pH control compounds (NH₄Ac, KH₂PO₄) [22,28–30]) or ionic strength 224 225 fixating substances (NaCl) [22,26,29]). After protein precipitation, samples are centrifuged/filtered and defatted when necessary [23,26]. Finally, the pH of the sample 226 227 solutions may be set to the desired value [25,28,29].

228 Sample purification and enrichment

The pre-treatment of the sample is followed by a purification and enrichment stage using a variety of techniques, chief among them SPE. Cationic exchangers (mostly weak cationic exchangers - WCX), C18 sorbents (in combination with ion-pairing reagents) or hydrophiliclipophilic balance mode (HLB) SPE sorbents are commonly used. The selection of appropriate sorbent type can be challenging, particularly in the case of multiple analytes that need to be processed simultaneously, due to different values of acid/base dissociation constants for various AGs.

Ion exchange sorbents are frequently employed due to the poly-cationic character of AGs 236 and their affinity to the functional groups (Table 2). This type of sorbents can be used for 237 purification of many sample types including animal tissues (kidney, liver, muscle), milk, eggs, 238 honey, royal jelly and animal feeds [14,24,29,31]. Extraction protocols with WCX cartridges 239 240 require pH in the range of 6÷8. Under such conditions, functional groups of sorbent are negatively charged and attract protonated AGs molecules. At lower pH values (< 3), the 241 242 sorbent surface becomes neutral, facilitating AGs elution. The ionic strength of the preextraction mixture may have a notable impact on the recoveries, at least in the case of some 243 244 analytes [29]. Additional issues might occur when several AGs are to be extracted at the same time since in certain matrices the signal for particular AGs might be suppressed depending on 245 the type of the cartridge used [31]. However, it was shown that polymeric cation exchangers 246 with strong cation exchange functionality (PCX) provide better results in the case of select 247 AGs compared to standard WCX cartridges [14], while in the case of the extraction of weakly 248 basic compounds such as gentamycin, strong cation exchange (SCX) cartridges perform better 249 250 altogether [24].

Similarly to ion exchange sorbents, hydrophilic-lipophilic balance (HLB)-based sorbents 251 252 show AGs extraction efficiency varying with the pH of sample extracts (Table 2). This issue could be resolved e.g. through developing multi-step extraction protocols [21] or by 253 synthesizing novel sorbents. The latter path was taken in a study in which urea-formaldehyde 254 resin has been synthesized inside a small internal diameter PTFE tube [25]. The resulting 255 monolithic microcolumn was used as a sorbent for determination of streptomycin, neomycin 256 and tobramycin in fish meat extracts. In a different approach, four monolithic 257 poly(methacrylic acid-co-ethylene methacrylate) fibers were bunched together and used for 258 extraction of 6 AGs from honey and milk samples. Due to polymeric nature and carboxyl 259 functionality present on the surface of the fibers, two types of sorption mechanisms were 260

observed: hydrophobic interactions and cation-exchange mechanism [19], and thus theextraction process was greatly simplified.

Sample clean-up can also be carried out using non-polar octadecyl (C18) cartridges (see 263 Table 2). Since AGs, due to their hydrophilic nature, interact very weakly with hydrophobic 264 C18 sorbents, the latter may be used to remove non-polar components of sample extracts. 265 Such clean-up may be performed e.g. using dispersive SPE (DSPE) [3] and, since it is 266 relatively fast, incorporated into QuEChERS protocols [32]. Conversely, the polycationic 267 character of AGs makes it is possible to increase their hydrophobicity by the creation of ion 268 pairs with reagents such as perfluorinated organic acids (e.g. heptafluorobutyric acid, HFBA). 269 Such ion pairs may be isolated from extracts using techniques commonly used for other non-270 polar substances. In particular, both SPE and liquid chromatography based on reversed-phase 271 272 principle can be used [33].

The latest trends in AGs extraction/sample clean-up take advantage of molecularly 273 imprinted polymers (MIPs) and magnetically active sorbents (Table 2). MIPs are tailored, 274 275 highly selective sorbents fabricated in the process of spatially constrained polymerization at the molecular level. The template (analyte) molecule interacts with the monomer functional 276 groups (e.g. by ionic, hydrogen or covalent bonds) forming complexes. After cross-linking, 277 278 the shape of such a complex is trapped/imprinted in the three-dimensional polymer structure. The template/analyte is then purged from the polymer leaving a molecular imprint. The 279 resulting material shows high affinity to molecules shaped similarly to the template (analyte) 280 molecules. In the case of MIPs, the analyte-sorbent interactions are relatively strong, therefore 281 it is possible to use 2- or 3-step washing procedures (with MeOH or DCM) during sample 282 preparation. Thorough washing helps reduce interferences caused by both polar and non-polar 283 284 matrix components. Unfortunately, only one type of such sorbent is commercially available at the time of writing (SupelMIP[®] SPE-AG from Supelco). Sample clean-up procedures 285 employing MIPs were used for AGs determination in animal tissues, fish, eggs, processed 286 food, honey, milk and milk-based food products [27,34]. The MIP sorbents can be re-used 287 dozens of times without the use of sorption efficiency [35], and enable overall better 288 recoveries compared to conventional SPE. 289

Magnetically active sorbents consist of some sort of ferromagnetic particles (most commonly Fe_3O_4) covered with the layer of the actual sorptive material. The sorbents of that type are used for dispersive solid-phase extraction (DSPE). The small particle size of such

sorbents makes it easier to achieve higher extraction efficiencies mostly due to the high 293 specific surface area. The magnetic activity of sorbent particles facilitates its separation from 294 the sample matrix. Unfortunately, until now sorbents of this type are not commercially 295 available and the literature concerning their applications is scarce. However, some promising 296 applications include the development of a poly(vinyl alcohol)-coated core-shell magnetic 297 nanoparticles (Fe₃O₄) for the DSPE extraction of three AGs from honey [36] and the use of a 298 299 similar approach in which the Fe₃O₄ nanoparticles modified with carbohydrates with functional groups chosen to mimic AGs structure and properties [37]. The relatively high 300 recovery values obtained in both scenarios (83% to 101% and 94% to 109%, respectively) 301 highlight the potential of this approach to the extraction of AGs from various matrices. 302

303

Type of SPE	Aminoglycoside	Matrix	Sample preparation	Sample clean-up	Recovery	Ref.
sorbents						
Ion-exchange SPE sorbents	GEN (C1, C1A, C2/C2A/C2B)	Fish tissue	2 g of sample → 10 mL 3% TCA with 0.4 mM EDTA → repetition of the procedure → dissolving of collected supernatants to 25 mL	LC-SCX ion-exchange SPE cartridges (3 mL/500 mg) - conditioning: 5 mL MeOH, 5 mL H ₂ O - sample volume: 12.5 mL - washing: 5 mL H ₂ O, 5 mL MeOH - elution: 5 mL MeOH with NH ₃ (17:3 v/v)	80 – 110%	[24]
	SPC, STR, DHSTR, AMI, RIB, KAN, PAR, APR, GEN (C1, C1A, C2/C2A/C2B), NEO	Animal tissue (muscle), milk	Sample pretreatment – muscle: 3 g of sample \rightarrow 15 mL (two steps: 10 + 5 mL) 10 mM NH ₄ Ac with 0.4 mM EDTA, 0.5%	Accell Plus CM, WCX SPE cartridges (6 mL/500 mg) - conditioning: 3 mL ACN, 6 mL H ₂ O - washing: 6 mL H ₂ O - elution: 3 mL 175 mM NH ₄ FA	72 – 96%	[29

304 Table 2. Sample preparation and clean-up procedures for determination of aminoglycoside antibiotics in a variety of matrices.

STR, DHSTR, HYG, SPC, KAN, APR, GEN (C1, C2/C2A, C1A), NEO, TOB	Honey, royal jelly	NaCl and 2% TCA \rightarrow pH adjustment to 6.5 \rightarrow dilution to 50 mL Sample pretreatment – milk: 2 g of sample \rightarrow 15 mL (two steps: 10 mL + 5 mL) 0.25% TCA \rightarrow pH adjustment to 6.5 \rightarrow dilution to 50 mL 5 g or 2 g of sample (respectively honey, royal jelly) \rightarrow 0.25 mg trypsin \rightarrow 5 mL H ₂ O \rightarrow repetition of the extraction \rightarrow collected supernatants filled up to 20 ml \rightarrow splitting of the solution into 2 portions	Bond Elut Nexus WCX SPE cartridges (3 mL/150 mg) - 1 st cartridge: - pH adjustment of 1 portion of ample to 7.5 - conditioning: 5 mL MeOH, 5 mL H ₂ O - washing: 7.5 mL H ₂ O	75 – 114%	[14]
		20 ml \rightarrow splitting of the solution into 2 portions	- washing: 7.5 mL H ₂ O - elution: 5 mL AA/ H ₂ O/ MeOH		

			Pre Pr	 (10:20:70 v/v/v/) Bond Elut Plexa PCX SPE cartridges (3 mL/150mg) - 2nd cartage - conditioning: 5 mL MeOH, 5 mL H₂O, 3 mL 20 mM HFBA - washing: 7.5 mL H₂O, 7.5 mL MeOH -elution: 5 mL NH₃/ H₂O/ MeOH (20:20:60 v/v/v) 		
	HYG, AMI, KAN,	Animal feeds	1 g of sample \rightarrow 5 mL	Oasis MCX SPE cartridges (3 mL/60	61 –	[38]
	RIB, APR, TOB,		10 mM KH ₂ PO ₄ with	mg)	104%	
	GEN, NEO	20	0.4 mM EDTA and 2% TCA \rightarrow repetition of the	- conditioning: 3 mL MeOH + 2% AA		
			extraction \rightarrow pH	- washing: 3 mL 2% AA, 3 mL H ₂ O		
			adjustment to 5.5	- elution: 5 mL MeOH + 20% NH_3		
Non-polar	SPC, TOB, GEN,	Animal tissue	10 g of sample (1 mL of	C18 (DSPE)	37 – 98%	[3]
SPE sorbents	KAN, HYG, APR,	(muscle),	milk)→ 0.25 mL 150	mixing of sample and $25 \text{ mg of } C^{10}$		
	STR, DHSTR, AMI,		mM EDTA (0.05 mL for	- mixing of sample and 25 mg of C18		

	NEO	milk	milk sample) $\rightarrow 10 \text{ mL}$	sorbent		
			15% TCA (1 mL for			
			milk sample)			
	NEO, STR, DHSTR,	Honey	5 g of sample \rightarrow 15 mL	Strata-XL SPE cartridge (6 mL/200	87 –	[33]
	GEN, KAN, SPC		0.1% HFBA	mg)	127%	
				- conditioning: 6 mL MeOH, 6 mL		
			0	H ₂ O, 6 mL 0.1% HFBA		
			010	- washing: 6 mL 01% HFBA		
				- elution: 5 mL ACN		
	VAL	Rice (rice	5 g of sample $\rightarrow 20 \text{ mL}$	C18, GCB, PSA (DSPE)	78 - 94%	[32]
		straw, brown rice, rice hull)	MeOH/H ₂ O (9:1 v/v) (10 mL for brown rice)	- sample volume: 1.5 ml		
		3	$\rightarrow 1$ g NaCl	- tube with sorbent (50 mg C18 – rice		
				hull, 10 mg GCB and 40 mg PSA –		
				rice straw, 10 mg GCB and 30 mg C18		
				– brown rice)		
Hydrophilic-	APR, AMI, SPC,	Animal tissue	5 g of sample \rightarrow 10 mL	Oasis HLB SPE cartridges (3 mL/60	47 – 93%	[23]
lipophilic	KAN, NEO, PAR,	(muscle, liver,	5% TCA \rightarrow repetition of	mg) – 2 steps procedure		

balance SPE	STR, DHSTR, TOB,	kidney)	the procedure $\rightarrow 5 \text{ mL}$	- conditioning - 1 st cartridge: 3 mL		
sorbents	GEN (C1, C2/C2A,		$0.2 \text{ M HFBA} \rightarrow 5 \text{ mL n}$ -	MeOH, 3 mL H ₂ O, 3 mL 0.2 M HFBA		
	C1A), HYG, SIS, NET		hexane	- sample volume - 1 st cartridge: 5 mL		
				- effluent pH adjustment to 8.5		
				- conditioning - 2 nd cartridge: 3 mL		
			~	MeOH, 3 mL H ₂ O, 3 mL 0.2 M		
				HFBA, 3 mL solution of NaOH (pH		
			0,00	8.5)		
				- sample volume - 2 nd cartridge: all		
			2	collected solution alter alkalization		
			SIL	- connection of the 2 cartridges		
		30		- washing: 5 mL H ₂ O		
				- elution: 6 mL ACN with 0.15 M		
				HFBA (4:1 v/v)		
	STR, TOB, NEO	Fish tissue	10 g of sample $\rightarrow 0.2$	Urea-formaldehyde monolithic	82-97%	[25]
			mL 150 mM EDTA \rightarrow	cartridge for hydrophilic online in-		
			$10 \text{ mL} 15\% \text{ TCA} \rightarrow 10$	tube SPME		

		mL n-hexane \rightarrow pH adjustment to 7 \rightarrow filtration \rightarrow dilution of 5 mL of sample to 20 mL with ACN/H ₂ O (50:50	 sampling solution: ACN/H₂O (50:50 v/v) + 0.2% TFA elution volume: 0.15 mL 		
		v/v) + 0.2% TFA	0		
SPC, DHSTR, AMI,	Honey, milk	Sample pretreatment –	Multiple monolithic poly(methacrylic	68 –	[19]
KAN, TOB, APR		honey:	acid-co- ethylenedimethacrylate)	110%	
		1 g of sample \rightarrow 20 mL	fibers (20 x 0.5 mm):		
		$H_2O \rightarrow pH$ adjustment	- fibers activation: MeOH, H ₂ O		
		to 5	- direct immersion of fiber into sample		
		Sample pretreatment –	(40 min)		
	20	milk:	- desorption: 0.4 mL H ₂ O/ACN/FA		
		20 mL of sample $\rightarrow 1$	(94:5:1 v/v/v)		
		mL TFA \rightarrow dilution of 2			
		mL of sample to 20 mL			
		with $H_2O \rightarrow pH$			
		adjustment to 5			

