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Abstract. The article discusses the applicability of a novel method to determine horizontal curvature of the railway track axis based on results 
of mobile satellite measurements. The method is based on inclination angle changes of a moving chord in the Cartesian coordinate system. 
In the presented case, the variant referred to as the method of two virtual chords is applied. It consists in maneuvering with only one GNSS 
(Global Navigation Satellite System) receiver. The assumptions of the novel method are formulated, and an assessment of its application in the 
performed campaign of mobile satellite measurements is presented. The shape of the measured railway axis is shown in the national spatial 
reference system PL-2000, and the speed of the measuring trolley during measurement is calculated based on the recorded coordinates. It has 
been observed that over the test section, the curvature ordinates differ from the expected waveform, which can be caused by disturbances of 
the measuring trolley trajectory. However, this problem can easily be overcome by filtering the measured track axis ordinates to obtain the cor-
rect shape – this refers to all track segments: straight sections, circular arcs and transition curves. The virtual chord method can also constitute 
the basis for assessing the quality of the recorded satellite signal. The performed analysis has shown high accuracy of the measuring process.
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1. INTRODUCTION
Determining main geometric parameters of the railway track in
the horizontal plane (positions and lengths of straight track sec-
tions, positions, radii and lengths of circular arcs, and positions,
types and lengths of transition curves) is a basic operation in the
process of railway track shape evaluation. Railway track mea-
surement methods which are in use in different countries [1–7]
can boast a very long tradition, but – despite various innovations
being introduced – they can still be characterized by massive la-
bor consumption, with the associated huge financial expenses.

New possibilities in the field of inventory of engineering ob-
jects are created by the development of satellite measurements
and an increase in the accuracy of measurements based on the
Global Navigation Satellite System (GNSS) [8–12]. In Poland,
the method of mobile satellite measurements (Fig. 1) has been
developed for over a decade [13–20]. The aim of the ongoing
BRIK research project [21, 22] is to obtain an implementation
solution.

As a result of measurements, a set of figures is obtained
which, after relevant postprocessing, compose a set of coor-
dinates in a given Cartesian system (in Poland – with respect
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to the horizontal plane – the national spatial reference system
PL-2000). The collected set of coordinates makes up the basis
for identifying individual geometric elements of the track.
The method traditionally used for this purpose is based on the
chart of horizontal sagittas (Fig. 2), being the most frequently
used tool for assigning track points to sections with defined
geometry.

Fig. 1. The measuring platform during mobile satellite measurements;
GNSS (Global Navigation Satellite System) receivers A and B define

the baseline vector of the platform
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to the horizontal plane – the national spatial reference system
PL-2000). The collected set of coordinates makes up the basis
for identifying individual geometric elements of the track.
The method traditionally used for this purpose is based on the
chart of horizontal sagittas (Fig. 2), being the most frequently
used tool for assigning track points to sections with defined
geometry.
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Fig. 2. An example of the chart of horizontal sagittas obtained with an electronic track gauge (on the horizontal axis – distance (m),
on the vertical axis – sagitta values (mm), the red lines indicate the tolerance limits for the speed 50 km/h)

The sagitta chart method is still very popular in railway ap-
plications. Since the sagitta diagram is very similar to the cur-
vature diagram, this method is sometimes used for determining
the railway track curvature, which seems unjustified from the
formal point of view. It is noteworthy that for years the mea-
surement of sagittas (horizontal and vertical ones) has consti-
tuted the basis of diagnostic methods to evaluate the geometric
condition of a railway track [23–27]. The terms “horizontal un-
evenness chart” and “vertical unevenness chart” used in those
measurements mean, in fact, the charts of sagittas measured on
a given rail. A similar situation can be observed in commercial
computer programs supporting inter alia railway track design-
ing, [28–30].

It is noteworthy that the measurement of horizontal sagit-
tas is done in the linear coordinate system, while the railway
track is described by point coordinates in the Cartesian coordi-
nate system (which results from requirements concerning track
axis marking, among other reasons). Transformation from lin-
ear to Cartesian coordinates is difficult and may lead to prob-
lems in interpretation of the given geometric structure. There-
fore, it is advisable to perform railway track shape identifica-
tion in the Cartesian system. This recommendation would un-
doubtedly undermine the sense of further use of the sagitta chart
method for this purpose, provided that a direct method to deter-
mine curvature is available.

2. DETERMINING CURVATURE WITH THE MOVING CHORD
METHOD

The definition of curvature imposes the need to operate with
inclination angles of tangents to the geometric system. When
the analytical description of a given curve is known, this does
not pose a problem. However, for the real railway track, most
frequently deformed as result of its operation, determining tan-
gents can be troublesome and burdened with relatively large

errors, therefore a concept has emerged to operate with chords
instead of tangents when determining track curvature. In [31],
a theoretical method was proposed which made use of inclina-
tion angle changes of a moving chord of given length (so-called
moving chord method) to determine curvature. The use of ana-
lytical notation enabled precise positioning of chord ends. The
method was then practically verified on selected geometric lay-
outs. Figure 3 shows a schematic diagram of determining cur-
vature with the proposed method.

Fig. 3. Schematic diagram of determining curvature with the moving
chord method [31]

In the moving chord method, it was assumed that for the
small railway track segment under consideration, the tangents
(derived at points M and M1 in Fig. 3) and the corresponding
chords (sections (i− 1)÷i and i÷(i+ 1)) are parallel to each
other, while the tangency points are projected perpendicularly
onto the chord centers. Curvature ki at point i is calculated from
the following formula:

ki =
∆θi

lc
, (1)
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where lc is the chord length, and angle ∆θi is the difference be-
tween the inclination angles of two adjacent chords with com-
mon point i, i.e.

∆θi = θi÷(i+1)−θ(i−1)÷i . (2)

The use of this procedure requires information about curve co-
ordinates in the Cartesian reference system, as the values of
angles θ(i−1)÷i and θi÷(i+1) correspond to gradients of straight
lines describing both chords.

In [31], the proposed method to determine curvature was
verified on an unambiguously defined elementary geometric
layout of the railway track, which consisted of a circular arc
and two symmetrically arranged transition curves of the same
type and length. The track segment selected for verification had
been calculated based on principles of the analytical design
method [32]. A number of geometric variants were analyzed
for different train speeds, types of applied transition curves
and track diversion angles. Full compatibility was observed be-
tween the obtained curvature values and those used as the basis
for designing the geometry of the analyzed track segment, with
respect to both the circular arc, and the transition curves. A pos-
sibility was also indicated to use the proposed method when de-
termining curvature with respect to both the X-axis in the Carte-
sian system, and the length parameter in the linear system.

It was also noted that the proposed method has a wide appli-
cability potential. The practical aspect of the present analysis
may be identified when geometrical characteristics of the track
axis determined from measurements are not known and the ba-
sic goal is to determine them. In this situation, the proposed
method ideally meets the assumptions of mobile satellite mea-
surements, as these measurements provide an extensive number
of track axis coordinates in the Cartesian coordinate system in
a very short time.

In [31], an analytical record of the geometric systems in
question was available, so determining the Cartesian coordi-
nates of the ends of the chord directed backwards and forwards
did not pose a problem. In this situation, it was easy to de-
termine the values of the respective slope angles θ(i−1)÷i and
θi÷(i+1). When determining the curvature of the track on the
basis of measurement data, the coordinates of the track axis are
discrete and it would be difficult to create an analytical record
of them. Therefore, it is necessary in such a case to adapt the
discussed moving chord method to the adopted measurement
procedure. This issue lies at the heart of this article.

3. VARIANT OF TWO VIRTUAL CHORDS
3.1. Applicability of the moving chord method
In mobile satellite measurements, the characteristics of the geo-
metric layout under consideration and its mathematical notation
are unknown. Hence, the essential problem concerns determin-
ing endpoint coordinates of the two adjacent chords, because
they cannot be determined analytically. As the measurement
points are discrete, the position of the ends of the chords should
be found via interpolation at relevant intervals. The basic goal,
which is determining the track curvature, can be obtained in var-

ious manners, of which two application variants of the moving
chord method appear to be most effective:
• the variant making use of the fixed base of the measuring

trolley, and
• the two virtual chords variant.

When using the measuring platform with two satellite re-
ceivers installed at bogie pivot pin points, the positions of the
satellite antennas define the so-called fixed base of the trolley.
This fixed base can be used as the measuring chord in the mov-
ing chord method. The main advantage of operating with a fixed
base is that the records from both satellite antennas come at the
same time, under the same conditions (measuring speed, visibil-
ity of satellites). This eliminates situations in which we have to
deal with coordinates measured at different times, in the pres-
ence of different factors which might affect accuracy. In the
BRIK project [21, 22], the fixed base method will be the basic
method to determine the railway track axis curvature.