	DHSTR, STR, KAN,	Honey	2 g of sample \rightarrow 10 mL	PVA-Sil SPE cartridge (3 mL/200 mg)	84 -	[30]
	SPC		5 mM K ₂ HPO ₄ (pH 11)	 conditioning: 5 mL MeOH, 5 mL ACN/H₂O (90:10 v/v) washing: 5 mL H₂O elution: 2 mL H₂O/ACN/FA (90:9:1 v/v/v) 	112%	
	STR	Apples	5 g of sample \rightarrow 20 mL of 10 mM KH ₂ PO ₄ (pH 4) with 0.4 mM EDTA and 2% TCA \rightarrow pH adjustment to 7.5	Oasis HLB SPE cartridges (6 mL/200 mg) - conditioning: 6 mL MeOH, 6 mL H ₂ O, - washing: 3 mL H ₂ O - elution: 6 mL MeOH + 3% FA	101 – 105%	[2]
MIP SPE sorbents and functionalized magnetic nanoparticles	AMI, APR, DHSTR, GEN (C1, C2/C2A, C1A), HYG, KAN, NEO, PAR, SIS, SPC, STR, TOB	Animal tissue (muscle, fat), fish, milk, egg – raw and processed	2 g of sample $\rightarrow 0.5 \text{ mL}$ 0.5% EDTA $\rightarrow 20 \text{ mL}$ 2% TCA $\rightarrow 4 \text{ mL } 80$ mM (NH ₄) ₂ CO ₃	SupelMIP SPE-AGs cartridges (3 mL/50 mg) - conditioning: 1 mL MeOH, 1 mL 50 mM K ₃ PO ₄ (pH 7),	Approx. 90 – 100%	[27]

	food products		 sample volume: 3 mL washing: 3 mL H₂O, 1 mL H₂O/ACN (6:4 v/v), 1 mL DCM/MeOH (50:50 v/v) elution: 1 mL 30 mM HFBA in ACN/H₂O (25:75 v/v) 		
STR, DHSTR, KAN, GEN C1A, SPC, AMI TOB, SIS, PAR, NET HYG		Sample pretreatment – muscle and milk: 2 g of sample \rightarrow 5 mL 10 mM KH ₂ PO4 with 0.4 mM EDTA and 2% TCA \rightarrow repetition of the procedure \rightarrow dilution (1:1 v/v) with 50 mM K ₃ PO ₄ \rightarrow pH adjustment to 7 Sample pretreatment – honey:	SupelMIP SPE-AGs cartridges (3 mL/50 mg) - conditioning: 1 mL MeOH, 1 mL 50 mM K ₃ PO ₄ (pH 7 ÷ 8.5), - washing: 3 mL H2O, 1 mL 0.1% NH ₃ solution, 1 mL ACN/H ₂ O (40:60 v/v), 1 mL MeOH/DCM (50:50 v/v) - elution: 1 mL MeOH/H ₂ O (80:20 v/v) + 0.1% FA	78 – 95%	[28]

AMI, APR, DHSTR, GEN (C1, C2/C2A, C1A), KAN, PAR, SPC, STR, TOB	Milk and milk-based food products	2 g of sample \rightarrow 10 mL 50 mM K ₃ PO ₄ \rightarrow pH adjustment to 7 2 g of sample \rightarrow 0.25 mL 15% TCA \rightarrow 1 mL n-hexane \rightarrow 3.5 mL 50 mM potassium phosphate (pH 7) \rightarrow pH adjustment to 7	SupelMIP SPE-AGs cartridges (3 mL/50 mg) - conditioning: 1 mL MeOH, 1 mL 50 mM K ₃ PO ₄ (pH 7), - sample volume: 3 mL - washing: 3 mL H ₂ O, 1 mL DCM/MeOH (50:50 v/v) - elution: 1 mL ACN/H ₂ O (20:80 v/v) + 1% FA with 20 mM HFBA	70 – 106%	[34]
STR, DHSTR, KAN	Honey	2 g of sample \rightarrow 10 mL ACN with 5 mM K ₂ HPO ₄ (pH = 7) (10:90 v/v)	Magnetic Fe ₃ O ₄ @PVA nanoparticles for DSPE (40 mg) - conditioning: ultrasonification of sorbent in 5 mL of MeOH and washing with ACN/H ₂ O (10:90 v/v)	83 – 101%	[36]

			- washing: H ₂ O		
			- elution: 1 mL H ₂ O/ACN/FA (80:19:1		
			v/v/v)		
AMI, DHSTR, TOB,	Honey	0.2 g of sample \rightarrow 2 mL	Magnetic Fe ₃ O ₄ @SiN- galactitol	84 -	[37]
GEN (C1, C2/C2A,		H ₂ O	nanoparticles for DSPE (1 mg)	109%	
C1A)		<	- elution: 0.15 mL 190 mM NH ₄ FA		
		\mathcal{O}	(pH 3)		
STR, KAN, APR,	Environmenta	50 mL of sample	DMIPs SPE cartridges (2 mL/30 mg)	70.8 –	[35]
GEN, TOB, PAR	l water	so me or sample	- conditioning: 3 mL MeOH, 3 mL	108.3%	[33]
			H ₂ O,		
		21	- washing: 3 mL H ₂ O		
	2		- elution: $3 \text{ mL H}_2\text{O} + 1\% \text{ FA}$		

MOST WIEDZY Downloaded from mostwiedzy.pl \langle <1

305

306 2.2 Separation and detection of aminoglycosides in LC- and CE-based analysis

High polarity and polycationic character of AGs can cause a variety of problems during their 307 chromatographic separation in native forms. Additionally, considering possible ways of 308 detection, the absence of chromophoric or fluorogenic moieties complicates the determination 309 310 of these compounds. Direct AGs detection with UV or fluorescence detectors is not preferred, 311 although it has found some application in pharmaceutical formulations control [39,40]. Wider 312 use of this kind of detection for underivatized AGs does not seem to be possible due to the high risk of possible matrix-related interferences. Furthermore, these methods cannot be used 313 for every AG. For example, it was shown that using direct UV detection amikacin and 314 tobramycin can be analysed, but in the case of gentamycin, it is not possible [40]. 315

One way to deal with this problem is derivatization. Not only does it make detection 316 easier, but also facilitates chromatographic separation of analytes by lowering their polarity. 317 Derivatization products usually can be easily separated under reversed-phase conditions. The 318 most popular derivatization agents for AGs are: 1-naphthyl isothiocyanate (NITC), 9-319 fluorenylmethyloxycarbonyl (FMOC), 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate 320 (AQC), o-phthalaldehyde (OPA), and 1-fluoro-2,4-dinitrobenzene (FDNB) [15,16,20,41,42]. 321 322 It has to be stressed however, that the selection of derivatization agent can be a difficult task. Some derivatizing agents (e.g. FMOC) can react with primary and secondary amino groups of 323 324 AGs with different selectivity and efficiency, thus producing multiple derivatives from a single analyte (Fig. 4). This, in turn, will impair quantitation and increase matrix effects levels. 325 326 The stability of derivatization products is another source of potential issues. For instance, OPA is recommended to be used in post-column mode due to low stability of its derivatives 327 [43,44]. Certain derivatization agents call for quite harsh reaction conditions, such as high 328 temperatures (e.g. derivatization with FDNB requires around 85°C) which in some scenarios 329 may be a limiting factor [42]. What is more, the efficiency of derivatization highly depends 330 on the composition of the sample matrix. Overall, methods involving derivatization are more 331 commonly used to analyse samples with less complex matrices (e.g. pharmaceuticals) or 332 when a single AG is to be determined [15,16,20]. It seems that the application of 333 derivatization reactions in combination with reversed-phase separation conditions is 334 becoming less prominent. 335

The latest trends in AGs determination focus on developing protocols employing hydrophilic interaction (HILIC) or ion-pairing liquid chromatography (IPLC). These

336

337

approaches allow the determination of AGs in their native forms but also impose the use of a
different set of detection techniques, like mass spectrometry (single or tandem MS),
evaporative light scattering detection (ELSD), charged aerosol detection (CAD) or pulsed
amperometric detection (PAD). Table 4 summarizes exemplary HPLC methodologies for
AGs analysis. The referenced publications are focused mainly on IPLC and HILIC.

When developing a method for the determination of aminoglycosides which involves 343 the use of a separation technique such as LC or capillary electrophoresis discussed in Section 344 3 of this review, it is also important to carefully consider the choice of the detector. In the 345 case of the determination of single analyte and analysis of less complex matrices detectors 346 such as ELSD, UV, FLD or CAD could be cost-effective. However, when the opposite is true, 347 or when the analytes are present in the sample at trace concentration levels, tandem mass 348 349 spectrometry seems to be the method of choice. The application areas and detection levels of various detectors coupled with separation techniques for the determination of AGs are listed 350 in Table 3. 351

Table 3. Detectors most commonly used for determination of aminoglycosides in conjunctionwith separation techniques.

Type of detector	Tentative	Remarks
51	detection levels	
Refractive index	100 000 ng/mL	- determination of aminoglycosides in the native form;
detector (RID)		- low sensitivity;
		- nonselective;
		- response varies with temperature and mobile phase
		composition - isocratic elution is preferred, which hinders
		separation of analyte mixtures;
		- currently, the use for analysis of AGs is marginal;
Evaporative light	100 ng/mL	- determination of aminoglycosides in the native form;
scattering		- higher sensitivity compared to RID and stable baseline during
detector (ELSD)		gradient elution;
		- nonselective;
		- nonlinear response;
		- possible problems with detection under HILIC conditions
		(high concentration of buffers may suppress the signal).
Charged aerosol	100 ng/mL	- determination of aminoglycosides in the native form;
detection (CAD)		- better sensitivity compared to some universal detectors, such
		as RID;
		- narrow range of linearity;
		- sensitivity dependent on the content of organic solvent in the
		mobile phase;
		- possible problems with detection under HILIC conditions
		(high concentration of buffers may suppress the signal).
Diode array	10 000 ng/mL	- in most cases derivatization of analytes is required;
detection (DAD)	(with	- better selectivity compared to RID and ELSD;

		Journal Pre-proof
	derivatization) >10 000 ng/mL (without derivatization)	 wide range of linear response; high reliability; used with both LC and CE.
Fluorescence detection (FLD)	100 ng/mL	 derivatization of analytes is required; improved sensitivity and selectivity compared to DAD); used with both LC and CE.
Tandem mass spectrometry (MS/MS)	1 ng/mL	 determination of aminoglycosides in the native form; highly sensitive and selective detection; the most powerful tool for the simultaneous determination of multi-component mixtures; high concentration of buffers (HILIC) and some mobile phase additives (IPLC) negatively affects sensitivity; most commonly used with LC, can be used with CE.
Amperometric detectors	500 ng/mL	 determination of AGs in the native form; highly sensitive detection, however in the case of samples with complicated matrices problems with repeatability may occur due to deterioration of of electrodes; highly alkaline pH is necessary (pH > 11) – anion exchange mode; used with both LC and CE.
Capacitively coupled contactless conductivity detection (C ⁴ D)	10 ng/mL	 determination of AGs in the native form; universal type of detection suitable for miniaturization and coupling with CE systems; good sensitivity; issues with baseline stability due to changes in the conductivity of the background electrolyte; most commonly used with CE.
laser-induced fluorescence detection (LIF)	10 ng/mL	 derivatization of aminoglycosides necessary; high sensitivity and selectivity; most commonly used with CE.

354 Ion-pairing liquid chromatography (IPLC)

Due to the presence of multiple amino groups in the structures of AGs molecules, they tend to 355 356 form polyvalent cations in the solution. Such cations can interact with negatively charged moieties, e.g. anions of perfluorinated organic acids. The resulting ion pairs are notably less 357 358 polar than AGs, as described in section 2.1. This phenomenon can be taken advantage of during LC separation to increase AGs retention and separation selectivity using LC columns 359 360 packed with non-polar sorbents (e.g. C8, C18, etc.). Main drawbacks of using IPLC include the diminished lifetime of chromatographic equipment and columns as well as detection 361 362 problems when mass spectrometry is employed (ion suppression). Despite some disadvantages, IPLC finds widespread application due to good separation of AGs in multi-363 364 component mixtures (competitive to other LC-based techniques). Problems with column lifetime may be alleviated using their dedicated versions showing higher resistance against 365 low pH conditions. 366

The most commonly used ion-pairing (IP) reagents which provide the best AGs separation are volatile perfluorinated organic acids, for example, heptafluorobutyric acid (HFBA), pentafluoropropionic acid (PFPA) or trifluoroacetic acid (TFA). IP agents are added to the mobile phase in concentrations ranging from 0.1% to 1% (v/v) [10,11,33,45,46]. Nonvolatile ion-pairing reagents (e.g. alkylsulfonic acids) are not used in modern analytical chemistry due to their incompatibility with the majority of detectors used for AGs analysis (MS, evaporative light scattering (ELSD), charged aerosol detectors (CAD)).

Depending on the complexity of the sample matrix, different detectors may be used 374 for AGs determinations using IPCL. Usually, for well-defined and relatively simple matrices 375 such as pharmaceutical formulations, (ELSD) and (CAD) [10,11,13] are a good choice. Their 376 advantages are good sensitivity (LODs start from around 10 ng injected on column), a similar 377 378 response to all AGs, simple and rugged construction and low running costs. The downsides 379 are lack of selectivity and non-linear (sigmoidal) response curve. While the non-linearity 380 problem can be solved quite easily with modern computer technology, the lack of selectivity calls for the use of more elaborate sample preparation protocols. The performance of IPLC 381 methods can be significantly improved by employing tandem mass spectrometry at the 382 detection stage [3,21,23,26,27,46]. Higher sensitivities and sample throughput, better 383 selectivity and multi-residue analysis capability can be obtained at the expense of higher 384 instrumentation, maintenance and personnel costs. In many cases, the use of mass 385 spectrometric detection allows for reliable determination of analytes despite their non-386 baseline separation. The choice of the ion-pairing reagent in IPLC-MS/MS should be 387 carefully considered. While TFA was successfully used to determine 15 AGs [26], it is 388 commonly regarded as a troublemaker in the context of mass spectrometry. 389 Pentafluoropropionic acid (PFPA) could be used as an alternative, as it causes less ion 390 suppression and in comparison to HFBA it has a lower affinity to the stationary phase, 391 however, its superiority over HFBA is yet to be clearly demonstrated [46]. 392

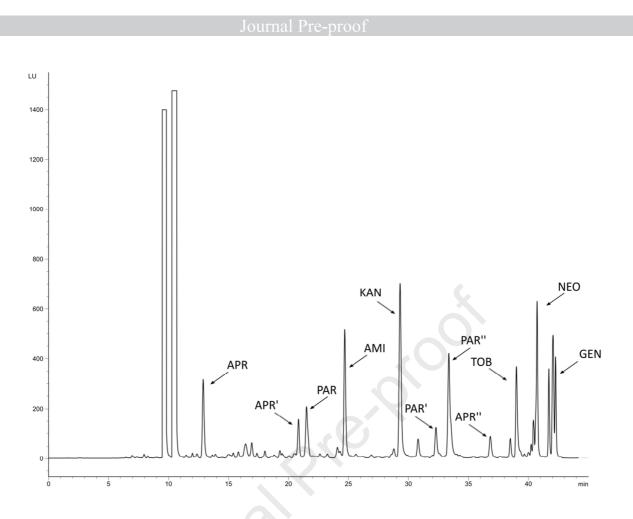


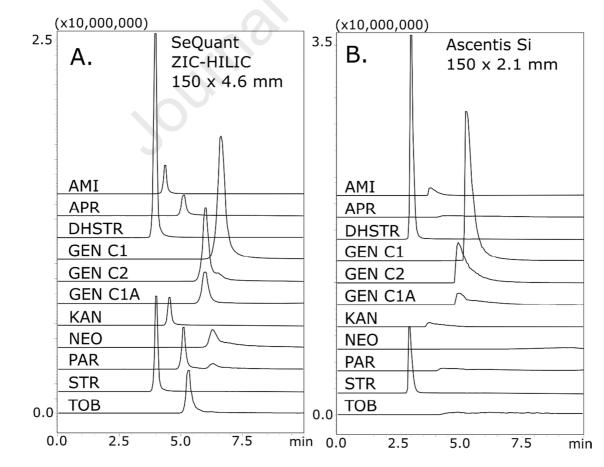
Fig. 4. Example of chromatogram after derivatization of AGs mixture with FMOC; APR –
 apramycin, PAR – paromomycin, AMI – amikacin, KAN – kanamycin, TOB – tobramycin,
 NEO – neomycin, GEN – gentamycin.

397 Hydrophilic interaction liquid chromatography (HILIC)

Hydrophilic interaction liquid chromatography can be used when the separation of polar, 398 water-soluble chemical compounds such as aminoglycoside antibiotics is desired. It is 399 400 believed that the separation mechanism relies on interactions between analytes and quasi-401 stationary phase consisting of water-rich layer surrounding proper stationary phase particles. 402 Analyte's retention behaviour is rather difficult to predict since it is dependent on several 403 factors including the composition of the mobile phase (percentage and kind of organic component), the character of stationary phase, pH, type and concentration of buffer, 404 405 temperature and so on.

Stationary phases used in HILIC include bare, diol, pentafluorophenyl, cyanopropyl or amino-modified silica gels. These phases can be successfully used for separation of various classes of compounds, although for AGs much better results are frequently obtained with

406


407

408

393

novel stationary phases (e.g. ZIC-HILIC and its variants) developed specifically for HILIC
separations (Fig. 5). ZIC-HILIC stationary phases combine hydrophilic partitioning with
weak ionic interactions resulting from the presence of zwitterionic (sulfobetaine,
phosphorylcholine) groups covalently bound to the surface of silica particles.
Phosphorylcholine-modified silica gels seem to be well suited for AGs separations [47].

414 Regarding the aqueous mobile phase composition, typically buffers with a concentration lower than 60 mM (or water acidified with e.g. formic acid) are preferred for the 415 determination of no more than 5 AGs in the sample [2,23,30,36]. In these conditions, baseline 416 separation of AGs is extremely difficult to achieve. The separation resolution increases with 417 the concentration of the buffer. To obtain satisfactory separation for simultaneous multi-AGs 418 419 mixture, buffer concentrations higher than 150 mM are needed [22,28,31,34]. What is more, most of the protocols include the addition of 0.05 - 2% (v/v) FA to the mobile phase (both to 420 the buffer and the organic components) [19,22,28,30,31,34] which improves peak shape 421 (especially their characteristic "tailing" under HILIC conditions) through the weak ionic 422 interaction with amino groups (affecting slightly reduction of AGs interaction with the 423 424 stationary phase).

MOST WIEDZY Downloaded from mostwiedzy.pl

Fig. 5. Comparison of chromatographic separation of 11 AGs under HILIC conditions using
SeQuant ZIC-HILIC (A) and Ascentis Si (B) LC columns; AMI – amikacin, APR –
apramycin, DHSTR – dihydrostreptomycin, GEN – gentamycin, KAN – kanamycin, NEO –
neomycin, PAR – paromomycin, STR – streptomycin, TOB – tobramycin.

Baseline separation of multiple (more than 8) AGs under the HILIC conditions is difficult if possible at all, as illustrated by an attempt to simultaneously determine 9 AGs using HILIC-ELSD [12]. Despite long chromatographic run (120 min), baseline separation of analytes could not be obtained. Authors tried to resolve overlapping peaks using 2D-LC with IPLC as a 2nd separation dimension but this attempt was only partially successful, and the total separation time was 240 min.

These limitations can be overcome by using HILIC in combination with mass spectrometric 436 detection since it does not require the use of problematic mobile phase additives (e.g. 437 perfluorinated IP reagents). Mass spectrometric detection in general, and tandem mass 438 spectrometry in particular, due to its selectivity allows to overcome the problem of non-439 baseline separation of analytes and offers significantly shorter run times (e.g. 9 min when fast 440 HILIC-MS/MS was applied for the determination of 11 AGs in milk-based food products 441 442 [34]). Attention should be devoted to the effect of the composition of the mobile phase on the peaks shape and the detector's response, with variables such as the impact of the buffer or the 443 444 organic modifier (notably, methanol was found to be superior to the commonly used acetonitrile in certain applications [28]). ZIC-HILIC columns are commonly used to achieve 445 446 acceptable separation of AGs and were shown to perform better than another type of zwitterionic column, namely Obelisc R. The stationary phase of the latter is characterized by 447 the presence of carboxyl acid functional groups instead of sulfonic groups present in the ZIC-448 HILIC columns [28]. Another approach would be to use graphitized LC columns [24], 449 450 however, they are characterized by some limitations such as fluctuations in analytes retention times and time-consuming column deactivation step. In a study in which 3 different HILIC-451 ESI conditions for multiresidue drugs determination, including 11 AGs and colistins in animal 452 muscle and milk samples were compared it was concluded that with ZIC-HILIC column, the 453 symmetry and retention of neomycin peak weren't acceptable. On the other hand, problems 454 with retention of spectinomycin and neomycin were observed with a graphitized column. As 455 the most suitable solution, the authors have chosen bare silica Poroshell HILIC column [29]. 456

457	Table 4. HPLC methods used for determination of aminoglycoside antibiotics in various matrices.
-----	---

LC conditions	Aminoglycoside	Matrix	LC column	Mobile phase	Detection	LOD/LOQ	Ref.
RP	GEN, NEO	Animal tissues (kidney, liver, muscles)	Hypersil BDS C18 (100 x 4.6 mm), 5µm	ACN/H ₂ O (85:15 v/v)	FLD _{FMOC-CI}	LOD: 0.05 – 0.10 µg/g	[20]
	STR, DHSTR, HYG, SPC, KAN, APR, GEN (C1, C2/C2A, C1A), NEO, TOB	Honey, royal jelly	Porshell 120 EC-C8 (100 x 2.1 mm), 2.7 μm	A: 0.5 mM NH ₄ Ac + 0.1% FA B: ACN + 0.1% FA	ESI-MS/MS	LOD: 0.005 – 0.0125 µg/g LOQ: 0.001 – 0.025 µg/g	[14]
IPLC	HYG, AMI, KAN, RIB, APR, TOB, GEN, NEO	Animal feeds	Hypersil BDS C18 (250 x 4.6 mm), 5 μm	A: ACN/H ₂ O (5:95 v/v) + 20 mM HFBA B: ACN/H ₂ O (50:50 v/v) + 20 mM HFBA	ELSD	LOD: 0.2– 0.7 μg/g	[38]
	APR, AMI, SPC, KAN, NEO, PAR,	Animal tissue (muscle, liver,	Atlantis dC18 (150 x 2.1 mm), 5 μm	A: ACN + 20 mM HFBA	ESI-MS/MS	LOD: 0.0009 - 0.009 µg/g	[23]

STR, DHSTR,	kidney)		C: ACN/H ₂ O (5:95		LOQ: 0.003 –	
TOB, GEN (C1,			v/v) + 20 mM		0.030 µg/g	
C2/C2A, C1A			HFBA			
HYG, SIS, NET			D: ACN/H ₂ O (50:50 v/v) + 20 mM HFBA			
STR, TOB, NEO	Fish tissue	Syncronis C18 (250 x 4.6 mm), 5 µm	H ₂ O + 0.2% TFA with ACN (9:1 v/v)	ELSD	LOD: 0.0035 - 0.0052 µg/g	[25]
AMI, APR,	Animal tissue	Kinetex C18 (100 x	A: 20 mM HFBA	MS/MS	-	[27]
DHSTR, GEN (C1, C2/C2A, C1A), HYG, KAN, NEO, PAR, SIS, SPC, STR, TOB	(muscle, fat), fish, milk, egg – raw and processed food products	2.1 mm), 2.6 µm	B: ACN			
SPC, TOB, GEN, KAN, HYG, APR, STR, DHSTR, AMI, NEO	Animal tissue (muscle), milk	Waters X-Terra C18 (100 x 2.1 mm), 5 μm	A: 10 mM NFPA B: ACN + 10 mM NFPA	ESI-MS/MS	LOD: 0.005 – 0.100 µg/g LOQ: 0.0125 – 0.250 µg/g	[3]

MOST WIEDZY Downloaded from mostwiedzy.pl < $\langle |$

	NEO, STR,	Honey	Kinetex XB C-18	A: H ₂ O + 0.1%	ESI-MS/MS	LOQ: 0.005 –	[33]
	DHSTR, GEN,		(100 x 3 mm), 2.7 μm	HFBA		0.075 µg/g	
	KAN, SPC			B: ACN			
2D-LC	SPC, BAC,	Tablets	1 st dimension:	A: 20 mM NH ₄ FA	ELSD	LOD: 130	[12]
HILIC x IPLC	DHSTR, STR,		Grom-Sil 120 Diol	(pH 2.5)		µg/mL	
HILIC X IPLC	GEN, KAN, AMI,			D. ACN		100.240	
	APR, PAR, NEO		(250 x 4.6 mm), 5 μm	B: ACN		LOQ: 240	
			2 nd dimension:	A: 5 mM	-	µg/mL	
			L C10 (250 0.1	PFOA/ACN (95:5			
			Luna C18 (250 x 2.1	v/v)			
			mm), 5 μm				
				B: 5 mM			
				PFOA/ACN (5:95			
		30		v/v)			
HILIC	SPC, STR, DHSTR,	Animal tissue	Poroshell 120 HILIC	A: 1 mM NH ₄ FA +	HESI-II-Q-	LOD: ≤ 0.033	[29]
	AMI, RIB, KAN,	(muscle), milk	(100 x 2.1 mm),	1% FA	Orbitrap	µg/g	
	PAR, APR, GEN		2.7 µm	D. ACN			
	(C1, C1A,			B: ACN			
	C2/C2A/C2B),						
	NEO						

	AMI, APR,	Milk and milk-	Kinetex HILIC (100 x	A: 150 mM NH ₄ Ac	ESI-MS/MS	LOQ: 0.0042	[34]
	DHSTR, GEN (C1,	based food	2.1 mm), 1.7 μm	+ 0.1% FA		$-0.049 \ \mu g/g$	
	C2/C2A, C1A),	products		D. ACN			
	KAN, PAR, SPC,			B: ACN			
	STR, TOB						
				X			
	SPC, DHSTR, AMI,	Honey, milk	ClickXlon HILIC	60 mM NH ₄ FA and	ESI-MS/MS	LOD: 0.0001	[19]
	KAN, TOB, APR		(150 x 3 mm), 5 µm	ACN (90:10 v/v) +		- 0.00059	
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1% FA		µg/g	
	DHSTR, STR,	Honey	TE-Cys HILIC (150 x	A: 30 mM NH ₄ FA +	ESI-MS/MS	LOQ: 0.0078	[30]
	KAN, SPC		3 mm), 3 µm	1% FA		- 0.0194	
			0	B: ACN/H ₂ O (80:20		µg/mL	
				v/v) + 1% FA			
			<i>J</i>	v/v) + 1/0 1 A			
	AMI, DHSTR,	Honey	Acclaim Mixed-Mode	H ₂ O/ACN (80:20	ESI-MS/MS	LOQ: 0.002 –	[37]
	TOB, GEN (C1,		HILIC-1120 Å (150 x	v/v) + 0.1% FA		0.019 µg/g	
	C2/C2A, C1A)		4.6 mm), 5 μm				
ZIC-HILIC	SPC, STR, DHSTR,	Animal tissue	SeQuant ZIC-cHILIC	A: 200 mM $NH_4Ac$	ESI-MS/MS	LOQ:	[31]
	KAN, GEN (C1,	(muscle), milk	(100 x 2.1 mm), 3 µm	+ 2% FA	*with post-	0.00019 -	
	C2/C2A, C1A),			B: ACN + 2% FA	column	0.0025	
				D. AUN + $2\%$ FA	Columni		

	NEO, AMI				reagent	µg/mL		
					(MeOH and			
					NaAc)			
	STR, DHSTR,	Animal tissue	ZIC-HILIC (50 x 2.1	A: 175 mM NH ₄ FA	ESI-MS/MS	LOD: 0.002 –	[28]	
	KAN, GEN C1A,	(muscle), honey,	mm), 3.5 μm	+ 0.3% FA		0.030 μg/g	[=0]	
	SPC, AMI, TOB, SIS, PAR, NET,	milk		B: MeOH + 0.3%		LOQ: 0.007 –		
	HYG		2.9	FA		0.100 µg/g		
HypC(HILIC)	GEN (C1, C1A,	Fish tissue	Hypercarb (100 x 2.1	A: 5% NH ₄ OH	ESI-MS/MS	LOD: 0.010 –	[24]	
	C2/C2A/C2B)		mm), 5 μm	B: ACN		0.020 µg/g		

### 459 3. Alternative analytical techniques used in the determination of aminoglycosides

Liquid chromatography remains the gold standard in the determination of aminoglycosides in 460 a variety of matrices. However, its application often entails the use of relatively expensive 461 462 instruments and engagement of highly-trained personnel. While the same is true for certain capillary electrophoresis-based methods, such as CE-ESI-MS/MS, other emerging techniques, 463 464 such as the use of immunoassays and microfluidic devices, could facilitate the development of less expensive, portable tests. These are unlikely to match the capabilities and versatility of 465 466 the established LC-based methods in the near future, they could, however, greatly increase the access to AGs analyses, particularly in the farming and food processing industry and in 467 468 resource-scarce settings.

### 469 *Capillary electrophoresis*

Aminoglycosides tend to form complexes and ionic species in aqueous solutions. This makes 470 them suitable for electrophoretic separations. Capillary electrophoresis (CE) is a powerful 471 472 separation technique which has been successfully used for determination of this class of compounds. High resolving power is the most important advantage of CE, affordability of 473 474 instrumentation and relatively short separation times being less important. The biggest challenge in the use of CE is improving selectivity and detection sensitivity. In many cases 475 476 combining the high resolving power with sensitive and selective detection (e.g. MS) is difficult or not possible at all due to incompatibility of non-volatile buffers used in CE with 477 478 mass spectrometry. Furthermore, due to the very short lifetime of the columns (Huidobro et al. [48] suggested that the capillary should be changed after just 8 runs to ensure reproducible 479 480 results) seriously limits the sample throughput.