However, in some situations, the need to use data from two
satellite antennas may generate certain limitations. Moreover,
the operation of the antennas can be affected by disturbances,
as a result of which the distance between them calculated from
measurements will not be equal to the nominal length of the
fixed base (some real situations were recorded where such in-
equality took place).

Therefore, when the use of coordinates recorded exactly at
the same time is not necessary and, simultaneously, we can en-
sure preserving constant measuring speed, it seems advisable
to consider making use of data from only one satellite antenna.
This means the necessity to use two virtual chords created for-
ward and backward from point i (looking in the direction of
the measuring run). This solution has an additional advantage
which may be of high importance in some situations: differ-
ent chord lengths can be assumed, which may prove extremely
useful when determining border points between different geo-
metric elements of the track. The fixed base method does not
offer such an opportunity.

In this work, intended to analyze the results obtained in the
selected measuring campaign, the method based on the use of
only one GNSS antenna is applied.

3.2. Assumptions of the method to determine railway
track curvature

In the conducted research, the full data set for the measuring
point comprises:
• time of measurement ti,
• horizontal eastward coordinate Y in PL-2000 coordinate

system,
• horizontal northward coordinate X in PL-2000 coordinate

system,
• vertical coordinate Z in relevant spatial system,
• inclination angle αv in longitudinal profile,
• inclination angle αt in lateral section.

In the first step, the recorded track axis coordinates should
be corrected using angles αv and αt measured with inclinome-
ters [33, 34] or by means of an inertial system. Then, these re-
sults can be used for reconstructing the existing position of the
railway track axis. When determining the horizontal curvature,
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where lc is the chord length, and angle ∆θi is the difference be-
tween the inclination angles of two adjacent chords with com-
mon point i, i.e.

∆θi = θi÷(i+1)−θ(i−1)÷i . (2)

The use of this procedure requires information about curve co-
ordinates in the Cartesian reference system, as the values of
angles θ(i−1)÷i and θi÷(i+1) correspond to gradients of straight
lines describing both chords.

In [31], the proposed method to determine curvature was
verified on an unambiguously defined elementary geometric
layout of the railway track, which consisted of a circular arc
and two symmetrically arranged transition curves of the same
type and length. The track segment selected for verification had
been calculated based on principles of the analytical design
method [32]. A number of geometric variants were analyzed
for different train speeds, types of applied transition curves
and track diversion angles. Full compatibility was observed be-
tween the obtained curvature values and those used as the basis
for designing the geometry of the analyzed track segment, with
respect to both the circular arc, and the transition curves. A pos-
sibility was also indicated to use the proposed method when de-
termining curvature with respect to both the X-axis in the Carte-
sian system, and the length parameter in the linear system.

It was also noted that the proposed method has a wide appli-
cability potential. The practical aspect of the present analysis
may be identified when geometrical characteristics of the track
axis determined from measurements are not known and the ba-
sic goal is to determine them. In this situation, the proposed
method ideally meets the assumptions of mobile satellite mea-
surements, as these measurements provide an extensive number
of track axis coordinates in the Cartesian coordinate system in
a very short time.

In [31], an analytical record of the geometric systems in
question was available, so determining the Cartesian coordi-
nates of the ends of the chord directed backwards and forwards
did not pose a problem. In this situation, it was easy to de-
termine the values of the respective slope angles θ(i−1)÷i and
θi÷(i+1). When determining the curvature of the track on the
basis of measurement data, the coordinates of the track axis are
discrete and it would be difficult to create an analytical record
of them. Therefore, it is necessary in such a case to adapt the
discussed moving chord method to the adopted measurement
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3.1. Applicability of the moving chord method
In mobile satellite measurements, the characteristics of the geo-
metric layout under consideration and its mathematical notation
are unknown. Hence, the essential problem concerns determin-
ing endpoint coordinates of the two adjacent chords, because
they cannot be determined analytically. As the measurement
points are discrete, the position of the ends of the chords should
be found via interpolation at relevant intervals. The basic goal,
which is determining the track curvature, can be obtained in var-

ious manners, of which two application variants of the moving
chord method appear to be most effective:
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the operation of the antennas can be affected by disturbances,
as a result of which the distance between them calculated from
measurements will not be equal to the nominal length of the
fixed base (some real situations were recorded where such in-
equality took place).

Therefore, when the use of coordinates recorded exactly at
the same time is not necessary and, simultaneously, we can en-
sure preserving constant measuring speed, it seems advisable
to consider making use of data from only one satellite antenna.
This means the necessity to use two virtual chords created for-
ward and backward from point i (looking in the direction of
the measuring run). This solution has an additional advantage
which may be of high importance in some situations: differ-
ent chord lengths can be assumed, which may prove extremely
useful when determining border points between different geo-
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offer such an opportunity.
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this should be done using the corrected horizontal coordinates
Y (ti) and X(ti).

All measuring points have their index numbers i =
1, 2, . . . , n. We start determining curvature ki from point i situ-
ated in such a way that a virtual chord of length lc can be pro-
jected backward. Likewise, the calculations should end at point
i from which the virtual chord, of the same length, can still be
projected forward.

The basic operation to be performed is finding index numbers
of points defining the intervals in which endpoints of virtual
chords projected from point i are situated. For the rear chord,
this interval is given by points qi (defining the boundary of the
interval further from point i) and qi +1 (defining the boundary
of the interval less distant from point i). In the case of the front
chord, these are points pi −1 (defining the boundary of the in-
terval less distant from point i) and pi (defining the boundary
of the interval further from point i). These limiting points are
found by checking the distances of successive points from point
i in the direction of increasing and decreasing index numbers.
For the rear chord these distances are determined from the for-
mula below:

l(i−k)÷i =

√
(Yi −Yi−k)

2 +(Xi −Xi−k)
2 (3)

and for the front chord from the following formula:

li)÷i+k) =

√
(Yi −Yi+k)

2 +(Xi −Xi+k)
2 , (4)

where kεN+.
After each calculation step, we check whether the condition

l(i−k)÷i ≥ lc is met for the rear chord and li÷(i+k) ≥ lc for the
front chord. The first value i − k for the rear antenna which
meets the above condition is marked as qi, while for the front
antenna, the first value i+ k is marked as pi.

Since, unlike the fixed base method, the considered variant of
the moving chord method omits the time parameter and instead
makes use of measuring point index numbers, it seems prof-
itable to maintain similar distances between adjacent points.
This is equivalent to the requirement to take measurements at
constant speed of the measuring trolley.

Once the coordinates Yqi , Xqi and Yqi+1 , Xqi+1 of points lim-
iting the interval in which the endpoint of the rear antenna is
situated are known, the distances of these points from point i
can be calculated:

lqi =

√
(Yi −Yqi)

2 +(Xi −Xqi)
2 , (5)

lqi+1 =

√(
Yi −Yqi+1

)2
+
(
Xi −Xqi+1

)2
. (6)

These data make it possible to determine the coordinates of the
rear chord endpoint, i.e. point Bi, using the following formulas:

YBi = Yqi+1 +
lc − lqi+1

lqi − lqi+1

(
Yqi −Yqi+1

)
, (7)

XBi = Xqi+1 +
lc − lqi+1

lqi − lqi+1

(
Xqi −Xqi+1

)
. (8)

The gradient of the straight line passing through points Bi and i
and representing the rear chord is as follows:

sBi÷i =
Xi −XBi

Yi −YBi

. (9)

If sBi÷i > 0, then the inclination angle of the fixed base is
θBi÷i ∈

〈
0, π

2

〉
and is given in the Y , X coordinate system by

the formula below:

θBi÷i = atan
Xi −XBi

Yi −YBi

. (10)

If sBi÷i < 0, then the inclination angle of the fixed base is
θBi÷i ∈

〈π
2 ,π

〉
and is given by the formula below:

θBi÷i = π + atan
Xi −XBi

Yi −YBi

. (11)

Inclination angle of the front chord is determined analo-
gously. Based on the known coordinates Ypi , Xpi and Ypi−1,
Xpi−1 of points limiting the interval in which the endpoint of
the front antenna is situated, the distances lpi and lpi−1 of these
points from point i can be calculated. These data make it pos-
sible to determine the coordinates of the front chord endpoint,
i.e. point Fi. The gradient of the straight line passing through
points i and Fi and representing the front chord is:

si÷Fi =
XFi −Xi

YFi −Yi
. (12)

If si÷Fi > 0, then the inclination angle of the fixed base is θi÷Fi ∈〈
0, π

2

〉
and is given by the formula below:

θi÷Fi = atan
XFi −Xi

YFi −Yi
. (13)

If si÷Fi < 0, then the inclination angle of the fixed base is
θi÷Fi ∈

〈π
2 ,π

〉
and is given in the Y , X coordinate system by

the formula below:

θi÷Fi = π + atan
XFi −Xi

YFi −Yi
. (14)

3.3. Curvature value at point i
The curvature value at point i is given by the following formula:

ki =±
∣∣∣∣
θi÷Fi −θBi÷i

lc

∣∣∣∣ . (15)

The sign “+” in (15), meaning positive curvature, corresponds
to the situation when convexity along the length of the curve is
directed downwards, while the negative value – to the convexity
directed upwards.