Capillary electrophoresis and liquid chromatography share almost the same set of 481 482 detectors, and therefore the same detection problems stemming from AGs properties are reported in the case of CE. The solutions to these problems are also similar. Derivatization 483 with o-phthalaldehyde (OPA) allows the use of FLD detection [49]. Another reagent, 6-484 carboxyfluorescein succinidyl ester (CFSE) can be used to detect kanamycin, bekanamycin 485 and paromomycin using laser-induced fluorescence detection (LIF) [50]. Direct UV detection 486 at  $195 \pm 5$  nm without [48] or after complexation with borates [51] as well as indirect UV 487 488 detection for the determination of AGs have been described [52]. However, the use of CE coupled with both direct and indirect UV detection plays a marginal role in the determination 489

490 of underivatized AGs due to relatively low sensitivity (LOD > 10  $\mu$ g/mL) of this detection 491 technique [48,51–53].

In order to analyse underivatized AGs with higher sensitivity, other types of detectors have to 492 be used, such as electrochemical detectors, in which case amperometric detectors (AD) with 493 transition metal electrodes like Cu and Ni are used [54,55]. The main problem associated with 494 CE-AD methods in AGs analysis is electrode fouling [56]. In general, due to poor Ni-495 electrodes stability, the use of Cu-based electrodes is preferred. Various electrode 496 modifications have been proposed to further improve CE-AD performance [56–58], e.g. the 497 use of Chemically modified copper electrode (Cu microparticle-modified carbon fiber 498 499 microdisk array electrode, Cu-CFE) which produced repeatable results and LOD values in the low microgram per millilitre range [59]. Very good results (LOD = 10 ng/mL) were also 500 501 reported by Mukhtar et al. [60] in a study in which CE was coupled with capacitively coupled contactless conductivity detection (C⁴D) to determine tobramycin in human plasma. The 502 503 popularity of CE-C⁴D methods is currently growing, mainly due to their flexibility as well as comprehensive nature towards all ionic analytes [61]. 504

505 The improvement of the capabilities of the analytical instrumentation in the past two decades drastically increased the application potential of CE in the determination of AGs. One 506 of the most promising approaches is the coupling of CE with highly-selective and sensitive 507 mass spectrometric detectors [62]. However, while it is possible in general, this solution does 508 509 not seem to be practical, at least at the moment. As already mentioned, bringing out the full potential of CE requires the use of non-volatile buffers which are incompatible with mass 510 511 spectrometry. Although the replacement of the said buffers with their volatile alternatives is possible, the resulting methodology would suffer either from low resolution or low sensitivity. 512 513 Up to now, only two reports describing the successful determination of AGs using CE-514 MS/MS instrumentation were published [63,64].

Alternatively, CE sensitivity could be improved by using various online preconcentration techniques such as field-enhanced sample injection (FESI) or field-amplified sample stacking (FASS) [49,55]. Long et al. [49] compared results of kanamycin determination (UV detection) with and without online FASS pre-concentration. The method sensitivity was twenty times higher using FASS. Ge et al. [55] used hyphenation of transient moving substitution boundary (MSB) with FESI for streptomycin, neomycin and kanamycin determination (AD detection). Application of online pre-concentration techniques improved

- 522 the sensitivity of the method by two to three orders of magnitude over those of previously
- reported CE-AD methods. CE methods for the determination of aminoglycoside antibiotics
- are summarized in Table 5.

MOST WIEDZY Downloaded from mostwiedzy.pl

525	Table 5. CE methods for the determination of aminoglycoside antibiotics.
-----	--------------------------------------------------------------------------

Method	Aminoglycoside	Matrix	Sample preparation	CE conditions	LOD/LOQ	Ref.
					Rec.	
CE-UV _{OPA} /	KAN	Human serum	WCX SPE;	Background buffer: 30 mM	CE-UV _{OPA}	[49]
FASS CE- UV _{OPA}			Pre-capillary derivatization with OPA and mercaptoacetic acid	borax + 16% v/v MeOH (pH = 10) Capillary: uncoated fused-	LOD: 2 µg/mL Rec. 90%	
			200	silica (42.5 cm x 50 μm ID)		
				Separation voltage: 23.5 kV Temperature: 20°C	FASS CE- UV _{OPA} :	
					LOD: 0.1 μg/mL Rec. 60%	
CE-Argon ion LIF _{CFSE}	KAN, BEK, TOB, PAR	Human plasma	Protein precipitation (ACN);	Background buffer: 30 mM sodium borate buffer (pH = 9)	LOD: 7 – 14 ng/mL	[50]
			Pre-capillary derivatization with CFSE	Capillary: fused silica capillary (50 cm x 50 μm ID)	Rec. 92 – 105%	

				Separation voltage: 8 kV		
				Temperature: N/A		
CE-UV _{direct}	STR, DHSTR	Standard	-	a) Option 1 – anodic mode:	LOD: 10 µg/mL	[51]
		solution		Background buffer: 160 mM		
				sodium tetraborate buffer (pH		
				= 9)		
				Capillary: uncoated fused		
				silica (90 cm x 50 μm ID)		
				Separation voltage: 18 kV		
				Temperature: 34°C		
				b) Option 2 – cathodic mode:		
				Background buffer: 75 mM		
				sodium tetraborate buffer and		
				0.5 mM		
				myristyltrimethylamonium		
				bromide (TTAB) (pH = 9)		
				Capillary: uncoated fused		
			40			

silica (90 cm x 50 µm ID)

Current: - 18 kV

Temperature: 34°C

CZE-UV _{direct}	NEO	Pharmaceutical	LLE with chloroform	Background buffer: 35 mM	Rec. 99.93%	[48]
		formulations		orto-phosphoric acid + 15 mM		
		(ointments)		acetic acid ( $pH = 4.7$ );		
				Capillary: polyacrylamide (30		
				cm x 50 μm ID)		
				Separation voltage: 20 kV		
				Temperature: 25°C		
CZE-UV _{indirect}	NEO, DHSTR, LIV,	Pharmaceutical	Addition of	Background buffer: 0.01 M	LOD: 10 –	[52]
	AMI, KAN, TOB,	formulations	cetyltrimethylammoniu	imidazole acetate + Fluorad®	$50 \ \mu g/mL$	
	SIS	(ear drops),	m bromide	FC 135 (pH = 5)		
		standard solution		Capillary: fused silica (67 cm x 50 μm ID)		
				Separation voltage: 12.5 kV		

Temperature:	N/A
--------------	-----

CE-AD	NET, TOB, LIN,	Pharmaceutical	-	Background buffer: 125 mM	LOD: 0.63 –	[59]
	KAN, AMI	formulation		NaOH	2.7 μg/mL	
		(injections)		Capillary: uncoated fused silica capillary (45 cm x 50 μm ID) Separation voltage: 6.2 kV Temperature: N/A	Rec. 91 – 99%	
FESI-MSB with CE-AD	STR, NEO, KAN	River water	C18 SPE Addition of 18-crown-6- tetracarboxylic acid (18C6H4)	Background buffer: 15 mM sodium tetraborate buffer + 55 mM NaOH + 10% ACN Concentration of 18C6H4 in pseudostationary phase: 150 mM Capillary: fused-silica (75 cm x 25 μm ID) Separation voltage: 17 kV	LOD: 0.35 – 4.3 ng/mL Rec. 87.7 – 106.3%	[55]
			42			

Temperature:	25°C
remperature.	10 0

CE-C ⁴ D	ТОВ	Human plasma	Dynamic mixed matrix	Background buffer: 200 mM	LOD: 10 ng/mL	[60]
			membrane tip extraction	acetic acid	Rec. 99.6 –	
				Capillary: fused base silica	99.9%	
				(55 cm x 50 μm ID)		
				Separation voltage: 25 kV		
				Temperature: N/A		
CE-C ⁴ D	AMI	Bronchial	Addition of urease	Background buffer: 30 mM	LOD:	[65]
		epithelial		malic acid + 10 mM 18-	0.14 µg/mL	
		lining fluid		Crown-6 + L-arginine (pH =	Rec. 100%	
				4.1)	Rec. 10070	
				Capillary: fused base silica		
				(65 cm x 75 µm ID)		
				Separation voltage: 30 kV		
				Temperature: 25°C		
Sheathless	AMI, PAR, HYG,	Milk	Protein precipitation	Background buffer: 10% v/v	LOQ: 0.67 µg/kg	[63]
CE-ESI-	APR, GEN C1		(TCA, NaCl, EDTA,	acetic acid	Rec. 76.2 –	

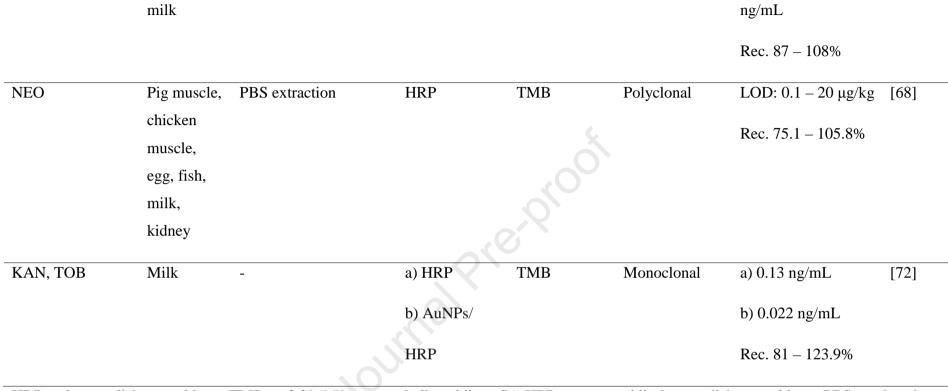
Dre proo	

MS/MS			NH ₄ Ac)	Capillary: bare fused silica	110.0%
			PWCX-SPE	(90 cm x 30 µm ID)	
				Separation voltage: 25 kV	
				Temperature: 25°C	
CE-ESI-	GEN (C1, C1A, C2),	Honey	MIP-SPE	Background buffer: 200 mM	LOD: 0.4 – [64]
MS/MS	NEO, APR, PAR,			formic acid + 7 mM	28.5 µg/kg
	DHSTR, SPC, STR			ammonium hydroxide (pH = $2.2$ )	Rec. 88.2 –
				2.2)	99.8%
				Capillary: bare fused-silica	
				(90 cm x 50 µm ID)	
				Separation voltage: 25 kV	
				Temperature: 25°C	

526

### 527 Immunological methods

Immunological methods, e.g. fluoroimmunoassay (FIA) [28], radioimmunoassay (RIA) [66], 528 as well as enzyme-linked immunosorbent assay (ELISA) [67,68], are characterized by high 529 sensitivity and LOD values in the range of few ng/mL, or even pg/mL when used for the 530 determination of AGs. However, due to their high sensitivity, false-positive results are 531 frequently obtained [69]. Additionally, low reproducibility of these methods makes them 532 suitable only for screening and semi-quantitative testing, which usually needs confirmation by 533 LC measurements [70]. Currently, the most often used immunological method in AGs 534 analytics is competitive ELISA, which can be realized as either indirect or direct competitive 535 ELISA. In both cases, the product of the enzymatic reaction is detected by spectrophotometric, 536 fluorescence or chemiluminescence measurement. 537


Direct competitive ELISA (DC-ELISA) procedures are usually less labour- and 538 resource-intensive and time-consuming than their IC-ELISA equivalents, however at the cost 539 of higher false-negative results and no signal amplification. For example, DC-ELISA method 540 541 for neomycin determination proposed by Jin et al. [71] guaranteed LOD = 2.73 ng/mL (for milk samples). In comparison, the equivalent IC-ELISA method developed by Xu et al. [67] 542 was characterized by LOD = 0.08 ng/mL. There are cases, however, when DC-ELISA 543 544 methods can be improved and perform at the same level as IC-ELISA ones. Jiang et al. [72] used horseradish peroxide-modified gold nanoparticles for determination of kanamycin and 545 546 tobramycin in milk. The LOD of the method was improved fivefold over the conventional DC-ELISA. 547

In general, the ELISA procedures are very sensitive and relatively easy to carry out, 548 even by untrained personnel, while the biggest problem associated with AGs determination 549 550 using this technique is the cross-reactivity (CR) phenomenon resulting in poor selectivity of the assay [73]. To avoid cross-reactivity, highly specific antibodies are required, which makes 551 the implementation of ELISA more expensive, complicated and time-consuming [74]. At 552 present researchers working with both IC-ELISA and DC-ELISA are focused on the 553 preparation of highly-selective antibodies to avoid or attenuate cross-reactivity of AGs. 554 555 Examples of ELISA-based methods for determination of AGs are provided in Table 6.

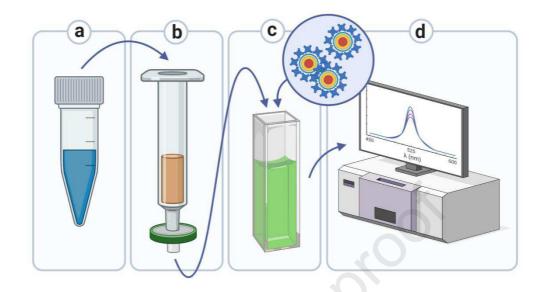
556

## 557 Table 6. ELISA-based methods for the determination of aminoglycoside antibiotics.

Aminoglycoside	Matrix	Sample preparation	Enzyme	Substrate	Antibody	LOD/LOQ	Ref.
						Rec.	
NEO	Milk	Protein precipitation	HRP	TMB	Polyclonal	LOD: 0.08 ng/mL	[67]
		(TCA)				Rec. 85 – 110%	
AMI	Milk	Protein precipitation	HRP	TMB/H ₂ O ₂	Polyclonal	LOD: 11.3 ng/mL	[70]
		(TCA)				Rec. 69.8 – 93.9%	
KAN	Milk,	Milk: centrifugation,	SA-HRP	TMB	Polyclonal	LOD: 0.07 ng/mL	[75]
	honey	addition of Na ₂ [Fe(CN) ₅ NO] $\cdot$ H ₂ O and ZnSO ₄ and deproteinization by centrifugation Honey: fat removing (PBS extraction)				Rec. 91.0 – 103.3%	
NEO	Rabbit	-	HRP	OPD	Monoclonal	LOD: 2.73 – 6.85	[71]
	plasma,						



HRP - horseradish peroxidase; TMB - 3,39,5,59-tetramethylbenzidine; SA-HPR - streptavidin-horseradish peroxidase; PBS - phosphate-558 buffered saline; OPD – o-phenylenediamine. 559


### 560 Spectrophotometric & spectrofluorimetric methods

561 Spectrophotometric and spectrofluorimetric methods can be used for the straightforward and 562 non-separative analysis of AGs. Due to the lack of selectivity, the application of these 563 methods is limited to the routine control of a single compound in e.g. pharmaceuticals 564 formulations. In general, analytical procedures include a derivatization step with various 565 reagents.

Although the vast majority of the spectroscopic methods used for AGs determination 566 relies on derivatization, there are few exceptions, such as the use of direct fluorimetry for 567 quick determination of apramycin in pharmaceuticals and milk samples [76]. Micelle-568 enhanced native apramycin fluorescence allowed to obtain sensitivity comparable with 569 methods in which derivatization was used. Ghodake et al. [77] used silver nanoparticle 570 (AgNP) probe coated with gallic acid for colourimetric determination of streptomycin in 571 water, serum and milk samples with LOD lower than 0.1 ng/mL. Ma et al. [78] determined 572 the tobramycin in milk and eggs samples with detection limits of 11 ng/mL using golden 573 574 nanoparticle (AuNP)/single-stranded DNA-based colourimetric sensors. Recently, methods employing fluorescent quantum dots (QD) sensing for AGs determination have been 575 developed. Some applications highlight the potential of QD-based procedures in selective 576 determination of particular AGs in relatively complex matrices, following MIP SPE 577 extraction (see Fig. 6) [79,80]. Furthermore, the development of miniaturized, AGs-specific 578 579 biosensors could be particularly useful in system automation, enabling on-line detection of contaminants. Tang et al. [45] developed an evanescent wave aptasensor based on target 580 581 binding facilitated fluorescence quenching (FQ-EWA) for such purpose. The selectivity towards a particular AG (kanamycin) was achieved using a fluorophore-labelled DNA 582 583 aptamer. Notably, the FQ-EWA was characterised by relatively high durability, enabling 584 more than 60 detection-regeneration cycles which showcases the application potential of AGs-specific biosensors, including electrochemical sensors, as discussed in the following 585 sub-section on electrochemical methods. 586

587 The colourimetric methods have potential to be developed into point-of-need methods 588 owing to the ongoing efforts to use them in conjunction with the ubiquitous smartphones, 589 which combine a convenient interface, detector (CCD camera), processing power and network 590 connectivity [81]. Such developments could greatly decrease the cost and increase the

- 591 availability of in-field AGs analysis. Examples of spectrophotometric and spectrofluorimetric
- methods for determination of AGs are shown in Table 7.



593

Fig. 6. Determination of kanamycin in vaccine samples based on its effect on the thioglycolic acid-CdTe quantum dots photoluminescence [79]. Aliquots of reconstituted vaccine samples (a) were loaded into an SPE cartridge coupled with a syringe filter and packed with kanamycin-MIP (b). After washing and elution with acidic water, the aliquots were added to a TGA-CdTe quantum dots dispersion probe (c) and the subsequent photoluminescence measurements were carried out using a luminescence spectrophotometer (d). Created with BioRender.com.

Method	Aminoglycoside	Matrix	Sample preparation	Type of optical reagent	LOD/LOQ Rec.	Ref.
Spectrophotometric	KAN	Pharmaceutical formulations (suspension)	01001	Vanillin $(\lambda = 404 \text{ nm})$	LOD: 1.24 µg/mL Rec. 100.13%	[82]
	KAN	Pharmaceutical formulations (suspension)		Eosin $(\lambda = 548 \text{ nm})$	LOD: 0.215 μg/mL Rec. 100.34%	[82]
	NEO	Pharmaceutical formulation (tablets)	-	Ninhydrin $(\lambda = 574 \text{ nm})$	LOD: 3.33 μg/mL Rec. 99.2 – 108.9%	[83]
	AMI	Pharmaceutical formulations (injections),	-	Chloranillic acid ( $\lambda = 524 \text{ nm}$ )	LOD: 6.49 μg/mL Rec. 94.44 –	[84]

Table 7. Spectrophotometric and spectrofluorimetric methods for the determination of aminoglycoside antibiotics.

		standard solution			106.4%	
	KAN	Pharmaceutical	-	Ascorbic acid	LOD: 8.58 – 9.6	[85]
	STR	formulations (injections), standard solution Water, serum, milk		$(\lambda = 390 \text{ and } 530 \text{ nm})$ Colorimetry with AgNP-gallic acid probe (ratio between peak intensity at $\lambda_1 = 560 \text{ nm}$ and $\lambda_2 = 400 \text{ nm}$ )	μg/mL Rec. 99.98 – 100.09% LOD: 0.02 – 0.1 ng/mL	[77]
Spectrophotometric/ spectrofluorimetric	SPC	Pharmaceutical formulations (vials), human plasma and urine	Plasma: Protein precipitation (ACN)	Benzofuran (colorimetry: $\lambda =$ 410 nm; fluorimetry: $\lambda_{em} =$ 530 nm; $\lambda_{ex} =$ 410 nm)	LOD: Colorimetry: 55 ng/mL Fluorimetry: 4.15 ng/mL	[86]

					Rec.	
					Colorimetry:	
					97.11%	
					Fluorimetry:	
					101.19%	
Spectrofluorimetric	NEO, TOB, KAN	Pharmaceutical	Tablets: grinding	Acetyloacetone and	LOD: 1.6 – 4.93	[87]
		formulations	and dissolving	formaldehyde –	ng/mL	
		(tablets, ointments,	Ointments: LLE	Hantzsch	Rec. 99.35 –	
		drops, syrup)	(chloroform)	condensation	100.3%	
				$(\lambda_{em} = 471 \text{ nm}; \lambda_{ex})$		
				= 410 nm)		
	AMI, TOB, NEO,	Pharmaceutical	LLE	Safaranin	LOD: 1.2 – 1.5	[88]
	GEN, KAN, STR	formulations	(chloroform)	$(\lambda_{em} = 545 - 570)$	pg/mL	
		(tablets, ointments,	Human plasma:	$(\lambda_{\rm em} = 545 - 576)$ nm; $\lambda_{\rm ex} = 519 - 524$	Rec. 99.2 –	
		drops, ampoule,	-			
		vial, syrup), human	protein	nm)	101.0%	
		plasma	precipitation			
		Prusina	(ACN)			

NEO, TOB, AMI,	Pharmaceutical	Plasma:	2-hydroxyl-1-	LOD: 10 ng/mL	[89]
KAN	formulations (injection tablets), human serum, human urine	Acidic protein precipitation (TCA) Urine: protein precipitation (MeOH)	naphthaldehyde ( $\lambda_{em} = 434 \text{ nm}; \lambda_{ex}$ = 366 nm)	Rec. 99.67 – 100.26%	
APR	Pharmaceutical formulations (powder), milk	Protein precipitation (ACN)	Inherent native fluorescence $(\lambda_{em} = 388 \text{ nm}; \lambda_{ex})$ = 335 nm)	LOD: 50 ng/mL Rec. 98.03 – 100.7 %	[76]
APR	Pharmaceutical formulations (powder), milk	Protein precipitation (ACN)	Micelle-enhanced method (enhancing the native fluorescence intensity using sodium dodecyl sulfate)	LOD: 20 ng/mL Rec. 98.10 – 101.40%	[76]

AMI	Human urine, river -	M	Iolecularly	LOD: 1.2 – 3	[8
	water	in	nprinted polymer	ng/mL	
		or	n fluorescent	Rec. 97.13 –	
		gr	aphitic carbon	101.3 %	
		) ni	tride quantum	101.3 %	
		do	ots		
		(λ	$\lambda_{\rm em} = 520 \text{ nm}; \lambda_{\rm ex}$		
		=	374 nm)		
	JIN				

602

### 603 Electrochemical methods

Aminoglycoside antibiotics can also be determined using a variety of electrochemical methods. While the reports on the use of more traditional techniques such as potentiometry or different flavours of voltammetry for AGs determination are rather scarce, a rising trend can be observed in employing these and other electrochemical sensing techniques in the construction of aptamer-based AGs biosensors (aptasensors).

609 Potentiometric determination of gentamycin and kanamycin was demonstrated employing an ion-selective electrode (ISE) constructed using plasticized membranes containing ionophores 610 611 based on ion pairs of both aminoglycosides with tetraphenylborate and Acid Chrome Black Special (ABS) [90]. LODs for gentamycin and kanamycin were in the range of 0.5 µg/mL and 612 selectivity constants (gentamycin/kanamycin) were close to unity. Such high values of 613 selectivity constants mean that the electrodes are completely nonselective which limits their 614 usage either to pharmaceutical formulations containing single AGs or to the measurement of 615 total gentamycin/kanamycin concentrations. A voltammetric sensor containing reduced 616 617 graphene oxide/graphene oxide hybrid modified electrode was used for the electrochemical 618 detection of tobramycin [91]. The linear response was observed in two concentration ranges:  $3.2 \div 23.4 \ \mu g/mL$  and  $23.4 \div 420.3 \ \mu g/mL$ . The LOD value was estimated at 0.9  $\mu g/mL$  and 619 620 the sensor was successfully used for determination of tobramycin in human saliva.

621 Electrochemical aptasensors are gaining more and more interest from the researchers working on easy, selective, quick and reagentless methods for AGs determination, more in line with 622 the stipulations of Green Analytical Chemistry than the more established methods. Briefly, 623 such sensors consist of an aptamer specific for the antibiotic of interest, bound to the surface 624 of the electrode. In the absence of antibiotic molecules, such sensor is in the 'off' state, 625 626 meaning that aptamer molecule/chain has some specific conformation and the sensor, as a 627 whole, has certain electrochemical properties. Introduction of the antibiotic molecules results 628 in their binding with aptamers leading to changes in their conformation and measurable changes in electrochemical properties of the sensor as a whole. Numerous reports describing 629 such aptasensors have been published in recent years. The body of literature on this topic is 630 too extensive for inclusion in this work, and so the reader interested in this topic is advised to 631 read one of the excellent reviews available, such as the comprehensive paper by Mehlhorn et 632 633 al. [92].

634 *Qualitative analysis* 

Quantitative methods involve aminoglycosides identification, confirmation of structures as 635 well as understanding the mechanisms of interactions, or transformations. The structural 636 configuration of AGs and characterization of interactions between AGs and RNA can be 637 obtained using nuclear magnetic resonance spectroscopy (NMR), in particular ¹⁵N-NMR, H-638 NMR and ¹³C-NRM [93–96]. Attempts to use X-ray diffraction spectroscopy for AGs 639 characterization have been made as early as the 1960s and 1970s. Due to their amorphous 640 structure and problems with producing diffraction-quality crystals, it can be realized only for 641 selected AGs (e.g. fortimicin) [97]. At present, X-ray crystallography is used to define types 642 643 of interactions and structures of crystal complexes of AGs with enzymes and RNA [98].

644 Several studies on structural analysis of AGs using mass spectrometry have also been 645 published. Mass spectrometry was applied to obtain information about interactions between 646 aminoglycosides and other substances (RNA and enzymes) [99,100], to investigate bacterial 647 resistance [101] and to study the structure after chemical modifications [102]. NMR, X-ray 648 diffraction spectroscopy and mass spectrometry provide important support for drug design 649 and bacterial resistance mechanisms investigations.

### 650 **4. Conclusions**

Aminoglycoside antibiotics are valuable antibacterial drugs employed in many areas of 651 human activity. They are effective against a number of microorganisms but must be used with 652 care due to their low therapeutic indices. Since they are relatively inexpensive, cases of 653 unlawful use of these drugs have been reported. Assuring proper food and drugs quality and 654 prevention of environmental pollution requires analytical tools suitable for food, drugs and 655 environmental samples control. Due to high polarity, polycationic character and lack of 656 chromophores, the determination of aminoglycosides is a challenging task both at the sample 657 preparation and final determination stages. The sample preparation step in the context of 658 659 aminoglycoside antibiotics determination depends heavily on the nature of the sample being analysed and the final determination technique. Protocols used in the analysis of 660 pharmaceuticals tend to be relatively straightforward and generally consist of dissolution, 661 662 filtration, defatting and derivatization before the actual measurement. The sample preparation workflows applied for food and environmental samples are usually much more elaborate due 663 to both complicated matrices and low levels of analytes concentration. Sample clean-up and 664 analytes preconcentration are conveniently achieved using solid-phase extraction technique. A 665 variety of sorbents can be used for this purpose, from the "traditional" reversed-phase (e.g. 666

667 C18 or C8) sorbents through hydrophilic-lipophilic balance, ion exchange, to molecularly 668 imprinted and magnetically active materials. While the selection of the particular sorbent type 669 is determined by the nature of analyte(s) and the final determination technique, molecularly 670 imprinted polymer-based materials seem to be the most promising due to their high selectivity 671 against aminoglycoside antibiotics.

672 Final determination step may be accomplished using a variety of techniques. In this context, liquid chromatography seems to be the most powerful tool due to the variety of 673 separation modes available and compatibility with several types of selective and sensitive 674 detectors, as evidenced by the body of literature on this topic. Non-separative techniques are 675 well suited for the determination of a single compound. Recent years have seen developments 676 in techniques such as bioassays, quantum dot-based colourimetric applications and 677 678 aptasensors. They show great potential in the development of low-cost, user-friendly point-ofneed tests which could greatly increase the access to AGs analysis. The demand for such 679 solutions might come from consumers who are increasingly aware of the dangers associated 680 with the ubiquitous presence of antibiotics in food and the environment. While the biosensors 681 682 for such prospective on-site screening tools show overall good specificity, they can fall short in this regard compared to the more conventional methods when analysing samples containing 683 multiple AGs. An interesting development could be the development of an array of different 684 biosensors, e.g. electrochemical aptasensors, akin to the holistic approaches used in electronic 685 noses and tongues, thus leveraging their partial selectivity using multivariate statistical 686 analysis and machine learning models. 687

Liquid chromatography coupled to a variety of detectors will likely remain the mainstay of qualitative and quantitative determination of AGs, especially in complex matrices and samples containing multiple antibiotics, and the avenues of research in this area are far from exhausted. However, in the view of the recent trends in which an emphasis is placed on the development of green and equitable (more ubiquitous and affordable) analytical techniques, the coming years will likely see exciting developments in the application of microfluidic devices and biosensors.

### 695 **References**

K.M. Krause, A.W. Serio, T.R. Kane, L.E. Connolly, Aminoglycosides: An Overview, Cold Spring Harb. Perspect. Med. 6 (2016) 1–18.