The virtual chord method is undoubtedly simpler in calcula-
tions than that making use of the fixed base of the measuring
trolley. However, it should be kept in mind that it is extremely
sensitive to measuring speed disturbances and the need to oper-
ate on data sets recorded at different times. Therefore, it should
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this should be done using the corrected horizontal coordinates
Y (ti) and X(ti).

All measuring points have their index numbers i =
1, 2, . . . , n. We start determining curvature ki from point i situ-
ated in such a way that a virtual chord of length lc can be pro-
jected backward. Likewise, the calculations should end at point
i from which the virtual chord, of the same length, can still be
projected forward.

The basic operation to be performed is finding index numbers
of points defining the intervals in which endpoints of virtual
chords projected from point i are situated. For the rear chord,
this interval is given by points qi (defining the boundary of the
interval further from point i) and qi +1 (defining the boundary
of the interval less distant from point i). In the case of the front
chord, these are points pi −1 (defining the boundary of the in-
terval less distant from point i) and pi (defining the boundary
of the interval further from point i). These limiting points are
found by checking the distances of successive points from point
i in the direction of increasing and decreasing index numbers.
For the rear chord these distances are determined from the for-
mula below:

l(i−k)÷i =

√
(Yi −Yi−k)

2 +(Xi −Xi−k)
2 (3)

and for the front chord from the following formula:

li)÷i+k) =

√
(Yi −Yi+k)

2 +(Xi −Xi+k)
2 , (4)

where kεN+.
After each calculation step, we check whether the condition

l(i−k)÷i ≥ lc is met for the rear chord and li÷(i+k) ≥ lc for the
front chord. The first value i − k for the rear antenna which
meets the above condition is marked as qi, while for the front
antenna, the first value i+ k is marked as pi.

Since, unlike the fixed base method, the considered variant of
the moving chord method omits the time parameter and instead
makes use of measuring point index numbers, it seems prof-
itable to maintain similar distances between adjacent points.
This is equivalent to the requirement to take measurements at
constant speed of the measuring trolley.

Once the coordinates Yqi , Xqi and Yqi+1 , Xqi+1 of points lim-
iting the interval in which the endpoint of the rear antenna is
situated are known, the distances of these points from point i
can be calculated:

lqi =

√
(Yi −Yqi)

2 +(Xi −Xqi)
2 , (5)

lqi+1 =

√(
Yi −Yqi+1

)2
+
(
Xi −Xqi+1

)2
. (6)

These data make it possible to determine the coordinates of the
rear chord endpoint, i.e. point Bi, using the following formulas:

YBi = Yqi+1 +
lc − lqi+1

lqi − lqi+1

(
Yqi −Yqi+1

)
, (7)

XBi = Xqi+1 +
lc − lqi+1

lqi − lqi+1

(
Xqi −Xqi+1

)
. (8)

The gradient of the straight line passing through points Bi and i
and representing the rear chord is as follows:

sBi÷i =
Xi −XBi

Yi −YBi

. (9)

If sBi÷i > 0, then the inclination angle of the fixed base is
θBi÷i ∈

〈
0, π

2

〉
and is given in the Y , X coordinate system by

the formula below:

θBi÷i = atan
Xi −XBi

Yi −YBi

. (10)

If sBi÷i < 0, then the inclination angle of the fixed base is
θBi÷i ∈

〈π
2 ,π

〉
and is given by the formula below:

θBi÷i = π + atan
Xi −XBi

Yi −YBi

. (11)

Inclination angle of the front chord is determined analo-
gously. Based on the known coordinates Ypi , Xpi and Ypi−1,
Xpi−1 of points limiting the interval in which the endpoint of
the front antenna is situated, the distances lpi and lpi−1 of these
points from point i can be calculated. These data make it pos-
sible to determine the coordinates of the front chord endpoint,
i.e. point Fi. The gradient of the straight line passing through
points i and Fi and representing the front chord is:

si÷Fi =
XFi −Xi

YFi −Yi
. (12)

If si÷Fi > 0, then the inclination angle of the fixed base is θi÷Fi ∈〈
0, π

2

〉
and is given by the formula below:

θi÷Fi = atan
XFi −Xi

YFi −Yi
. (13)

If si÷Fi < 0, then the inclination angle of the fixed base is
θi÷Fi ∈

〈π
2 ,π

〉
and is given in the Y , X coordinate system by

the formula below:

θi÷Fi = π + atan
XFi −Xi

YFi −Yi
. (14)

3.3. Curvature value at point i
The curvature value at point i is given by the following formula:

ki =±
∣∣∣∣
θi÷Fi −θBi÷i

lc

∣∣∣∣ . (15)

The sign “+” in (15), meaning positive curvature, corresponds
to the situation when convexity along the length of the curve is
directed downwards, while the negative value – to the convexity
directed upwards.

The virtual chord method is undoubtedly simpler in calcula-
tions than that making use of the fixed base of the measuring
trolley. However, it should be kept in mind that it is extremely
sensitive to measuring speed disturbances and the need to oper-
ate on data sets recorded at different times. Therefore, it should
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this should be done using the corrected horizontal coordinates
Y (ti) and X(ti).

All measuring points have their index numbers i =
1, 2, . . . , n. We start determining curvature ki from point i situ-
ated in such a way that a virtual chord of length lc can be pro-
jected backward. Likewise, the calculations should end at point
i from which the virtual chord, of the same length, can still be
projected forward.

The basic operation to be performed is finding index numbers
of points defining the intervals in which endpoints of virtual
chords projected from point i are situated. For the rear chord,
this interval is given by points qi (defining the boundary of the
interval further from point i) and qi +1 (defining the boundary
of the interval less distant from point i). In the case of the front
chord, these are points pi −1 (defining the boundary of the in-
terval less distant from point i) and pi (defining the boundary
of the interval further from point i). These limiting points are
found by checking the distances of successive points from point
i in the direction of increasing and decreasing index numbers.
For the rear chord these distances are determined from the for-
mula below:

l(i−k)÷i =

√
(Yi −Yi−k)

2 +(Xi −Xi−k)
2 (3)

and for the front chord from the following formula:

li)÷i+k) =

√
(Yi −Yi+k)

2 +(Xi −Xi+k)
2 , (4)

where kεN+.
After each calculation step, we check whether the condition

l(i−k)÷i ≥ lc is met for the rear chord and li÷(i+k) ≥ lc for the
front chord. The first value i − k for the rear antenna which
meets the above condition is marked as qi, while for the front
antenna, the first value i+ k is marked as pi.

Since, unlike the fixed base method, the considered variant of
the moving chord method omits the time parameter and instead
makes use of measuring point index numbers, it seems prof-
itable to maintain similar distances between adjacent points.
This is equivalent to the requirement to take measurements at
constant speed of the measuring trolley.