696

697

		Journal Pre-proof
698	[2]	D.A. Bohm, C.S. Stachel, P. Gowik, Confirmatory method for the determination of
699		streptomycin in apples by LC-MS/MS, Anal. Chim. Acta. 672 (2010) 103-106.
700		https://doi.org/10.1016/j.aca.2010.03.056.
701	[3]	J.B. Arsand, L. Jank, M.T. Martins, R.B. Hoff, F. Barreto, T.M. Pizzolato, C. Sirtori,
702		Determination of aminoglycoside residues in milk and muscle based on a simple and
703		fast extraction procedure followed by liquid chromatography coupled to tandem mass
704		spectrometry and time of flight mass spectrometry, Talanta. 154 (2016) 38-45.
705		https://doi.org/10.1016/j.talanta.2016.03.045.
706	[4]	N.C. Megoulas, M.A. Koupparis, Development and validation of a novel HPLC/ELSD
707		method for the direct determination of tobramycin in pharmaceuticals, plasma, and
708		urine, Anal. Bioanal. Chem. 382 (2005) 290-296. https://doi.org/10.1007/s00216-004-
709		2948-8.
710	[5]	European Medicines Agency, Reflection paper on use of aminoglycosides in animals in
711		the European Union: development of resistance and impact on human and animal
712		health, 44 (2017) 1-42. https://doi.org/EMA/755938/2012.
713	[6]	S. Jana, J.K. Deb, Molecular understanding of aminoglycoside action and resistance,
714		Appl. Microbiol. Biotechnol. 70 (2006) 140-150. https://doi.org/10.1007/s00253-005-
715		0279-0.
716	[7]	S. Garneau-Tsodikova, K.J. Labby, Mechanisms of resistance to aminoglycoside
717		antibiotics: overview and perspectives, Med. Chem. Commun. 7 (2016) 11-27.
718		https://doi.org/10.1039/c5md00344j.
719	[8]	N. Isoherranen, S. Soback, Chromatographic methods for analysis of aminoglycoside
720		antibiotics, J. AOAC. 82 (1999) 1017-1045.
721	[9]	European Commission, Commission regulation (EU) No.37/2010 of 22 December
722		2009: on pharmacologically active substances and their classification regarding
723		maximum residue limits in foodstuffs of animal origin, Off. J. Eur. Union. (2010) 1–72.
724	[10]	C. Pfeifer, G. Fassauer, H. Gerecke, T. Jira, Y. Remane, R. Frontini, J. Byrne, R.
725		Reinhardt, Purity determination of amphotericin B, colistin sulfate and tobramycin
726		sulfate in a hydrophilic suspension by HPLC, J. Chromatogr. B. 990 (2015) 7-14.
727		https://doi.org/10.1016/j.jchromb.2015.02.043.
		58

728	[11]	N.C. Megoulas, M.A. Koupparis, Enhancement of evaporative light scattering
729		detection in high-performance liquid chromatographic determination of neomycin
730		based on highly volatile mobile phase, high-molecular-mass ion-pairing reagents and
731		controlled peak shape, J. Chromatogr. A. 1057 (2004) 125-131.
732		https://doi.org/10.1016/j.chroma.2004.09.052.
733	[12]	F. Ianni, L. Pucciarini, A. Carotti, G. Saluti, S. Moretti, V. Ferrone, R. Sardella, R.
734		Galarini, B. Natalini, Hydrophilic interaction liquid chromatography of aminoglycoside
735		antibiotics with a diol-type stationary phase, Anal. Chim. Acta. 1044 (2018) 174-180.
736		https://doi.org/10.1016/j.aca.2018.08.008.
737	[13]	N.C. Megoulas, M.A. Koupparis, Development and validation of a novel LC/ELSD
738		method for the quantitation of gentamicin sulfate components in pharmaceuticals, J.
739		Pharm. Biomed. Anal. 36 (2004) 73–79. https://doi.org/10.1016/j.jpba.2004.05.018.
740	[14]	X. Wang, S. Yang, Y. Li, J. Zhang, Y. Jin, Z. Wen, Y. Zhang, J. Huang, P. Wang, C.
741		Wu, J. Zhou, Optimization and application of parallel solid-phase extraction coupled
742		with ultra-high performance liquid chromatography – tandem mass spectrometry for
743		the determination of 11 aminoglycoside residues in honey and royal jelly, J.
744		Chromatogr. A. 1542 (2018) 28-36. https://doi.org/10.1016/j.chroma.2018.02.029.
745	[15]	XJ. Chang, JD. Peng, SP. Liu, A simple and rapid high performance liquid
746		chromatographic method with fluorescence detection for the estimation of amikacin in
747		plasma application to preclinical pharmacokinetics, J. Chinese Chem. Soc. 57 (2010)
748		34-39. http://onlinelibrary.wiley.com/doi/10.1002/jccs.201000006/abstract.
749	[16]	CH. Feng, SJ. Lin, HL. Wu, SH. Chen, Trace analysis of tobramycin in human
750		plasma by derivatization and high-performance liquid chromatography with ultraviolet
751		detection, J. Chromatogr. B. 780 (2002) 349-354.
752		https://doi.org/http://dx.doi.org/10.1016/S1570-0232(02)00544-5.
753	[17]	Z. Wang, C. Xie, S. Yeung, J. Wang, M.S.S. Chow, Development of a simple and rapid
754		HPLC IMS/MS method for quantification of streptomycin in mice and its application
755		to plasma pharmacokinetic studies, Biomed. Chromatogr. 33 (2019) 1-8.
756		https://doi.org/10.1002/bmc.4408.
757	[18]	X. Zhang, J. Wang, Q. Wu, L. Li, Y. Wang, H. Yang, Determination of kanamycin by

		Lournal Dua nuasf
		Journal Pre-proof
758		high performance liquid chromatography, Molecules. 24 (2019) 1–24.
759	[19]	L. Chen, M. Mei, X. Huang, Development of multiple monolithic fiber solid-phase
760		microextraction and liquid chromatography-tandem mass spectrometry method for the
761		sensitive monitoring of aminoglycosides in honey and milk samples, J. Sep. Sci. 40
762		(2017) 4203-4212. https://doi.org/10.1002/jssc.201700795.
763	[20]	A. Posyniak, J. Zmudzki, J. Niedzielska, Sample preparation for residue determination
764		of gentamicin and neomycin by liquid chromatography, J. Chromatogr. A. 914 (2001)
765		59-66. https://doi.org/10.1016/S0021-9673(00)00980-8.
766	[21]	WX. Zhu, JZ. Yang, W. Wei, YF. Liu, SS. Zhang, Simultaneous determination of
767		13 aminoglycoside residues in foods of animal origin by liquid chromatography-
768		electrospray ionization tandem mass spectrometry with two consecutive solid-phase
769		extraction steps, J. Chromatogr. A. 1207 (2008) 29-37.
770		https://doi.org/10.1016/j.chroma.2008.08.033.
771	[22]	P. Kumar, A. Rúbies, R. Companyõ, F. Centrich, Determination of aminoglycoside
772		residues in kidney and honey samples by hydrophilic interaction chromatography-
773		tandem mass spectrometry, J. Sep. Sci. 35 (2012) 2710-2717.
774		https://doi.org/10.1002/jssc.201200344.
775	[23]	Z. Zhu, G. Liu, F. Wang, J.J. Sasanya, A. Cannavan, Development of a liquid
776		chromatography tandem mass spectrometric method for simultaneous determination of
777		15 aminoglycoside residues in porcine tissues, Food Anal. Methods. 9 (2016) 2587-
778		2599. https://doi.org/10.1007/s12161-016-0446-1.
779	[24]	X. Sun, Y. Yang, Q. Tian, D. Shang, J. Xing, Y. Zhai, Determination of gentamicin C
780		components in fish tissues through SPE-Hypercarb-HPLC-MS/MS, J. Chromatogr. B.
781		1093-1094 (2018) 167-173. https://doi.org/10.1016/j.jchromb.2018.07.011.
782	[25]	J. Wang, Q. Zhao, N. Jiang, W. Li, L. Chen, X. Lin, Z. Xie, L. You, Q. Zhang, Urea-
783		formaldehyde monolithic column for hydrophilic in-tube solid-phase microextraction
784		of aminoglycosides, J. Chromatogr. A. 1485 (2017) 24-31.
785		https://doi.org/10.1016/j.chroma.2017.01.027.
786	[26]	Y. Tao, D. Chen, H. Yu, L. Huang, Z. Liu, X. Cao, C. Yan, Y. Pan, Z. Liu, Z. Yuan,
787		Simultaneous determination of 15 aminoglycoside(s) residues in animal derived foods
		60

		Journal Pre-proof
788		by automated solid-phase extraction and liquid chromatography-tandem mass
789		spectrometry, Food Chem. 135 (2012) 676–683.
790		https://doi.org/10.1016/j.foodchem.2012.04.086.
791	[27]	MC. Savoy, P.M. Woo, P. Ulrich, A. Tarres, P. Mottier, A. Desmarchelier,
791	[27]	Determination of 14 aminoglycosides by LC-MS/MS using molecularly imprinted
793		polymer solid phase extraction for clean-up, Food Addit. Contam. Part A. 34 (2018)
794		675–686. https://doi.org/10.1080/19440049.2018.1433332.
731		078 000. https://doi.org/10.1000/19/10019.2010.11055552.
795	[28]	B. Yang, L. Wang, C. Luo, X. Wang, C. Sun, Simultaneous determination of 11
796		aminoglycoside residues in honey, milk, and pork by liquid chromatography with
797		tandem mass spectrometry and molecularly imprinted polymer solid phase extraction, J.
798		AOAC Int. 100 (2017) 1869–1878. https://doi.org/10.5740/jaoacint.16-0399.
799	[29]	G. Saluti, I. Diamanti, D. Giusepponi, L. Pucciarini, R. Rossi, S. Moretti, R. Sardella,
800		Simultaneous determination of aminoglycosides and colistins in food, Food Chem. 266
801		(2018) 9–16. https://doi.org/10.1016/j.foodchem.2018.05.113.
802	[30]	Y. Wang, S. Ji, F. Zhang, F. Zhang, B. Yang, X. Liang, A polyvinyl alcohol-
803		functionalized sorbent for extraction and determination of aminoglycoside antibiotics
804		in honey, J. Chromatogr. A. 1403 (2015) 32-36.
805		https://doi.org/10.1016/j.chroma.2015.05.032.
806	[31]	D. Asakawa, M. Uemura, T. Sakiyama, T. Yamano, Sensitivity enhancement of
807		aminoglycosides in hydrophilic interaction liquid chromatography with tandem mass
808		spectrometry by post-column addition of trace sodium acetate in methanol, Food Addit.
809		Contam. Part A. 35 (2017) 1116–1126.
810		https://doi.org/10.1080/19440049.2017.1388543.
811	[32]	N. Liu, F. Dong, J. Xu, X. Liu, Y. Zheng, Determination of aminoglycoside fungicide
812		Validamycin A in rice plant by Quick, Easy, Cheap, Effective, Rugged, and Safe
813		approach using ultra high performance liquid chromatography-electrospray ionization-
814		tandem mass spectrometry, Food Anal. Methods. 9 (2016) 1736-1744.
815		https://doi.org/10.1007/s12161-015-0354-9.
816	[33]	Á. Tölgyesi, E. Barta, M. Sohn, V.K. Sharma, Determination of antimicrobial residues
817		in honey by liquid chromatography tandem mass spectrometry, Food Anal. Methods.

		Journal Pre-proof
818		11 (2018) 2043–2055.
819	[34]	D. Moreno-González, A.M. Hamed, A.M. García-Campaña, L. Gámiz-Garcia,
820		Evaluation of hydrophilic interaction liquid chromatography – tandem mass
821		spectrometry and extraction with molecularly imprinted polymers for determination of
822		aminoglycosides in milk and milk-based functional foods, Talanta. 171 (2017) 74-80.
823		https://doi.org/10.1016/j.talanta.2017.04.062.
824	[35]	Z. Zhang, X. Cao, Z. Zhang, J. Yin, D. Wang, Y. Xu, W. Zheng, X. Li, Q. Zhang, L.
825		Liu, Synthesis of dummy-template molecularly imprinted polymer adsorbents for solid
826		phase extraction of aminoglycosides antibiotics from environmental water samples,
827		Talanta. 208 (2020) 120385. https://doi.org/10.1016/j.talanta.2019.120385.
828	[36]	D. Li, T. Li, L. Wang, S. Ji, A polyvinyl alcohol-coated core-shell magnetic
829		nanoparticle for the extraction of aminoglycoside antibiotics residues from honey
830		samples, J. Chromatogr. A. 1581–1582 (2018) 1–7.
831		https://doi.org/10.1016/j.chroma.2018.10.048.
832	[37]	M.D. Contin, J.E. Quinsaat, R.M. Negri, V.P. Tripodi, D. Opris, N.B. D'Accorso,
833		Development of carbohydrate functionalized magnetic nanoparticles for
834		aminoglycosides magnetic solid phase extraction, Anal. Chim. Acta. 1082 (2019) 37-
835		48. https://doi.org/10.1016/j.aca.2019.07.038.
836	[38]	Q. Liu, J. Li, X. Song, M. Zhang, E. Li, F. Gao, L. He, Simultaneous determination of
837	[50]	aminoglycoside antibiotics in feeds using high performance liquid chromatography
838		with evaporative light scattering detection, R. Soc. Chem. 7 (2017) 1251–1259.
839		https://doi.org/10.1039/c6ra26581b.
840	[39]	B. Blanchaert, E. Poderós Jorge, P. Jankovics, E. Adams, A. Van Schepdael, Assay of
841		kanamycin A by HPLC with direct UV detection, Chromatographia. 76 (2013) 1505-
842		1512. https://doi.org/10.1007/s10337-013-2440-8.
843	[40]	B. Blanchaert, S. Huang, K. Wach, E. Adams, A. Van Schepdael, Assay development
844		for aminoglycosides by HPLC with direct UV detection, J. Chromatogr. Sci. 55 (2017)
845		197-204. https://doi.org/10.1093/chromsci/bmw169.
846	[41]	H. Fabre, M. Sekkat, M.D. Blanchin, B. Mandrou, Determination of aminoglycosides
847		in pharmaceutical formulations - II. High-performance liquid chromatography, J.
		62

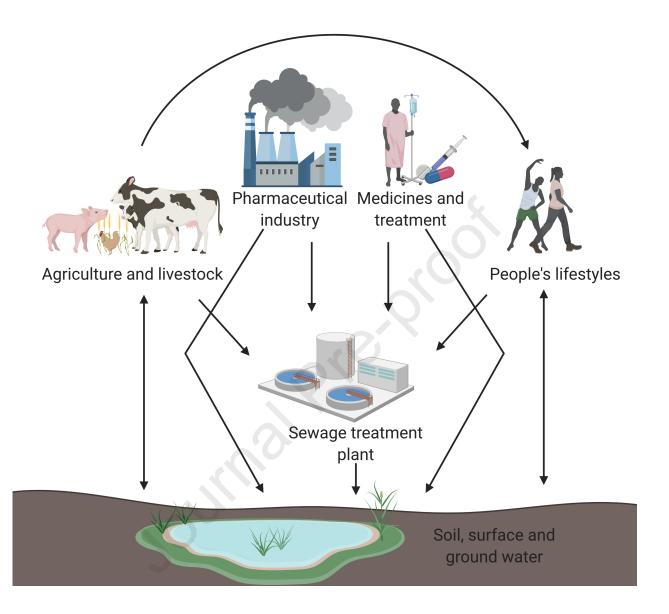
# MOST WIEDZY Downloaded from mostwiedzy.pl

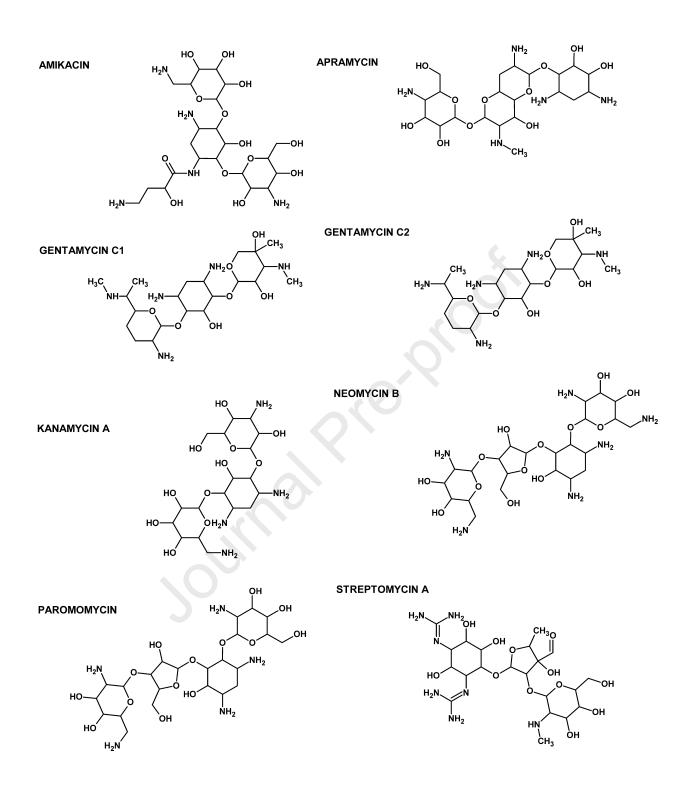
		Journal Pre-proof
848		Pharm. Biomed. Anal. 7 (1989) 1711–1718. https://doi.org/10.1016/0731-
849		7085(89)80185-2.
850	[42]	L. Elrod, L.B. White, C.F. Wong, Determination of fortimicin A sulfate by high-
851		performance liquid chromatography after derizatization with 2,4-dinitrofluorobenzene,
852		J. Chromatogr. 208 (1981) 357–363.
853	[43]	R. Tawa, H. Matsunaga, T. Fujimoto, High-performance liquid chromatographic
854		analysis of aminoglycoside antibiotics, J. Chromatogr. A. 812 (1998) 141-150.
855	[44]	F. Sar, P. Leroy, A. Nicolas, P. Archimbault, G. Ambroggi, Determination of amikacin
856		in dog plasma by reversed-phase ion-pairing liquid chromatography by postcolumn
857		derivatization, Anal. Lett. 25 (1992) 1235–1250.
858		https://doi.org/10.1080/00032719208016125.
859	[45]	Y. Tang, C. Gu, C. Wang, B. Song, X. Zhou, X. Lou, M. He, Evanescent wave
860		aptasensor for continuous and online aminoglycoside antibiotics detection based on
861		target binding facilitated fluorescence quenching, Biosens. Bioelectron. 102 (2018)
862		646-651. https://doi.org/10.1016/j.bios.2017.12.006.
863	[46]	S. Mokh, K. El Hawari, R. Nassar, H. Budzinski, M. Al Iskandarani, Optimization of a
864		solid phase extraction method for the determination of 12 aminoglycosides in water
865		samples using LC-ESI-MS/MS, Chromatographia. 78 (2015) 631–640.
866		https://doi.org/10.1007/s10337-015-2877-z.
867	[47]	Merck Millipore, ZIC®-cHILIC HPLC and LC-MS Columns, (n.d.).
868		https://www.merckmillipore.com/PL/pl/products/analytics-sample-
869		prep/chromatography-for-analysis/analytical-hplc/sequant-zic-hilic-hplc-
870		columns/sequant-zic-chilic/KFeb.qBCsAAAE_RJ3.Lxj,nav (accessed May 25,
871		2020).
872	[48]	A.L. Huidobro, A. García, C. Barbas, Rapid analytical procedure for neomycin
873		determination in ointments by CE with direct UV detection, J. Pharm. Biomed. Anal.
874		49 (2009) 1303–1307. https://doi.org/10.1016/j.jpba.2009.03.005.
875	[49]	Y.H. Long, M. Hernandez, E. Kaale, A. Van Schepdael, E. Roets, F. Borrull, M. Calull,
876		J. Hoogmartens, Determination of kanamycin in serum by solid-phase extraction, pre-
877		capillary derivatization and capillary electrophoresis, J. Chromatogr. B Anal. Technol.
		63

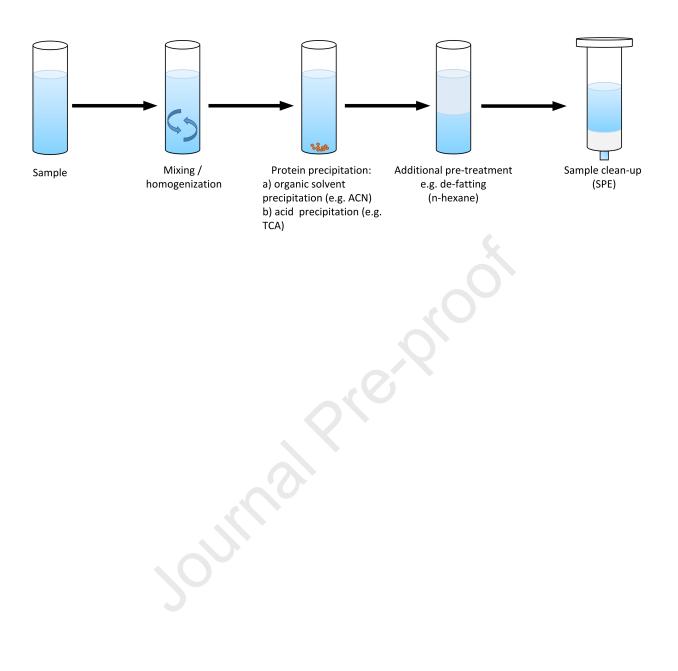
		Journal Pre-proof
878		Biomed. Life Sci. 784 (2003) 255–264. https://doi.org/10.1016/S1570-0232(02)00804-
879		8.
880	[50]	Y.F. Lin, Y.C. Wang, S.Y. Chang, Capillary electrophoresis of aminoglycosides with
881		argon-ion laser-induced fluorescence detection, J. Chromatogr. A. 1188 (2008) 331-
882		333. https://doi.org/10.1016/j.chroma.2008.01.088.
883	[51]	C.L. Flurer, The analysis of aminoglycoside antibiotics by capillary electrophoresis, J.
884		Pharm. Biomed. Anal. 13 (1995) 809–816. https://doi.org/10.1016/0731-
885		7085(95)01502-C.
886	[52]	M.T. Ackermans, F.M. Everaerts, J.L. Beckers, Determination of aminoglycoside
887		antibiotics in pharmaceuticals by capillary zone electrophoresis with indirect UV
888 889		detection coupled with micellar electrokinetic capillary chromatography, J. Chromatogr. A. 606 (1992) 228–235. https://doi.org/10.1016/0021-9673(92)87029-8.
890 891	[53]	<ul><li>D.A. Stead, Current methodologies for the analysis of aminoglycosides, J. Chromatogr.</li><li>B Biomed. Sci. Appl. 747 (2000) 69–93. https://doi.org/10.1016/S0378-</li></ul>
891		4347(00)00133-X.
	[5/1]	V Fong I Vo V Fong Determination of polyhydroxy ontihiotics by conillary zono
893 894	[54]	X. Fang, J. Ye, Y. Fang, Determination of polyhydroxy antibiotics by capillary zone electrophoresis with amperometric detection at a nickel electrode, Anal. Chim. Acta.
895		329 (1996) 49–55. https://doi.org/10.1016/0003-2670(96)00092-X.
896	[55]	S. Ge, W. Tang, R. Han, Y. Zhu, Q. Wang, P. He, Y. Fang, Sensitive analysis of
897		aminoglycoside antibiotics via hyphenation of transient moving substitution boundary
898		with field-enhanced sample injection in capillary electrophoresis, J. Chromatogr. A.
899		1295 (2013) 128–135. https://doi.org/10.1016/j.chroma.2013.04.049.
900	[56]	P.D. Voegel, R.P. Baldwin, Electrochemical detection in capillary electrophoresis,
901		Electrophoresis. 18 (1997) 2267–2278. https://doi.org/10.1002/elps.1150181217.
902	[57]	P.D. Voegel, R.P. Baldwin, Evaluation of Copper-Based Electrodes for the Analysis of
903		Aminoglycoside Antibiotics by CE-EC, Electroanalysis. 9 (1997) 1145–1151.
904		https://doi.org/10.1002/elan.1140091502.
905	[58]	Y. Ding, L. Bai, X. Suo, X. Meng, Post separation adjustment of pH to enable the
906		analysis of aminoglycoside antibiotics by microchip electrophoresis with amperometric
		64

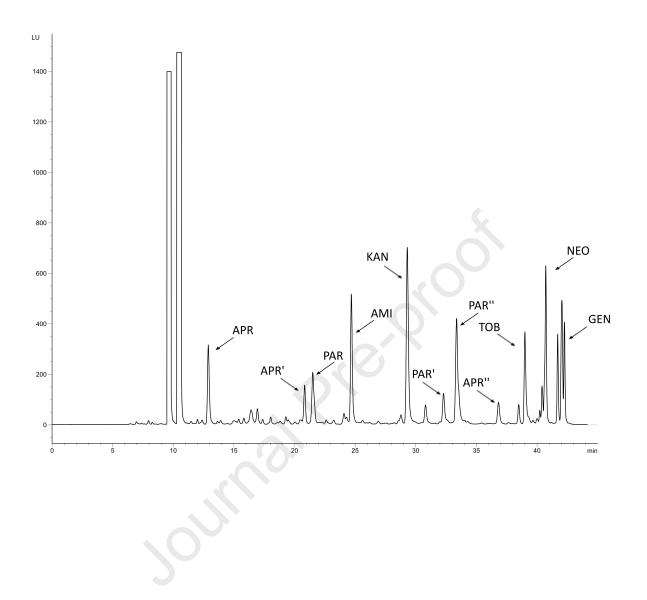
		Journal Fre-proof
907		detection, Electrophoresis. 33 (2012) 3245-3253.
908		https://doi.org/10.1002/elps.201200309.
909	[59]	W.C. Yang, A.M. Yu, H.Y. Chen, Applications of a copper microparticle-modified
910		carbon fiber microdisk array electrode for the simultaneous determination of
911		aminoglycoside antibiotics by capillary electrophoresis, J. Chromatogr. A. 905 (2001)
912		309-318. https://doi.org/10.1016/S0021-9673(00)00985-7.
913	[60]	N.H. Mukhtar, N.A. Mamat, H.H. See, Monitoring of tobramycin in human plasma via
914		mixed matrix membrane extraction prior to capillary electrophoresis with contactless
915		conductivity detection, J. Pharm. Biomed. Anal. 158 (2018) 184–188.
916		https://doi.org/10.1016/j.jpba.2018.05.044.
917	[61]	P. Paul, C. Sänger-van de Griend, E. Adams, A. Van Schepdael, Recent advances in
918		the capillary electrophoresis analysis of antibiotics with capacitively coupled
919		contactless conductivity detection, J. Pharm. Biomed. Anal. 158 (2018) 405-415.
920		https://doi.org/10.1016/j.jpba.2018.06.033.
921	[62]	Y. Jiang, M.Y. He, W.J. Zhang, P. Luo, D. Guo, X. Fang, W. Xu, Recent advances of
922		capillary electrophoresis-mass spectrometry instrumentation and methodology, Chinese
923		Chem. Lett. 28 (2017) 1640–1652. https://doi.org/10.1016/j.cclet.2017.05.008.
924	[63]	Y. Yu, Y. Liu, W. Wang, Y. Jia, G. Zhao, X. Zhang, H. Chen, Y. Zhou, Highly
925		sensitive determination of aminoglycoside residues in food by sheathless CE-ESI-
926		MS/MS, Anal. Methods. 11 (2019) 5064–5069. https://doi.org/10.1039/c9ay01728c.
927	[64]	D. Moreno-Gonzalez, F.J. Lara, N. Jurgovska, L. Gamiz-Gracia, A.M. Gracia-
928		Campana, Determination of aminoglycosides in honey by capillary electrophoresis
929		tandem mass spectrometry and extraction with molecularly imprinted polymers, Anal.
930		Chim. Acta. 891 (2015) 321–328. https://doi.org/10.1016/j.aca.2015.08.003.
931	[65]	M.N. El-Attug, S. Chopra, R.L. Dhulipalla, K. Allegaert, A. Smits, A. Van Schepdael,
932		E. Adams, Development and validation of a chromatographic and electrophoretic
933		method for the determination of amikacin and urea in bronchial epithelial lining fluid,
934		Chromatographia. 75 (2012) 761–766. https://doi.org/10.1007/s10337-012-2249-x.
935	[66]	C.D. Ashby, J.E. Lewis, J.C. Nelson, Measurement of three aminoglycoside antibiotics
936		with a single radioimmunoassay system, Clin. Chem. 24 (1978) 1734–1737.
		65