Once the coordinates Yqi , Xqi and Yqi+1 , Xqi+1 of points lim-
iting the interval in which the endpoint of the rear antenna is
situated are known, the distances of these points from point i
can be calculated:

lqi =

√
(Yi −Yqi)

2 +(Xi −Xqi)
2 , (5)

lqi+1 =

√(
Yi −Yqi+1

)2
+
(
Xi −Xqi+1

)2
. (6)

These data make it possible to determine the coordinates of the
rear chord endpoint, i.e. point Bi, using the following formulas:

YBi = Yqi+1 +
lc − lqi+1

lqi − lqi+1

(
Yqi −Yqi+1

)
, (7)

XBi = Xqi+1 +
lc − lqi+1

lqi − lqi+1

(
Xqi −Xqi+1

)
. (8)

The gradient of the straight line passing through points Bi and i
and representing the rear chord is as follows:

sBi÷i =
Xi −XBi

Yi −YBi

. (9)

If sBi÷i > 0, then the inclination angle of the fixed base is
θBi÷i ∈

〈
0, π

2

〉
and is given in the Y , X coordinate system by

the formula below:

θBi÷i = atan
Xi −XBi

Yi −YBi

. (10)

If sBi÷i < 0, then the inclination angle of the fixed base is
θBi÷i ∈

〈π
2 ,π

〉
and is given by the formula below:

θBi÷i = π + atan
Xi −XBi

Yi −YBi

. (11)

Inclination angle of the front chord is determined analo-
gously. Based on the known coordinates Ypi , Xpi and Ypi−1,
Xpi−1 of points limiting the interval in which the endpoint of
the front antenna is situated, the distances lpi and lpi−1 of these
points from point i can be calculated. These data make it pos-
sible to determine the coordinates of the front chord endpoint,
i.e. point Fi. The gradient of the straight line passing through
points i and Fi and representing the front chord is:

si÷Fi =
XFi −Xi

YFi −Yi
. (12)

If si÷Fi > 0, then the inclination angle of the fixed base is θi÷Fi ∈〈
0, π

2

〉
and is given by the formula below:

θi÷Fi = atan
XFi −Xi

YFi −Yi
. (13)

If si÷Fi < 0, then the inclination angle of the fixed base is
θi÷Fi ∈

〈π
2 ,π

〉
and is given in the Y , X coordinate system by

the formula below:

θi÷Fi = π + atan
XFi −Xi

YFi −Yi
. (14)

3.3. Curvature value at point i
The curvature value at point i is given by the following formula:

ki =±
∣∣∣∣
θi÷Fi −θBi÷i

lc

∣∣∣∣ . (15)

The sign “+” in (15), meaning positive curvature, corresponds
to the situation when convexity along the length of the curve is
directed downwards, while the negative value – to the convexity
directed upwards.

The virtual chord method is undoubtedly simpler in calcula-
tions than that making use of the fixed base of the measuring
trolley. However, it should be kept in mind that it is extremely
sensitive to measuring speed disturbances and the need to oper-
ate on data sets recorded at different times. Therefore, it should
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this should be done using the corrected horizontal coordinates
Y (ti) and X(ti).

All measuring points have their index numbers i =
1, 2, . . . , n. We start determining curvature ki from point i situ-
ated in such a way that a virtual chord of length lc can be pro-
jected backward. Likewise, the calculations should end at point
i from which the virtual chord, of the same length, can still be
projected forward.

The basic operation to be performed is finding index numbers
of points defining the intervals in which endpoints of virtual
chords projected from point i are situated. For the rear chord,
this interval is given by points qi (defining the boundary of the
interval further from point i) and qi +1 (defining the boundary
of the interval less distant from point i). In the case of the front
chord, these are points pi −1 (defining the boundary of the in-
terval less distant from point i) and pi (defining the boundary
of the interval further from point i). These limiting points are
found by checking the distances of successive points from point
i in the direction of increasing and decreasing index numbers.
For the rear chord these distances are determined from the for-
mula below:

l(i−k)÷i =

√
(Yi −Yi−k)

2 +(Xi −Xi−k)
2 (3)

and for the front chord from the following formula:

li)÷i+k) =

√
(Yi −Yi+k)

2 +(Xi −Xi+k)
2 , (4)

where kεN+.
After each calculation step, we check whether the condition

l(i−k)÷i ≥ lc is met for the rear chord and li÷(i+k) ≥ lc for the
front chord. The first value i − k for the rear antenna which
meets the above condition is marked as qi, while for the front
antenna, the first value i+ k is marked as pi.

Since, unlike the fixed base method, the considered variant of
the moving chord method omits the time parameter and instead
makes use of measuring point index numbers, it seems prof-
itable to maintain similar distances between adjacent points.
This is equivalent to the requirement to take measurements at
constant speed of the measuring trolley.

Once the coordinates Yqi , Xqi and Yqi+1 , Xqi+1 of points lim-
iting the interval in which the endpoint of the rear antenna is
situated are known, the distances of these points from point i
can be calculated:

lqi =

√
(Yi −Yqi)

2 +(Xi −Xqi)
2 , (5)

lqi+1 =

√(
Yi −Yqi+1

)2
+
(
Xi −Xqi+1

)2
. (6)

These data make it possible to determine the coordinates of the
rear chord endpoint, i.e. point Bi, using the following formulas:

YBi = Yqi+1 +
lc − lqi+1

lqi − lqi+1

(
Yqi −Yqi+1

)
, (7)

XBi = Xqi+1 +
lc − lqi+1

lqi − lqi+1

(
Xqi −Xqi+1

)
. (8)

The gradient of the straight line passing through points Bi and i
and representing the rear chord is as follows:

sBi÷i =
Xi −XBi

Yi −YBi

. (9)

If sBi÷i > 0, then the inclination angle of the fixed base is
θBi÷i ∈

〈
0, π

2

〉
and is given in the Y , X coordinate system by

the formula below:

θBi÷i = atan
Xi −XBi

Yi −YBi

. (10)

If sBi÷i < 0, then the inclination angle of the fixed base is
θBi÷i ∈

〈π
2 ,π

〉
and is given by the formula below:

θBi÷i = π + atan
Xi −XBi

Yi −YBi

. (11)

Inclination angle of the front chord is determined analo-
gously. Based on the known coordinates Ypi , Xpi and Ypi−1,
Xpi−1 of points limiting the interval in which the endpoint of
the front antenna is situated, the distances lpi and lpi−1 of these
points from point i can be calculated. These data make it pos-
sible to determine the coordinates of the front chord endpoint,
i.e. point Fi. The gradient of the straight line passing through
points i and Fi and representing the front chord is:

si÷Fi =
XFi −Xi

YFi −Yi
. (12)

If si÷Fi > 0, then the inclination angle of the fixed base is θi÷Fi ∈〈
0, π

2

〉
and is given by the formula below:

θi÷Fi = atan
XFi −Xi

YFi −Yi
. (13)

If si÷Fi < 0, then the inclination angle of the fixed base is
θi÷Fi ∈

〈π
2 ,π

〉
and is given in the Y , X coordinate system by

the formula below:

θi÷Fi = π + atan
XFi −Xi

YFi −Yi
. (14)

3.3. Curvature value at point i
The curvature value at point i is given by the following formula:

ki =±
∣∣∣∣
θi÷Fi −θBi÷i

lc

∣∣∣∣ . (15)

The sign “+” in (15), meaning positive curvature, corresponds
to the situation when convexity along the length of the curve is
directed downwards, while the negative value – to the convexity
directed upwards.

The virtual chord method is undoubtedly simpler in calcula-
tions than that making use of the fixed base of the measuring
trolley. However, it should be kept in mind that it is extremely
sensitive to measuring speed disturbances and the need to oper-
ate on data sets recorded at different times. Therefore, it should
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this should be done using the corrected horizontal coordinates
Y (ti) and X(ti).

All measuring points have their index numbers i =
1, 2, . . . , n. We start determining curvature ki from point i situ-
ated in such a way that a virtual chord of length lc can be pro-
jected backward. Likewise, the calculations should end at point
i from which the virtual chord, of the same length, can still be
projected forward.

The basic operation to be performed is finding index numbers
of points defining the intervals in which endpoints of virtual
chords projected from point i are situated. For the rear chord,
this interval is given by points qi (defining the boundary of the
interval further from point i) and qi +1 (defining the boundary
of the interval less distant from point i). In the case of the front
chord, these are points pi −1 (defining the boundary of the in-
terval less distant from point i) and pi (defining the boundary
of the interval further from point i). These limiting points are
found by checking the distances of successive points from point
i in the direction of increasing and decreasing index numbers.
For the rear chord these distances are determined from the for-
mula below:

l(i−k)÷i =

√
(Yi −Yi−k)

2 +(Xi −Xi−k)
2 (3)

and for the front chord from the following formula:

li)÷i+k) =

√
(Yi −Yi+k)

2 +(Xi −Xi+k)
2 , (4)

where kεN+.
After each calculation step, we check whether the condition

l(i−k)÷i ≥ lc is met for the rear chord and li÷(i+k) ≥ lc for the
front chord. The first value i − k for the rear antenna which
meets the above condition is marked as qi, while for the front
antenna, the first value i+ k is marked as pi.

Since, unlike the fixed base method, the considered variant of
the moving chord method omits the time parameter and instead
makes use of measuring point index numbers, it seems prof-
itable to maintain similar distances between adjacent points.
This is equivalent to the requirement to take measurements at
constant speed of the measuring trolley.

Once the coordinates Yqi , Xqi and Yqi+1 , Xqi+1 of points lim-
iting the interval in which the endpoint of the rear antenna is
situated are known, the distances of these points from point i
can be calculated:

lqi =

√
(Yi −Yqi)

2 +(Xi −Xqi)
2 , (5)

lqi+1 =

√(
Yi −Yqi+1

)2
+
(
Xi −Xqi+1

)2
. (6)

These data make it possible to determine the coordinates of the
rear chord endpoint, i.e. point Bi, using the following formulas:

YBi = Yqi+1 +
lc − lqi+1

lqi − lqi+1

(
Yqi −Yqi+1

)
, (7)

XBi = Xqi+1 +
lc − lqi+1

lqi − lqi+1

(
Xqi −Xqi+1

)
. (8)

The gradient of the straight line passing through points Bi and i
and representing the rear chord is as follows:

sBi÷i =
Xi −XBi

Yi −YBi

. (9)

If sBi÷i > 0, then the inclination angle of the fixed base is
θBi÷i ∈

〈
0, π

2

〉
and is given in the Y , X coordinate system by

the formula below:

θBi÷i = atan
Xi −XBi

Yi −YBi

. (10)

If sBi÷i < 0, then the inclination angle of the fixed base is
θBi÷i ∈

〈π
2 ,π

〉
and is given by the formula below:

θBi÷i = π + atan
Xi −XBi

Yi −YBi

. (11)

Inclination angle of the front chord is determined analo-
gously. Based on the known coordinates Ypi , Xpi and Ypi−1,
Xpi−1 of points limiting the interval in which the endpoint of
the front antenna is situated, the distances lpi and lpi−1 of these
points from point i can be calculated. These data make it pos-
sible to determine the coordinates of the front chord endpoint,
i.e. point Fi. The gradient of the straight line passing through
points i and Fi and representing the front chord is:

si÷Fi =
XFi −Xi

YFi −Yi
. (12)

If si÷Fi > 0, then the inclination angle of the fixed base is θi÷Fi ∈〈
0, π

2

〉
and is given by the formula below:

θi÷Fi = atan
XFi −Xi

YFi −Yi
. (13)

If si÷Fi < 0, then the inclination angle of the fixed base is
θi÷Fi ∈

〈π
2 ,π

〉
and is given in the Y , X coordinate system by

the formula below:

θi÷Fi = π + atan
XFi −Xi

YFi −Yi
. (14)

3.3. Curvature value at point i
The curvature value at point i is given by the following formula:

ki =±
∣∣∣∣
θi÷Fi −θBi÷i

lc

∣∣∣∣ . (15)

The sign “+” in (15), meaning positive curvature, corresponds
to the situation when convexity along the length of the curve is
directed downwards, while the negative value – to the convexity
directed upwards.

The virtual chord method is undoubtedly simpler in calcula-
tions than that making use of the fixed base of the measuring
trolley. However, it should be kept in mind that it is extremely
sensitive to measuring speed disturbances and the need to oper-
ate on data sets recorded at different times. Therefore, it should
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this should be done using the corrected horizontal coordinates
Y (ti) and X(ti).

All measuring points have their index numbers i =
1, 2, . . . , n. We start determining curvature ki from point i situ-
ated in such a way that a virtual chord of length lc can be pro-
jected backward. Likewise, the calculations should end at point
i from which the virtual chord, of the same length, can still be
projected forward.

The basic operation to be performed is finding index numbers
of points defining the intervals in which endpoints of virtual
chords projected from point i are situated. For the rear chord,
this interval is given by points qi (defining the boundary of the
interval further from point i) and qi +1 (defining the boundary
of the interval less distant from point i). In the case of the front
chord, these are points pi −1 (defining the boundary of the in-
terval less distant from point i) and pi (defining the boundary
of the interval further from point i). These limiting points are
found by checking the distances of successive points from point
i in the direction of increasing and decreasing index numbers.
For the rear chord these distances are determined from the for-
mula below:

l(i−k)÷i =

√
(Yi −Yi−k)

2 +(Xi −Xi−k)
2 (3)

and for the front chord from the following formula:

li)÷i+k) =

√
(Yi −Yi+k)

2 +(Xi −Xi+k)
2 , (4)

where kεN+.
After each calculation step, we check whether the condition

l(i−k)÷i ≥ lc is met for the rear chord and li÷(i+k) ≥ lc for the
front chord. The first value i − k for the rear antenna which
meets the above condition is marked as qi, while for the front
antenna, the first value i+ k is marked as pi.

Since, unlike the fixed base method, the considered variant of
the moving chord method omits the time parameter and instead
makes use of measuring point index numbers, it seems prof-
itable to maintain similar distances between adjacent points.
This is equivalent to the requirement to take measurements at
constant speed of the measuring trolley.

Once the coordinates Yqi , Xqi and Yqi+1 , Xqi+1 of points lim-
iting the interval in which the endpoint of the rear antenna is
situated are known, the distances of these points from point i
can be calculated:

lqi =

√
(Yi −Yqi)

2 +(Xi −Xqi)
2 , (5)

lqi+1 =

√(
Yi −Yqi+1

)2
+
(
Xi −Xqi+1

)2
. (6)

These data make it possible to determine the coordinates of the
rear chord endpoint, i.e. point Bi, using the following formulas:

YBi = Yqi+1 +
lc − lqi+1

lqi − lqi+1

(
Yqi −Yqi+1

)
, (7)

XBi = Xqi+1 +
lc − lqi+1

lqi − lqi+1

(
Xqi −Xqi+1

)
. (8)

The gradient of the straight line passing through points Bi and i
and representing the rear chord is as follows:

sBi÷i =
Xi −XBi

Yi −YBi

. (9)

If sBi÷i > 0, then the inclination angle of the fixed base is
θBi÷i ∈

〈
0, π

2

〉
and is given in the Y , X coordinate system by

the formula below:

θBi÷i = atan
Xi −XBi

Yi −YBi

. (10)

If sBi÷i < 0, then the inclination angle of the fixed base is
θBi÷i ∈

〈π
2 ,π

〉
and is given by the formula below:

θBi÷i = π + atan
Xi −XBi

Yi −YBi

. (11)

Inclination angle of the front chord is determined analo-
gously. Based on the known coordinates Ypi , Xpi and Ypi−1,
Xpi−1 of points limiting the interval in which the endpoint of
the front antenna is situated, the distances lpi and lpi−1 of these
points from point i can be calculated. These data make it pos-
sible to determine the coordinates of the front chord endpoint,
i.e. point Fi. The gradient of the straight line passing through
points i and Fi and representing the front chord is:

si÷Fi =
XFi −Xi

YFi −Yi
. (12)

If si÷Fi > 0, then the inclination angle of the fixed base is θi÷Fi ∈〈
0, π

2

〉
and is given by the formula below:

θi÷Fi = atan
XFi −Xi

YFi −Yi
. (13)

If si÷Fi < 0, then the inclination angle of the fixed base is
θi÷Fi ∈

〈π
2 ,π

〉
and is given in the Y , X coordinate system by

the formula below:

θi÷Fi = π + atan
XFi −Xi

YFi −Yi
. (14)

3.3. Curvature value at point i
The curvature value at point i is given by the following formula:

ki =±
∣∣∣∣
θi÷Fi −θBi÷i

lc

∣∣∣∣ . (15)

The sign “+” in (15), meaning positive curvature, corresponds
to the situation when convexity along the length of the curve is
directed downwards, while the negative value – to the convexity
directed upwards.

The virtual chord method is undoubtedly simpler in calcula-
tions than that making use of the fixed base of the measuring
trolley. However, it should be kept in mind that it is extremely
sensitive to measuring speed disturbances and the need to oper-
ate on data sets recorded at different times. Therefore, it should
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be used locally, when the use of the fixed base method proves
ineffective, or when we want to use shorter chords for determin-
ing the border points between geometric elements more pre-
cisely. In this work, the virtual chord method was also used to
assess the efficiency of the applied measuring technique.

4. ASSESSING THE CURVATURE CALCULATION
PROCESS IN MOBILE SATELLITE MEASUREMENTS

4.1. Test segment
The analyzed test segment comprises a fragment of a single-
track railway line, of about 4.7 km in length. The measurement
was conducted using the GNSS receivers of 100 Hz frequency,
installed on a four-axis trolley, at the front bogie pivot point
(looking in the direction of motion). The trajectory of this rail-
way line fragment recorded in mobile satellite measurements is
shown in Fig. 4, in the PL-2000 coordinate system.

Fig. 4. Railway track trajectory recorded in mobile satellite
measurements

For further analysis, we should move to the linear system,
i.e. calculate the distances of successive measuring points from
a given starting point – the so-called L variable. The starting
point will be denoted as i = 1.

The distance between two adjacent measuring points is:

∆Li÷i+1 =

√
(Yi+1 −Yi)

2 +(Xi+1 −Xi)
2 . (16)

The linear coordinate Li, being the distance of the given point i
from point (Y1, X1), is calculated from the following formula:

Li =
i=n−1

∑
i=1

∆Li÷i+1 . (17)

Equation (17) makes use of coordinates of all points situated
along both the straight sections and arcs. As a consequence,
the measuring errors sum up in the calculation procedure. For
straight sections, the Li variable assessment error can be sub-
stantially reduced by calculating the distance directly from the
starting point, taking two extreme points into account. In this
case, the following formula is applicable:

Li =

√
(Yi −Y1)

2 +(Xi −X1)
2 . (18)

The linear coordinate L enables finding locations of particular
geometric elements based on the determined railway track axis
curvature, as well as calculating the track mileage. Moreover,
in combination with the measured height coordinate Z it can be
used for determining the longitudinal profile of the track.

4.2. Determining measuring trolley speed during
measurement

In mobile satellite measurements, the measurements of railway
track axis coordinates are taken at fixed time intervals result-
ing from the frequency of the installed GNSS receivers. For
f = 100 Hz, the time interval between two successive measure-
ments is 10 ms. Since the distance between two successive mea-
suring points is known, the speed of the measuring trolley in
this interval can be directly calculated. This speed (in km/h) is
given by the formula below:

Vi÷i+1 = 3.6 f ∆Li÷i+1 . (19)

For straight sections, (19) can be replaced by its modified form:

Vi÷i+1 = 3.6 f (Li+1 −Li) . (20)

where the values of Li and Li+1 are calculated from (18).
Figure 5 shows the measuring speed waveform V (L) cov-

ering initial 300 m of the test segment, as calculated from
(20). The assumed starting point had coordinates Y1 =
6473899.914 m and X1 = 5961334.294 m, and was situated on
a straight section being the upper part of the trajectory shown in

Fig. 5. Speed of measuring trolley over initial 300 m of the test seg-
ment, calculated from the measured Cartesian coordinates
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stantially reduced by calculating the distance directly from the
starting point, taking two extreme points into account. In this
case, the following formula is applicable:
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The linear coordinate L enables finding locations of particular
geometric elements based on the determined railway track axis
curvature, as well as calculating the track mileage. Moreover,
in combination with the measured height coordinate Z it can be
used for determining the longitudinal profile of the track.

4.2. Determining measuring trolley speed during
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track axis coordinates are taken at fixed time intervals result-
ing from the frequency of the installed GNSS receivers. For
f = 100 Hz, the time interval between two successive measure-
ments is 10 ms. Since the distance between two successive mea-
suring points is known, the speed of the measuring trolley in
this interval can be directly calculated. This speed (in km/h) is
given by the formula below:

Vi÷i+1 = 3.6 f ∆Li÷i+1 . (19)

For straight sections, (19) can be replaced by its modified form:

Vi÷i+1 = 3.6 f (Li+1 −Li) . (20)

where the values of Li and Li+1 are calculated from (18).
Figure 5 shows the measuring speed waveform V (L) cov-

ering initial 300 m of the test segment, as calculated from
(20). The assumed starting point had coordinates Y1 =
6473899.914 m and X1 = 5961334.294 m, and was situated on
a straight section being the upper part of the trajectory shown in

Fig. 5. Speed of measuring trolley over initial 300 m of the test seg-
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Fig. 4 (the motion of the measuring trolley was in the direction
of decreasing X values).

What is noteworthy here is the high precision of speed value
calculations, which is undoubtedly related to precision in de-
termining distances between successive measuring points. This
issue will be discussed in detail in Section 4.4. The very high
accuracy of determining distance ∆Li÷(i+1) is indicated by the
values of standard deviation σ∆L given in Table 1. In the vast
majority of cases these values do not exceed 0.5 mm.

A similar situation as that observed in Fig. 5 with respect to
the accuracy had taken place over further 1400 m, until radical
deterioration of quality of the recorded GNSS signal was ob-
served. This issue will be discussed in greater detail in the next
section.

4.3. Determining horizontal curvature
Horizontal curvature ki at consecutive measuring points was
calculated from (15) assuming chord length lc = 7 m, equal to
the fixed base of the measuring trolley. On straight sections,
the linear coordinate was calculated from (18), while on arcs –
from (17). The results of these calculations enabled drawing the
curvature waveform over the geometric layout length.

Figure 6 shows the railway track curvature over the initial
10 m of the test segment. The measurement was taken at in-
creasing speed of the measuring trolley (see Fig. 5). As can be
observed, the curvature waveform differs radically from k(l)
diagrams presented for model systems in [31]. In that case, full
compatibility of the curvature obtained using the moving chord
method with the theoretical waveform was observed, while in

Table 1
Compilation of ∆Li÷(i+1) statistics in successive speed classes

nc
Lp
[m]

Lk
[m]

∆Lp÷k
[m]

np÷k
Vj÷ j+1
[km/h]

σV
[km/h]

∆L j÷ j+1
[mm]

σ∆L
[mm]

σ∆L/∆L
[%]

142 782.661 798.218 15.557 315 17.836 0.121 49.548 0.336 0.678

141 806.111 827.448 21.337 429 17.947 0.131 49.855 0.365 0.782

140 739.219 748.570 9.351 188 18.054 0.143 50.152 0.397 0.791

139 849.331 854.130 4.799 96 18.186 0.106 50.519 0.294 0.581

138 234.663 254.909 20.246 399 18.313 0.211 50.877 0.598 1.175

137 876.690 884.695 8.005 157 18.471 0.174 51.311 0.482 0.939

136 895.504 909.341 13.838 269 18.588 0.133 51.635 0.369 0.716

135 917.328 923.675 6.347 123 18.730 0.115 52.031 0.319 0.614

134 930.727 942.520 11.792 226 18.868 0.120 52.413 0.334 0.638

133 949.838 959.131 9.293 177 19.016 0.125 52.824 0.346 0.656

132 968.517 981.937 13.420 253 19.171 0.108 53.253 0.299 0.562

131 1624.722 1682.390 57.668 1076 19.294 0.164 53.594 0.456 0.851

130 611.935 644.452 32.517 589 19.477 0.126 54.104 0.350 0.648

129 527.548 604.717 77.169 1417 19.619 0.125 54.501 0.348 0.638

128 433.603 519.181 85.578 1561 19.761 0.163 54.898 0.457 0.833

127 1059.762 1076.095 16.333 296 19.931 0.126 55.366 0.351 0.635

126 1083.150 1106.612 23.462 422 20.063 0.106 55.731 0.295 0.530

125 1118.266 1136.733 18.449 329 20.248 0.116 56.246 0.322 0.573

124 1141.307 1309.644 168.337 2974 20.384 0.142 56.625 0.399 0.704

123 1316.700 1323.441 6.741 119 20.567 0.126 57.132 0.348 0.609

122 1330.499 1335.160 4.661 82 20.718 0.115 57.551 0.320 0.556

121 142.111 157.926 15.815 272 20.929 0.203 58.150 0.559 0.961

120 1357.293 1362.386 5.093 88 21.091 0.174 58.589 0.485 0.828

119 1370.975 1374.640 3.665 63 21.283 0.141 59.121 0.390 0.659

118 1381.700 1385.748 4.048 69 21.431 0.105 59.531 0.292 0.491

117 1392.811 1397.135 4.324 73 21.645 0.224 60.126 0.631 1.050

116 1404.198 1414.871 10.673 177 21.832 0.125 60.645 0.346 0.570

115 1421.932 1451.461 29.529 484 22.010 0.148 61.138 0.412 0.674

114 1461.224 1490.098 28.874 470 22.163 0.158 61.564 0.439 0.713
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Fig. 6 the curvature ordinates k(L) differ visibly from the curva-
ture k = 0 expected on the straight section. This may be caused
by track deformations resulting from its exploitation, but the
main cause seems to be the disturbances of measuring trol-
ley trajectory occurring during the measurement. Entering of
wheelsets into the track generates lateral displacements of the
trolley with the satellite receiver installed on its bogie pivot. The
recorded deviations are not random in nature, but reveal certain
regularity. The diagram in Fig. 6 was obtained based on data
from over 400 measuring points.

Fig. 6. Track curvature over initial 10 m of the test segment

However, this irregularity is not a problem from the point
of view of the basic goal of the performed measurements, i.e.
determining the curvature of the given geometric layout. This
can easily be confirmed by analyzing the curvature waveform
for a longer track segment (Fig. 7).

Fig. 7. Track curvature over initial 300 m of the test segment, calcu-
lated based on mobile satellite measurements

Figure 7 shows the track curvature over initial 300 m of the
test segment. As can be seen, deviations from zero curvature
decrease as a result of speed stabilization at a given level (see
Fig. 5). However, from the practical point of view, of highest
importance is that it is sufficient to filter curvature ordinates to
obtain the correct track shape [35], as in this case there is no
doubt that the presented fragment of the test segment is straight
and its curvature is k = 0. This was confirmed by k(L) diagrams
drawn for further fragments of the test segment.

The k(L) ordinates also need filtering on circular arcs and
transition curves. It results from the curvature waveform in the
transition curve region (Fig. 8) that these ordinates oscillate
around some constant value; we can also assume that the transi-
tion from straight section to arc is linear. Filtering out high fre-
quencies enables determining endpoints of the transition curve
(and, consequently, its length) as well as the radius of the circu-
lar arc.

Fig. 8. Curvature waveform in the transition curve region, calculated
based on mobile satellite measurements

The horizontal curvature waveform determined by means of
the virtual chord method may also become the basis for assess-
ing the quality of the recorded satellite signal. This possibility
is illustrated in Fig. 9 and Fig. 10. At some time during the
measurement session, for L ≈ 1725 m, rapid deterioration in
satellite signal quality was recorded, which can be observed as
visible increase of deviations from the mean value on both the
curvature waveform (Fig. 9) and the speed waveform (Fig. 10).
Hence, the virtual chord method makes it possible to detect un-
favorable situations caused by disturbances in signal recording
and, consequently, to indicate the need to introduce corrections
to the mobile satellite measurement procedure in a given track
fragment.

Fig. 9. Curvature waveform illustrating satellite signal quality
deterioration

Fig. 10. Speed of measuring trolley in the region of satellite signal
quality deterioration

4.4. Coordinate determination accuracy
Increasing the accuracy and availability of GNSS measure-
ments is one of the major study areas. Mobile satellite mea-
surements on the rail track conducted in 2009–2015 focused on
the availability assessment for three accuracy levels, which are
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However, this irregularity is not a problem from the point
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determining the curvature of the given geometric layout. This
can easily be confirmed by analyzing the curvature waveform
for a longer track segment (Fig. 7).
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Figure 7 shows the track curvature over initial 300 m of the
test segment. As can be seen, deviations from zero curvature
decrease as a result of speed stabilization at a given level (see
Fig. 5). However, from the practical point of view, of highest
importance is that it is sufficient to filter curvature ordinates to
obtain the correct track shape [35], as in this case there is no
doubt that the presented fragment of the test segment is straight
and its curvature is k = 0. This was confirmed by k(L) diagrams
drawn for further fragments of the test segment.

The k(L) ordinates also need filtering on circular arcs and
transition curves. It results from the curvature waveform in the
transition curve region (Fig. 8) that these ordinates oscillate
around some constant value; we can also assume that the transi-
tion from straight section to arc is linear. Filtering out high fre-
quencies enables determining endpoints of the transition curve
(and, consequently, its length) as well as the radius of the circu-
lar arc.

Fig. 8. Curvature waveform in the transition curve region, calculated
based on mobile satellite measurements

The horizontal curvature waveform determined by means of
the virtual chord method may also become the basis for assess-
ing the quality of the recorded satellite signal. This possibility
is illustrated in Fig. 9 and Fig. 10. At some time during the
measurement session, for L ≈ 1725 m, rapid deterioration in
satellite signal quality was recorded, which can be observed as
visible increase of deviations from the mean value on both the
curvature waveform (Fig. 9) and the speed waveform (Fig. 10).
Hence, the virtual chord method makes it possible to detect un-
favorable situations caused by disturbances in signal recording
and, consequently, to indicate the need to introduce corrections
to the mobile satellite measurement procedure in a given track
fragment.

Fig. 9. Curvature waveform illustrating satellite signal quality
deterioration

Fig. 10. Speed of measuring trolley in the region of satellite signal
quality deterioration

4.4. Coordinate determination accuracy
Increasing the accuracy and availability of GNSS measure-
ments is one of the major study areas. Mobile satellite mea-
surements on the rail track conducted in 2009–2015 focused on
the availability assessment for three accuracy levels, which are
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required for carrying out individual construction and geodesy-
related tasks in railway engineering. These include [13]:
• deformation accuracy (dd) – enabling one to identify the

place and extent of rail track deformations, for which the
maximum horizontal position error was adopted as not ex-
ceeding 1 cm,

• inventory accuracy (di) – applied in rapid stocktaking of
existing rail tracks, for which the maximum horizontal po-
sition error was adopted as not exceeding 3 cm,

• design accuracy (d p) – applied in design and construction
work, for which the maximum horizontal position error was
adopted as not exceeding 10 cm.

It should be emphasized that the above-mentioned three lev-
els of accuracy have been defined on the basis of experience
gained during the implementation of GNSS inventory mea-
surements of railway tracks in 2009–2015 and do not result
from any norms or standards. In the years 2009–2011, in the
research on the availability of high-precision position coordi-
nates, GNSS networks based only on the GPS system were
used, for which the availability of deformation accuracy was
only 3.91%, inventory accuracy was 66.39% and design accu-
racy – 68.14%. In subsequent studies (in 2014), two-system net-
works (GPS/GLONASS) were used, achieving deformation ac-
curacy of 54.48%, inventory accuracy of 89.53% and design ac-
curacy of 93.22%. However, in the research conducted in 2015,
during which multi-system networks were used, without the use
of the Inertial Navigation System (INS), the following accuracy
was obtained: dd = 56.75%, di = 83.15% and d p = 85.39%,
and while using INS system – dd = 88.03%, di = 100% and
d p = 100%. This clearly proves the suitability of mobile satel-
lite measurements for the purposes of stocktaking the railway
track.

The BRIK project [21, 22] included verification of satellite
railway track measurements combined with standard geode-
tic methods [36]. As it turned out, the presented virtual chord
method also offers some possibilities concerning the accuracy
of the obtained results. The basis for this accuracy evaluation
can be the analysis of distances between two adjacent measur-
ing points, provided by (16).

The values of ∆Li÷(i+1) certainly differ, depending on local
speed on the measuring trolley. Therefore, comparing them can
only make sense for a given speed interval (class). It has been
assumed that the speed class is given by the number of measur-
ing points situated over the virtual chord length (the same for
both chords), and the greater the number of these points, the
lower the speed on the track fragment being considered.

For each speed class of ∆Li÷(i+1) values, the mean values
and standard deviations were calculated. The results are col-
lated in Table 1, ordered with respect to the decreasing number
of measuring points in the speed class. The following symbols
are adopted in Table 1: nc – number of points defining the speed
class, Lp and Lk – endpoint coordinates of the given speed in-
terval, ∆Lp÷k – length of the speed interval, np÷k – number of
measuring points in the interval, Vi÷(i+1) – mean speed, σV –
standard deviation of speed, ∆Li÷(i+1) – average distance be-
tween two adjacent measuring points, σ∆L – standard deviation
of the distance between adjacent points.

It results from Table 1 that the lengths of the intervals com-
prising a given speed class differ distinctly. However, regardless
of the length of a given speed interval (corresponding to the
number of measuring points composing it), a very clear view of
the situation has been obtained. Although in each speed class,
the values of Vi÷(i+1) and ∆Li÷(i+1) differ, their mean values
increase gradually and steadily with decreasing nc.

The most surprising result of this analysis were the obtained
values of standard deviation of the distance between two adja-
cent measuring points. In nearly all cases, these deviation val-
ues did not exceed 0.5 mm and 1% of the mean value. From
the point of view of GNSS measurement accuracy assessment,
this result is of fundamental importance, as it contradicts tra-
ditional skepticism concerning applicability of these measure-
ments. However, one basic condition should be met in the en-
tire measuring procedure – the measurements should be prop-
erly planned and conducted. The analysis presented in the paper
confirms the potential of the applied measuring method, simul-
taneously indicating potential threats. Rapid quality deteriora-
tion of the received signal, shown in Fig. 9 and Fig. 10, which
took place during the measuring session, persisted until the end
of measurement and led to the increase of σ∆L by several times.

5. SUMMARY
In engineering practice, the type and characteristics of the hor-
izontal curvature existing on a given geometric track layout
are most frequently identified indirectly – based on the values
of sagittas measured from the chord stretched along the track.
Radical improvement in this situation is expected to be brought
about by the method of mobile satellite measurements, devel-
oped in Poland for over a decade now. The aim of the ongoing
BRIK research project is to obtain an implementation solution.

Further use of the sagitta chart method would soon become
obsolete if there existed a direct method to determine curva-
ture. In [31], the assumptions of the novel method to determine
horizontal curvature were formulated. This method is based on
inclination angle changes of a moving chord in the Cartesian
coordinate system. It was verified on an unambiguously de-
fined elementary geometric layout of the railway track. The pro-
posed method may prove extremely applicable when geometri-
cal characteristics of the track axis calculated from measure-
ments are not known and the basic goal is to determine them.

In the article, applicability of the moving chord method was
analyzed. The applied variant of this method, referred to as the
method of two virtual chords, consists in maneuvering with
only one GNSS receiver. The assumptions of the method to
determine railway track axis curvature were given, along with
the assessment of its application in the performed campaign of
mobile satellite measurements. The measured track axis was
shown in the PL-2000 coordinate system. Based on the mea-
sured coordinates, the speed of the measuring trolley during the
measurement was calculated.

Basic activities aimed at determining the horizontal curva-
ture of the track. As it turned out, the obtained k(L) wave-
forms differed radically from those presented for model sys-
tems [31], where full compatibility was observed between the
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required for carrying out individual construction and geodesy-
related tasks in railway engineering. These include [13]:
• deformation accuracy (dd) – enabling one to identify the

place and extent of rail track deformations, for which the
maximum horizontal position error was adopted as not ex-
ceeding 1 cm,

• inventory accuracy (di) – applied in rapid stocktaking of
existing rail tracks, for which the maximum horizontal po-
sition error was adopted as not exceeding 3 cm,

• design accuracy (d p) – applied in design and construction
work, for which the maximum horizontal position error was
adopted as not exceeding 10 cm.

It should be emphasized that the above-mentioned three lev-
els of accuracy have been defined on the basis of experience
gained during the implementation of GNSS inventory mea-
surements of railway tracks in 2009–2015 and do not result
from any norms or standards. In the years 2009–2011, in the
research on the availability of high-precision position coordi-
nates, GNSS networks based only on the GPS system were
used, for which the availability of deformation accuracy was
only 3.91%, inventory accuracy was 66.39% and design accu-
racy – 68.14%. In subsequent studies (in 2014), two-system net-
works (GPS/GLONASS) were used, achieving deformation ac-
curacy of 54.48%, inventory accuracy of 89.53% and design ac-
curacy of 93.22%. However, in the research conducted in 2015,
during which multi-system networks were used, without the use
of the Inertial Navigation System (INS), the following accuracy
was obtained: dd = 56.75%, di = 83.15% and d p = 85.39%,
and while using INS system – dd = 88.03%, di = 100% and
d p = 100%. This clearly proves the suitability of mobile satel-
lite measurements for the purposes of stocktaking the railway
track.

The BRIK project [21, 22] included verification of satellite
railway track measurements combined with standard geode-
tic methods [36]. As it turned out, the presented virtual chord
method also offers some possibilities concerning the accuracy
of the obtained results. The basis for this accuracy evaluation
can be the analysis of distances between two adjacent measur-
ing points, provided by (16).

The values of ∆Li÷(i+1) certainly differ, depending on local
speed on the measuring trolley. Therefore, comparing them can
only make sense for a given speed interval (class). It has been
assumed that the speed class is given by the number of measur-
ing points situated over the virtual chord length (the same for
both chords), and the greater the number of these points, the
lower the speed on the track fragment being considered.

For each speed class of ∆Li÷(i+1) values, the mean values
and standard deviations were calculated. The results are col-
lated in Table 1, ordered with respect to the decreasing number
of measuring points in the speed class. The following symbols
are adopted in Table 1: nc – number of points defining the speed
class, Lp and Lk – endpoint coordinates of the given speed in-
terval, ∆Lp÷k – length of the speed interval, np÷k – number of
measuring points in the interval, Vi÷(i+1) – mean speed, σV –
standard deviation of speed, ∆Li÷(i+1) – average distance be-
tween two adjacent measuring points, σ∆L – standard deviation
of the distance between adjacent points.

It results from Table 1 that the lengths of the intervals com-
prising a given speed class differ distinctly. However, regardless
of the length of a given speed interval (corresponding to the
number of measuring points composing it), a very clear view of
the situation has been obtained. Although in each speed class,
the values of Vi÷(i+1) and ∆Li÷(i+1) differ, their mean values
increase gradually and steadily with decreasing nc.

The most surprising result of this analysis were the obtained
values of standard deviation of the distance between two adja-
cent measuring points. In nearly all cases, these deviation val-
ues did not exceed 0.5 mm and 1% of the mean value. From
the point of view of GNSS measurement accuracy assessment,
this result is of fundamental importance, as it contradicts tra-
ditional skepticism concerning applicability of these measure-
ments. However, one basic condition should be met in the en-
tire measuring procedure – the measurements should be prop-
erly planned and conducted. The analysis presented in the paper
confirms the potential of the applied measuring method, simul-
taneously indicating potential threats. Rapid quality deteriora-
tion of the received signal, shown in Fig. 9 and Fig. 10, which
took place during the measuring session, persisted until the end
of measurement and led to the increase of σ∆L by several times.

5. SUMMARY
In engineering practice, the type and characteristics of the hor-
izontal curvature existing on a given geometric track layout
are most frequently identified indirectly – based on the values
of sagittas measured from the chord stretched along the track.
Radical improvement in this situation is expected to be brought
about by the method of mobile satellite measurements, devel-
oped in Poland for over a decade now. The aim of the ongoing
BRIK research project is to obtain an implementation solution.

Further use of the sagitta chart method would soon become
obsolete if there existed a direct method to determine curva-
ture. In [31], the assumptions of the novel method to determine
horizontal curvature were formulated. This method is based on
inclination angle changes of a moving chord in the Cartesian
coordinate system. It was verified on an unambiguously de-
fined elementary geometric layout of the railway track. The pro-
posed method may prove extremely applicable when geometri-
cal characteristics of the track axis calculated from measure-
ments are not known and the basic goal is to determine them.

In the article, applicability of the moving chord method was
analyzed. The applied variant of this method, referred to as the
method of two virtual chords, consists in maneuvering with
only one GNSS receiver. The assumptions of the method to
determine railway track axis curvature were given, along with
the assessment of its application in the performed campaign of
mobile satellite measurements. The measured track axis was
shown in the PL-2000 coordinate system. Based on the mea-
sured coordinates, the speed of the measuring trolley during the
measurement was calculated.

Basic activities aimed at determining the horizontal curva-
ture of the track. As it turned out, the obtained k(L) wave-
forms differed radically from those presented for model sys-
tems [31], where full compatibility was observed between the
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horizontal curvature existing on a given geometric track lay-
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be brought about by the method of mobile satellite measure-
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of the ongoing BRIK research project is to obtain an imple-
mentation solution.
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inclination angle changes of a moving chord in the Cartesian 
coordinate system. It was verified on an unambiguously defined 
elementary geometric layout of the railway track. The proposed 
method may prove extremely applicable when geometrical char-
acteristics of the track axis calculated from measurements are 
not known and the basic goal is to determine them.

In the article, applicability of the moving chord method was 
analyzed. The applied variant of this method, referred to as the 
method of two virtual chords, consists in maneuvering with 
only one GNSS receiver. The assumptions of the method to 
determine railway track axis curvature were given, along with 
the assessment of its application in the performed campaign of 
mobile satellite measurements. The measured track axis was 
shown in the PL-2000 coordinate system. Based on the mea-
sured coordinates, the speed of the measuring trolley during the 
measurement was calculated.

Basic activities aimed at determining the horizontal curva-
ture of the track. As it turned out, the obtained k(L) waveforms 
differed radically from those presented for model systems [31], 
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where full compatibility was observed between the obtained 
curvature values and those used as the basis for designing 
the geometry of the analyzed track segment. This might be 
caused by track deformations resulting from its exploitation, 
but the main cause seems to be measuring trolley trajectory 
disturbances taking place during the measurement. However, in 
practice, this problem can easily be overcome by filtering the 
measured track axis ordinates to obtain the correct shape – this 
refers to all track segments: straight sections, circular arcs and 
transition curves.

The virtual chord method can also become the basis for 
quality assessment of the satellite signals received. During the 
measuring session, rapid deterioration in satellite signal qual-
ity was observed in the form of visible increase of deviations 
from the mean value on both the curvature waveform and the 
speed waveform. The procedure adopted for assessing the 
obtained accuracy involved the analysis of distances between 
two adjacent measuring points. For the interval of correct oper-
ation of satellite receivers, the performed analysis gave a clear 
and logical view of the existing situation. The most surprising 
result of this analysis were the calculated values of standard 
deviation of the distance between points. In nearly all cases, 
these deviation values did not exceed 0.5 mm and 1% of the 
mean value. From the point of view of GNSS measurement 
accuracy assessment, this result is of fundamental importance, 
as it contradicts traditional skepticism concerning applicability 
of these measurements.
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