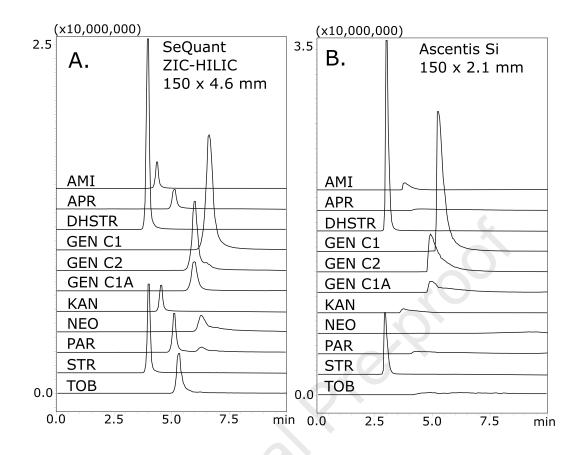
		Journal Pre-proof
937	[67]	N. Xu, C. Qu, W. Ma, L. Xu, L. Liu, H. Kuang, C. Xu, Development and application of
938		one-step ELISA for the detection of neomycin in milk, Food Agric. Immunol. 22 (2011)
939		259-269. https://doi.org/10.1080/09540105.2011.569882.
940	[68]	S. Wang, B. Xu, Y. Zhang, J.X. He, Development of enzyme-linked immunosorbent
941		assay (ELISA) for the detection of neomycin residues in pig muscle, chicken muscle,
942		egg, fish, milk and kidney, Meat Sci. 82 (2009) 53-58.
943		https://doi.org/10.1016/j.meatsci.2008.12.003.
944	[69]	Y.F. Tian, G.H. Chen, L.H. Guo, X. Guo, X.Y. Mei, Methodology studies on detection
945		of aminoglycoside residues, Food Anal. Methods. 8 (2015) 1842-1857.
946		https://doi.org/10.1007/s12161-014-0067-5.
947	[70]	Y. Chen, Q. Chen, L. He, B. Shang, L. Zhang, Enzyme immunoassay and liquid
948		chromatography-fluorescence detection for amikacin in raw milk, Food Chem. 135
949		(2012) 380-385. https://doi.org/10.1016/j.foodchem.2012.05.001.
950	[71]	Y. Jin, J.W. Jang, M.H. Lee, C.H. Han, Development of ELISA and
951		immunochromatographic assay for the detection of neomycin, Clin. Chim. Acta. 364
952		(2006) 260–266. https://doi.org/10.1016/j.cca.2005.07.024.
953	[72]	L. Jiang, D. Wei, K. Zeng, J. Shao, F. Zhu, D. Du, An enhanced direct competitive
954		immunoassay for the detection of kanamycin and tobramycin in milk using
955		multienzyme-particle amplification, Food Anal. Methods. 11 (2018) 2066–2075.
956		https://doi.org/10.1007/s12161-018-1185-2.
957	[73]	J.X. Wu, S.E. Zhang, X.P. Zhou, Monoclonal antibody-based ELISA and colloidal
958		gold-based immunochromatographic assay for streptomycin residue detection in milk
959		and swine urine, J. Zhejiang Univ. Sci. B. 11 (2010) 52-60.
960		https://doi.org/10.1631/jzus.B0900215.
961	[74]	C. Li, Y. Zhang, S.A. Eremin, O. Yakup, G. Yao, X. Zhang, Detection of kanamycin
962		and gentamicin residues in animal-derived food using IgY antibody based ic-ELISA
963		and FPIA, Food Chem. 227 (2017) 48-54.
964		https://doi.org/10.1016/j.foodchem.2017.01.058.
965	[75]	P. Su, X. Chen, Z. He, Y. Yang, Preparation of polyclonal antibody and development
966		of a biotin-streptavidin-based ELISA method for detecting kanamycin in milk and
		66

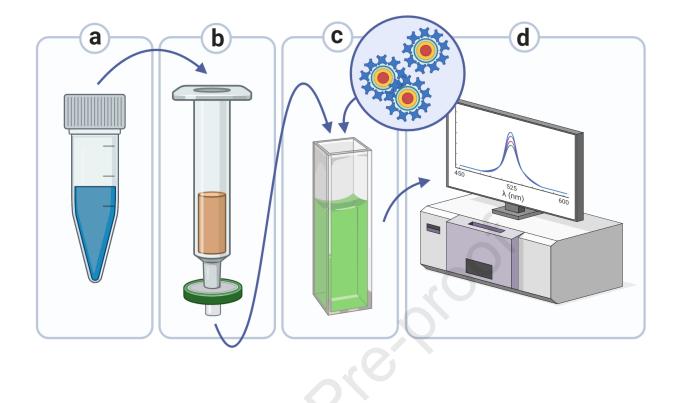

		Journal Pre-proof
967		honey, Chem. Res. Chinese Univ. 33 (2017) 876–881. https://doi.org/10.1007/s40242-
968		017-7168-9.
969	[76]	M.M. Mabrouk, H.A.M. Noureldin, I.H.A. Badr, A.H.K. Saad, Simple
970		spectrofluorimetric methods for determination of veterinary antibiotic drug (apramycin
971		sulfate) in pharmaceutical preparations and milk samples, Spectrochim. Acta - Part A
972		Mol. Biomol. Spectrosc. 224 (2020) 117395. https://doi.org/10.1016/j.saa.2019.117395.
973	[77]	G. Ghodake, S. Shinde, R.G. Saratale, A. Kadam, G.D. Saratale, A. Syed, N. Marraiki,
974		A.M. Elgorban, D.Y. Kim, Silver nanoparticle probe for colorimetric detection of
975		aminoglycoside antibiotics: picomolar-level sensitivity toward streptomycin in water,
976		serum, and milk samples, J. Sci. Food Agric. 100 (2020) 874-884.
977		https://doi.org/10.1002/jsfa.10129.
978	[78]	Q. Ma, Y. Wang, J. Jia, Y. Xiang, Colorimetric aptasensors for determination of
979		tobramycin in milk and chicken eggs based on DNA and gold nanoparticles, Food
980		Chem. 249 (2018) 98–103. https://doi.org/10.1016/j.foodchem.2018.01.022.
981	[79]	S. Khan, E.M. Miguel, C.F. de Souza, A.R. da Silva, R.Q. Aucélio, Thioglycolic acid-
982		CdTe quantum dots sensing and molecularly imprinted polymer based solid phase
983		extraction for the determination of kanamycin in milk, vaccine and stream water
984		samples, Sensors Actuators B. Chem. 246 (2017) 444-454.
985		https://doi.org/10.1016/j.snb.2017.02.117.
986	[80]	J. Hassanzadeh, B.R. Moghadam, A. Sobhani-Nasab, F. Ahmadi, M. Rahimi-Nasrabadi,
987		Specific fluorometric assay for direct determination of amikacin by molecularly
988		imprinting polymer on high fluorescent g-C3N4 quantum dots, Spectrochim. Acta -
989		Part A Mol. Biomol. Spectrosc. 214 (2019) 451-458.
990		https://doi.org/10.1016/j.saa.2019.02.067.
991	[81]	A. Roda, E. Michelini, M. Zangheri, M. Di Fusco, D. Calabria, P. Simoni, Smartphone-
992		based biosensors: A critical review and perspectives, TrAC - Trends Anal. Chem. 79
993		(2016) 317-325. https://doi.org/10.1016/j.trac.2015.10.019.
994	[82]	M.M. Elnaggar, D.A. Gawad, T.S. Belal, Green simple spectrophotometric methods for
995		determination of kanamycin sulfate using eosin and vanillin reagents, Anal. Chem. Lett.
996		9 (2019) 634–648. https://doi.org/10.1080/22297928.2019.1696700.
		67


		Journal Pre-proof
997	[83]	K.F. Alsamarrai, M.A. Al-Abbasi, E.T. Alsamarrai, Spectrophotometric determination
998		of neomycin sulphate in tablets from via reaction with ninhydrin reagent, Int. J. Res.
999		Pharmeceutical Sci. 10 (2019) 1392–1396.
1000	[84]	G. Surya Teja, B.M. Gurupadayya, K. Venkata Sairam, Spectrophotometric method for
1001		the determination of amikacin pure and prahrmaceutical dosage form, Pak. J. Pharm.
1002		Sci. 10 (2018) 38–42.
1003	[85]	M.A. Hussien, M.E. Adam, S.W. Shantier, E.A.E. Garalnabi, E.A. Gadkariem,
1004		Development and validation of colorimetric method for the quantitative analysis of
1005		kanamycin in bulk and pharmaceutical formulation, J. Appl. Pharm. Sci. 7 (2017) 163-
1006		167. https://doi.org/10.7324/JAPS.2017.70424.
1007	[86]	S.A. Hussein, B.I. Salman, M.F.B. Ali, M.A. Marzouq, Development of sensitive
1008		benzofurazan-based spectrometric methods for analysis of spectinomycin in vials and
1009		human biological samples, Luminescence. 34 (2019) 895–902.
1010		https://doi.org/10.1002/bio.3688.
1011	[87]	M.A. Omar, H.M. Ahmed, M.A. Hammad, S.M. Derayea, Validated
1012		spectrofluorimetric method for determination of selected aminoglycosides,
1013		Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 135 (2015) 472-478.
1014		https://doi.org/10.1016/j.saa.2014.07.020.
1015	[88]	M.A. Omar, D.M. Nagy, M.A. Hammad, A.A. Aly, Highly sensitive
1016		spectrofluorimetric method for determination of certain aminoglycosides in
1017		pharmaceutical formulations and human plasma, Am. Assoc. Pharm. Sci. 14 (2013)
1018		828-837. https://doi.org/10.1208/s12249-013-9969-6.
1019	[89]	Y. El-Shabrawy, Fluorimetric determination of aminoglycoside antibiotics in
1020		pharmaceutical preparations and biological fluids, Spectrosc. Lett. 35 (2002) 99-109.
1021		https://doi.org/10.1081/SL-120013136.
1.022	[90]	E.G. Kulapina, V. V Baraguzina, O.I. Kulapina, Rapid Potentiometric Determination of
.023		Aminoglycoside Antibiotics in Drug Dosage Forms and Biological Fluids Using Ion-
.024		Selective Electrodes 1, 2005.
.025	[91]	M. Hadi, T. Mollaei, Reduced graphene oxide/graphene oxide hybrid-modified
.026		electrode for electrochemical sensing of tobramycin, Chem. Pap. 73 (2019) 291–299.
		68


		Journal Pre-proof
1027		https://doi.org/10.1007/s11696-018-0578-4.
1028	[92]	A. Mehlhorn, P. Rahimi, Y. Joseph, Aptamer-Based Biosensors for Antibiotic
1029		Detection: A Review, Biosensors. 8 (2018) 54. https://doi.org/10.3390/bios8020054.
1030	[93]	K. Kotani, M. Matsumura, Y. Morita, J. Tomida, R. Kutsuna, K. Nishino, S. Yasuike,
1031		Y. Kawamura, 13-(2-methylbenzyl) berberine is a more potent inhibitor of MexXY-
1032		dependent aminoglycoside resistance than berberine, Antibiotics. 8 (2019) 212-224.
1033		https://doi.org/10.3390/antibiotics8040212.
1034	[94]	S.G. Zárate, A. Bastida, A.G. Santana, J. Revuelta, Synthesis of ring II/III fragment of
1035		kanamycin: a new minimum structural motif for aminoglycoside recognition,
1036		Antibiotics. 8 (2019) 1-11. https://doi.org/10.3390/antibiotics8030109.
1037	[95]	L. Zimmermann, I. Das, J. Désiré, G. Sautrey, R.S. Vinicius Barros, M. El Khoury,
1038		M.P. Mingeot-Leclercq, J.L. Décout, New broad-spectrum antibacterial amphiphilic
1039		aminoglycosides active against resistant bacteria: from neamine derivatives to smaller
1040		neosamine analogues, J. Med. Chem. 59 (2016) 9350-9369.
1041		https://doi.org/10.1021/acs.jmedchem.6b00818.
1042	[96]	C.M. Barbieri, D.S. Pilch, Complete thermodynamic characterization of the multiple
1043		protonation equilibria of the aminoglycoside antibiotic paromomycin: A calorimetric
1044		and natural abundance 15N NMR study, Biophys. J. 90 (2006) 1338–1349.
1045		https://doi.org/10.1529/biophysj.105.075028.
1046	[97]	N. Hirayama, K. Shirahata, Y. Ohashi, Y. Sasada, J.R. Martin, Structure of fortimicin
1047		B, Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 34 (1978) 2648–2650.
1048		https://doi.org/10.1107/s0567740878008869.
1049	[98]	C. Semper, P. Stogios, D. Meziane Cherif, E. Evdokimova, P. Courvalin, A.
1050		Savchenko, Structural characterization of aminoglycoside $4' \Box O \Box$ adenylyltransferase
1051		ANT(4')□IIb from Pseudomonas aeruginosa, Protein Sci. (2020) 1–10.
1052		https://doi.org/10.1002/pro.3815.
.053	[99]	R.H. Griffey, S.A. Hofstadler, K.A. Sannes-Lowery, D.J. Ecker, S.T. Crooke,
.054		Determinants of aminoglycoside-binding specificity for rRNA by using mass
.055		spectrometry, Proc. Natl. Acad. Sci. U. S. A. 96 (1999) 10129-10133.
.056		https://doi.org/10.1073/pnas.96.18.10129.
		69


	Journal Pre-proof
1057 1058 1059 1060	[100] J.J. Perez, C.Y. Chen, Rapid detection and quantification of aminoglycoside phosphorylation products using direct-infusion high-resolution and ultra-high- performance liquid chromatography/mass spectrometry, Rapid Commun. Mass Spectrom. 32 (2018) 1822–1828. https://doi.org/10.1002/rcm.8241.
1061 1062 1063 1064	[101] L. Fan, M. Ke, M. Yuan, J. Pu, J. Li, J. Lu, J. Xu, M. Zhang, W. Xu, Rapid determination of bacterial aminoglycoside resistance in environmental samples using membrane electrospray ionization mass spectrometry, Rapid Commun. Mass Spectrom. 30 (2016) 202–207. https://doi.org/10.1002/rcm.7648.
1065 1066 1067	[102] E. Kaale, C. Govaerts, J. Hoogmartens, A. Van Schepdael, Mass spectrometric study to characterize thioisoindole derivatives of aminoglycoside antibiotics, Rapid Commun. Mass Spectrom. 19 (2005) 2918–2922. https://doi.org/10.1002/rcm.2152.
1068	
1069	
1070	
1071	
1072	
1073	
1074	
1075	
1076	
1077	
1078	
.079	
.080	
.081	
	70


	Journal Pre-proof
1082	
1083	
1004	
1084	Figure captions
1085	
1086	
1087	• Fig. 1. Mobility of aminoglycoside antibiotics in the environment. Created with
1088	BioRender.com.
1089	• Fig. 2. Structures of selected aminoglycoside antibiotics.
1090	• Fig. 3. Generalised scheme of sample treatment for subsequent determination of
1091	aminoglycosides.
1092	• Fig. 4. Example of a chromatogram after derivatization of AGs mixture with FMOC;
1093	APR – apramycin, PAR – paromomycin, AMI – amikacin, KAN – kanamycin, TOB –
1094	tobramycin, NEO – neomycin, GEN – gentamycin.
1095	• Fig. 5. Comparison of chromatographic separation of 11 AGs under HILIC conditions
1096	using SeQuant ZIC-HILIC (A) and Ascentis Si (B) LC columns; AMI – amikacin,
1097	APR – apramycin, DHSTR – dihydrostreptomycin, GEN – gentamycin, KAN –
1098	kanamycin, NEO – neomycin, PAR – paromomycin, STR – streptomycin, TOB –
1099	tobramycin.
1100	• Fig. 6. Determination of kanamycin in vaccine samples based on its effect on the
1101	thioglycolic acid-CdTe quantum dots photoluminescence [79]. Aliquots of
1102	reconstituted vaccine samples (a) were loaded into a SPE cartridge coupled with a
1103	syringe filter and packed with kanamycin-MIP (b). After washing and elution with
1104	acidic water, the aliquots were added to a TGA-CdTe quantum dots dispersion probe
1105	(c) and the subsequent photoluminescence measurements were carried out using a
1106	luminescence spectrophotometer (d). Created with BioRender.com.
1107	
.108	














- Reliable analytical methods are needed for determining aminoglycoside antibiotics.
- We review the state-of-the-art in sample preparation and detection techniques.
- Trends in the development of both LC-based and emerging methods are discussed.

### **Declaration of interests**

 $\boxtimes$  The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

□The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: