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We provide an analysis of a family of device-independent quantum key distribution (QKD) protocols that has
the following features. (a) The bits used for the secret key do not come from the results of the measurements on
an entangled state but from the choices of settings. (b) Instead of a single security parameter (a violation of some
Bell inequality) a set of them is used to estimate the level of trust in the secrecy of the key. The main advantage
of these protocols is a smaller vulnerability to imperfect random number generators made possible by feature
(a). We prove the security and the robustness of such protocols. We show that using our method it is possible to
construct a QKD protocol which retains its security even if the source of randomness used by communicating
parties is strongly biased. As a proof of principle, an explicit example of a protocol based on the Hardy’s paradox
is presented. Moreover, in the noiseless case, the protocol is secure in a natural way against any type of memory
attack, and thus allows one to reuse the device in subsequent rounds. We also analyze the robustness of the
protocol using semidefinite programming methods. Finally, we present a postprocessing method, and observe
a paradoxical property that rejecting some random part of the private data can increase the key rate of the
protocol.
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I. INTRODUCTION

Developments in quantum mechanics lead to emergence of
many new research areas including quantum cryptography [1]
and quantum computation [2]. The goal of quantum informa-
tion theory is to develop new technologies for information
processing that will take us from the traditional classical
information age into the age of quantum information. Quantum
key distribution [3], the most secure known way for sending
secret messages, is a significant achievement in the field of
cryptography. It’s techniques allow Alice and Bob to establish
a shared secret key using an insecure quantum channel and
public communication.

Besides the validity of the laws of quantum physics,
the security of all QKD schemes relies on some other
assumptions. The foremost among them, always present in
any such protocol, is that all parties concerned have secure
laboratories, i.e., at no stage should there be a leakage of
secure classical data from any laboratory. This assumption is
crucial and cannot be removed. Another basic assumption is
that all players have complete control over their own physical
devices, i.e., they have full knowledge over what quantum
system their apparatuses use and they also know the exact
operation of their measuring devices, etc. The goal of the
device-independent [4] analysis of quantum protocols is to
eliminate the latter assumption, viz. players can distrust the
source of particles and they can also distrust their measuring
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apparatuses as they might have been prepared by a malicious
party.

In 2007, Acı́n et al. [5] introduced a device-independent
QKD protocol secure against collective attacks. Earlier ques-
tions of a similar type were also addressed by several
researchers in different contexts [6–8]. In 2011, Masanes et al.
[9] provided a more general security scheme based on causally
independent measurement processes. The security of all these
protocols is undermined as the measurement at any step may
depend on the classical or quantum memory of all previous
inputs and outputs. Recently secure protocols where device
re-use is allowed were introduced [10,11].

In all protocols mentioned above, the parties make mea-
surements on entangled subsystems, check for a violation of
some Bell inequality to see if their outcomes are random
from the eavesdropper’s point of view and, if indeed they
are, use them as their secret key. In this manuscript we
present a family of protocols which are significantly different.
The parties announce their outcomes and use their choices
of measurement settings for key generation. Our protocol
shares this property with the non-device-independent prepare-
and-measure Scarani-Acı́n-Ribordy-Gisin 2004 (SARG04)
protocol [12].

The potential benefit of flipping the roles of outcomes
and settings is that the latter are chosen by the parties using
their random number generators (RNGs), which are typically
assumed to be perfect, while the former are obtained from
measurements on the systems supplied by the eavesdropper. It
was shown that even small imperfectness in RNGs are a big
threat to QKD [13,14]. We demonstrate that they are a much
bigger threat to the protocols where the key is obtained from
the outcomes than from the settings. More precisely, we take
a standard device-independent QKD and show that it cannot
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be secure if the bias of RNGs is greater than 0.1 while our
protocol allows for positive key rates far beyond this point.
This is the main motivation of our approach.

Obviously, the parties need a way to convince themselves
that the correlations they share cannot be classical. Checking
for a violation of a Bell inequality is only one possible way of
doing so. Another option is to, e.g., verify the so-called Hardy’s
paradox [15,16]. There, more than a single security parameter
is estimated, which gives the parties more knowledge about
the correlations they share. In [17–19] this approach has been
used to improve the rate of certified randomness.

The main result of this paper is the presentation of a protocol
which remains secure, even if the source of randomness used
by the parties is strongly biased. Besides that, the protocol
serves as a proof of principle that one can use the bits
from private random number generators as a key for the
device-independent QKD. It is shown how a protocol with
these properties can be constructed and how its security can
be proven. These features may be exploited by some future
protocols.

We generalize the results of [9] stating that a condition
imposed on a single Bell inequality may certify the randomness
of the outcomes. Here we consider the case when there
are many parameters used, and the key is formed from the
measurement settings with the outcomes made public. What is
more, we show that this intrinsically many-valued estimation
can be as simple to conduct experimentally as the standard
Bell scenario.

Apart from proving the security of such protocols, we
provide a way of using semidefinite programming relaxations
to evaluate their key rates. We give explicit numerical results
for a protocol basing on the original Hardy’s paradox.

A. Organization of the paper

The organization of our paper is as follows.
We start in Sec. II with recapitulation of the original Hardy’s

paradox, show the uniqueness of the Hardy state (Sec. II A),
then we describe a QKD protocol and show that in the perfect
case it allows for reusing the devices (Sec. II B).

In Sec. III we present the main motivation of the paper
by discussing the case when the distribution of settings is
biased, and compare the presented protocol with other [9]
QKD schemes.

We develop methods that allow one to analyze the in-
troduced family of protocols when the measurements are
causally independent in Sec. IV. In Sec. IV A we describe
the notation used in the analysis, and in Sec. IV B the system
configuration. Section IV C discusses the definition of the
guessing probability of a measurement setting.

The following Sec. V presents a method of evaluation
of the guessing probability of a measurement setting using
semidefinite programming.

Section VI discusses the methods of evaluating robustness
of the protocol and describes several strategies of postprocess-
ing that allow one to increase the privacy.

The key rates obtained for these strategies are evaluated,
again using semidefinite programming, for the case of Hardy’s
paradox, in Sec. VII.

II. HARDY’S PARADOX AND QUANTUM KEY
DISTRIBUTION

In this section we introduce Hardy’s paradox [15], and
describe a quantum key distribution protocol based on it.

Consider a physical system consisting of two subsystems
shared between two distant parties. The two observers (Alice
and Bob) have access to one subsystem each. Both can choose
one of two binary measurement settings labeled 0 and 1,
with outcomes 0 and 1. The settings are chosen at random
in subsequent runs of the experiment. Settings are denoted by
letters A and B, while outcomes by a and b, for Alice and Bob
respectively.

A. Hardy’s state

The Hardy-type argument starts with the following set of
four joint probability conditions for two two-level systems:

P (a = 0,b = 0|A = 0,B = 0) ≡ q >0,

P (a = 0,b = 0|A = 1,B = 0) =0,
(1)

P (a = 0,b = 0|A = 0,B = 1) =0,

P (a = 1,b = 1|A = 1,B = 1) =0.

Let us find the set of states ρ for which the conditions of the
Hardy-type argument given in (1) are satisfied for a given
pair of observables. Let us denote the eigenstates of the
observable X = 0(1) for party P (= A,B) by | 0〉P (| 0′〉P ) and
| 1〉P (| 1′〉P ) for the outcome 0 and 1, respectively. We now
associate a product state with every condition in the test (1),
say

|φ3〉 = |0〉A|0〉B,

|φ2〉 = |0′〉A|0〉B,
(2)

|φ1〉 = |0〉A|0′〉B,

|φ0〉 = |1′〉A|1′〉B.

Let

|0′〉P ≡ αP |0〉P + βP |1〉P , and
(3)

|1′〉P ≡ β∗
P |0〉P − α∗

P |1〉P ,

where |αP |2 + |βP |2 = 1 and 0 < |αP | < 1 for P = A,B. The
last condition is due to the noncommutativity of X = 0 and
X = 1.

Let S be the subspace spanned by the three linearly
independent states |φ0〉, |φ1〉, and |φ2〉 given in (2). To satisfy
the conditions given in (1), ρ has to be confined to a subspace
S⊥ of C2 ⊗ C2, which is orthogonal to S but not orthogonal
to |φ3〉. The dimension of S⊥ is one. Therefore, ρ must be an
unique (up to a local unitary) pure two-qubit entangled state,
which we denote |ψH 〉. Thus no mixed state of two spin-1/2
particles will satisfy Hardy’s argument [20]. It can also be
shown that no two maximally entangled qubit states satisfy
Hardy’s argument [15].

The four product states {|φi〉}3
i=0 are linearly independent;

hence, by the Gram-Schmidt orthogonalization procedure,
one can find an orthonormal basis {|φ′

i〉}3
i=0, in which state
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|φ′
3〉 = |ψH 〉 is its last member:

|φ′
0〉 = |φ0〉,

(4)

|φ′
i〉 = |φi〉 − ∑i−1

j=0〈φ′
j |φi〉|φ′

j 〉√
1 − ∑i−1

j=0 |〈φ′
j |φi〉|2

, for i = 1,2,3.

The probability q in conditions (1), for the Hardy state, |ψH 〉,
reads

q = |〈ψH |φ3〉|2 = 1 −
2∑

i=0

|〈φ′
i |φ3〉|2 = |αAαB |2|βAβB |2

1 − |αAαB |2 .

Its maximum is 5
√

5−11
2 for |αA| = |αB | =

√√
5−1
2 [21].

B. Protocol

We consider a scenario in which two distant parties, Alice
and Bob, want to generate a secure key. They are allowed to use
public classical communication. The QKD protocol proceeds
as follows.

S1. In the initial phase of the protocol, the two parties obtain
pairs of entangled qubits. In each round one of the qubits from
each pair is given to Alice, and the other to Bob. Each pair is
called a subsystem.

S2. Alice randomly chooses whether to measure A = 0, or
A = 1 on each of her qubits. Bob does the same by choosing
randomly between measurements of B = 0 and B = 1. Parties
repeat such measurements on all subsystems, and collect
statistics. In each run, labeled by i, they write down the chosen
observables, Ai and Bi , respectively, together with the obtained
results, ai and bi .

S3. Check for eavesdropping. For some randomly selected
runs, Alice and Bob both announce their measurement choices
(Ai and Bi) and the corresponding outcomes (ai and bi).
Alice and Bob publicly compare their announced measurement
choices in order to estimate security parameters. For this reason
this phase is called the estimation phase.

S4. For the remaining runs, Alice and Bob announce only
their measurement outcomes, not their bases. Next, to generate
their key, they select only those runs for which both of them
got outcome 0. (Alice and Bob ignore those unrevealed pairs
that do not have outcomes on both sides equal to 0, so they are
working on some subset of the states.)

S5. For each run with outcomes 0, they assign a bit value
according to their settings.

If the pairs of entangled qubits emitted by the shared source
are all perfect copies of the two-qubit “Hardy” states |ψH 〉
given by Eqs. (4) the assigned bit values will be perfectly
correlated due to (1). That is, in the ideal case they generate
the same key. In the noisy case, key reconciliation is required.

Device-independent approach allows one to quantify all
possible interventions of the eavesdropper. These may include
influencing the internal working of the devices used by Alice
and Bob, e.g., by establishing any type of correlation, by
coupling to the state, by emitting a different state, or by using
measurement settings different from those specified by the
protocol.

As mentioned earlier, the ideal Hardy test (1) for maximum
probability of success q = 5

√
5−11
2 is fully device independent

[22]—there is a unique quantum probability distribution
associated with this value. The conditions (1) assure that
both parties got outcome 0 only if they have chosen the same
measurement basis. Then we have

0 < P (a = 0,b = 0|A = 0,B = 0) = 5
√

5 − 11

2

< P (a = 0,b = 0|A = 1,B = 1) =
√

5 − 2

for a given set of observables and the choice of observable
on each side is fully random. The protocol is secure against
the most general form of collective memory attacks. Unfor-
tunately, this case requires perfect experimental data which is
not possible to obtain in practice. The remaining part of this
paper analyzes the noisy case.

III. BIASED SOURCES OF RANDOMNESS

Before we move to the detailed analysis of the protocol in
the case with imperfect experimental data let us present the
main motivation of this approach. To this end we will compare
the robustness to compromised random number generators in
our protocol and the standard one based on CHSH inequality.
In both cases we assume that the observed data corresponds
to what an experimenter would expect from perfect states and
devices.

A common assumption in QKD states that the source of
randomness is perfect, meaning that settings are i.i.d. with a
probability distribution defined by numbers

Pperfect(A,B) = [P (0,0) = pApB,P (0,1) = pA(1 − pB),

P (1,0) = (1 − pA)pB,P (1,1) = (1 − pA)(1 − pB)],

(5)

with pA = pB = 1
2 for the uniform probability distribution.

In Sec. VII B 2 we introduce a nonuniform probability
distribution with pA = pB = 1

2 (
√

5 − 1).
In this section we consider the case in which the average

probability distribution of the source of randomness is given
by Eq. (5), but in particular runs, the probability distribution
is biased in a way known to eavesdropper. For the sake
of simplicity we consider biases modeled by changing the
parameters pA and pB to pA ± ε and pB ± ε, respectively,
for given ε, which gives four possible biased distributions,
[Pbiased,i(A,B)]i=1,2,3,4.

It is easy to see that the average distribution (5) can be
obtained only if the proportions of all biased distributions in
the total number of runs are equal.

Note that if we know only the average distribution given
by Eq. (5), then for runs with a particular biased distribu-
tion Pbiased,i(A,B), the observed conditional probabilities are
under- or overestimated, viz.

Pobserved(a,b|A,B) = Pactual(a,b|A,B)
Pbiased,i(A,B)

Pperfect(A,B)
. (6)

Let us consider the case without noise described by Eq. (1)
with

P (a = 0,b = 0|A = 0,B = 0) = q = 5
√

5 − 11

2
,
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FIG. 1. (Color online) Comparison of guessing probabilities of
key values certified with the protocols using Hardy paradox (solid
blue line) and CHSH inequality (dotted black line) in the case when
the distribution of settings is biased. ε refers to the bias defined in
Sec. III.

and thus with

P (a = 0,b = 0|A = 1,B = 1) = q̃ =
√

5 − 2, (7)

and with nonuniform distribution of settings. Then, for a
given biased distribution Pbiased,i(A,B), the probability that
the generated key is 0, Pi,key=0 and is given by [cf. Eq. (14a)]

Pi,key=0 ≡ qPbiased,i(0,0)

qPbiased,i(0,0) + q̃Pbiased,i(1,1)
.

The guessing probability is given by Pguess,i =
max(Pi,key=0,1 − Pi,key=0), since the eavesdropper tries
to guess the more probable key value. To obtain the average
guessing probability this expression has to be averaged over
all four possible biased probability distributions, namely

4∑
i=1

1

4
Pguess,i . (8)

Guessing probabilities for different ε with nonuniform distri-
bution of settings are shown in Fig. 1.

In order to compare the efficiency of the presented protocol
with other QKD protocols, we use the method of [23,24] to
evaluate the guessing probability of the outcomes of Alice
certified by the maximal violation of the CHSH inequality with
uniform, but biased, distribution of settings,1 We consider the

1The phrase uniform, but biased distribution may sound a little
bit paradoxical. We mean by this phrase the following situation in
which we get a series of random values. Each element of the series is
generated with some probability distribution, which does not have to
be uniform; thus it may be biased. Nonetheless, we assume that the
distribution averaged over the whole series is uniform; pA = pB = 1

2
in Eq. (5). Similarly the nonuniform biased distribution refers to a
situation with a series of distributions biased in some way, but on
average giving the desired distribution.

bound on the guessing probability implied by the observed
value of 2

√
2 of the following expression:

4[Pbiased,i(0,0)C(0,0) + Pbiased,i(0,1)C(0,1)

+ Pbiased,i(1,0)C(1,0) − Pbiased,i(1,1)C(1,1)],

where 4 is the inverse of the uniform probability of each pair
of settings if the distribution were unbiased, and C(A,B) is
the correlation between outcomes, when the pair of settings A

and B is chosen,

C(A,B) ≡ P (0,0|A,B) − P (0,1|A,B)

− P (1,0|A,B) + P (1,1|A,B).

Similarly, as in the case of the Hardy protocol, the guessing
probability has to be averaged over cases with different biases.
The results are shown in Fig. 1. We see that for ε ≈ 1

10
the Hardy protocol is still able to work, whereas the CHSH
protocol gives zero key rate.

IV. METHODS FOR ANALYSIS OF QUANTUM
KEY DISTRIBUTION PROTOCOLS BASED

ON HARDY-LIKE PARADOXES

Below we describe the notation used within this paper, the
arrangement used in the analysis of the QKD, and give more
details about the phases of the QKD protocol.

For the sake of simplicity we consider here a case with
perfect RNGs. This can be extended in a natural way to the
case with biased probability distributions.

A. Notation and arrangement

In the perfect case, we can use the uniqueness of the Hardy
state to protect against the collective memory attacks, whereas
if the noise occurs we need to assume that the measurements
are causally independent, meaning that their operators com-
mute. This is justified by the no-signaling principle if we use
many spatially separated measuring devices and perform the
measurements on all emitted pairs simultaneously, or if we use
a single measuring device that does not have a memory.

We treat successively emitted pairs of particles as separated
subsystems. These subsystems together with the subsystem
of Eve form one system. We assume that the order of the
subsystems is irrelevant.

Let L0 be a set of labels of pairs of Alice’s and Bob’s
subsystems. For l ∈ L0 we denote the Hilbert space of the
relevant subsystems of Alice and Bob by HA

l and HB
l ,

respectively. The subsystem of Eve lives on a Hilbert space
HE . We assume that all spaces are finite dimensional. The
Hilbert space of the whole system is

H ≡ HE ⊗
∏
l∈L0

HA
l ⊗ HB

l . (9)

Vectors on HE are denoted by |e〉E , and on HP
l for P ∈ {A,B}

by |e〉Pl .
For every pair of subsystems both Alice and Bob perform

one of the two measurements, each labeled by either 0 or
1. The measurements are binary POVMs denoted by M̃P

l,X,x ,
where P ∈ {A,B} denotes the party, l ∈ L0 denotes the pair
of subsystems, X ∈ {0,1} denotes the party’s setting, and x ∈
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{0,1} denotes the outcome. The measuring operator M̃P
l,X,x acts

on HP
l .

The natural extension of the operator M̃P
l,X,x to the space H

is denoted by MP
l,X,x , and acts with identity operators on spaces

different to HP
l . From the construction, M

P1
l1,X1,x1

commutes

with M
P2
l2,X2,x2

if P1 �= P2 or l1 �= l2. Recall that l ∈ L0, and
we denote by al and bl the outcomes, and by Al and Bl the
settings, of Alice and Bob, respectively.

Let SE be an arbitrary set, and {|e〉E }e∈SE be a set of
orthogonal states on HE . Without any loss of generality,
we assume the concerning state in the device-independent
scenario is of the following form:

|�〉ABE ≡
∑
e∈SE

ce|φe〉, (10)

with ce ∈ C,
∑

e∈SE
|ce|2 = 1, where

|φe〉 ≡ |e〉E ⊗
⎛
⎝⊗

l∈L0

|e〉Al ⊗ |e〉Bl

⎞
⎠,

P ∈ {A,B}, l ∈ L0, and |e〉Pl is a state onHP
l . Eve is allowed to

choose the state |�〉ABE , and the measuring operators {MP
l,X,x}.

For a subsystem l a conditional probability distribution
Pl(a,b|A,B) = [Pl(a,b|A,B)]a,b,A,B can be defined by

Pl(a,b|A,B) ≡ Tr
(
M̃A

l,a,AM̃B
l,b,Bρl

)
, (11)

where ρl is the state obtained by tracing all other subsystems
in (10).

Let us consider a family of sets of NB functionals,
{Hk}k=1,...,NB

, acting on conditional probability distributions
of the form P(a,b|A,B) = [P (a,b|A,B)]a,b,A,B (thus Pl fits
this form). These functionals are defined by a set of values
{αk,a,b,A,B}, with k = 1, . . . ,NB , a,b,A,B ∈ {0,1}, and are
linear combinations of conditional probabilities of the form

Hk[P] =
∑

a,b,A,B

αk,a,b,A,BP (a,b|A,B). (12)

From Eq. (1), it follows that, in the case of the protocol using
the original Hardy’s paradox, α1,0,0,0,0 = 1, α2,0,0,1,0 = −1,
α3,0,0,0,1 = −1, α4,1,1,1,1 = −1, and the remaining αk,a,b,A,Bs
are equal to 0.

B. Setups of interest

The protocol presented in this paper is device independent,
since it relies only on the observed statistics. The main aim
is to show that it is possible to prove the security of a key
generated out of settings.

In order to illustrate what orders of key rates can be expected
to occur in real experiments, we refer to the setup of each
subsystem with Hardy’s measurements and the following state:

ρ(η) ≡ (1 − η)
1

4
+ η|ψH 〉〈ψH |. (13)

The observed statistics P(a,b|A,B) do not depend on the
distribution of settings, P(A,B); nevertheless, the key rate
does. We consider two distributions: uniform and the one
described in Sec. VII B 2, referred to further as nonuniform.

An additional benefit of using nonuniform distribution is
the fact that it requires less randomness.

C. Guessing probability of a setting

Let us consider a particular subsystem l. We are interested
in conditional probabilities of Alice’s settings A, when we
know that both Alice and Bob got the outcome 0, namely
P (A|a = 0,b = 0). These probabilities may be expressed in
terms of P(a,b|A,B) with use of the Bayes rule, as

P (A = 0|a = 0,b = 0) = σ

σ + ν
, and (14a)

P (A = 1|a = 0,b = 0) = ν

σ + ν
, (14b)

where

σ ≡ P (a = 0,b = 0|A = 0,B = 0)P (A = 0,B = 0)

+P (a=0,b=0|A = 0,B = 1)P (A = 0,B = 1), (15a)

ν ≡ P (a = 0,b = 0|A = 1,B = 0)P (A = 1,B = 0)

+P (a=0,b=0|A = 1,B = 1)P (A = 1,B = 1). (15b)

Let h = (h1, . . . ,hNB
) denote the values of functionals

defined by Eq. (12) over the probability distribution Pl defined
by Eq. (11), so that hk = Hk[Pl]. For the setup of interest, (13),
h is given by the following [cf. (1)]:

h1 = ηq + 1 − η

4
,

(16)

h2 = h3 = h4 = 1 − η

4
.

Now, let us ignore the full knowledge about Pl , and consider
only the vector h. We introduce two functions, �0(h) and �1(h),
that give upper bounds for values of Pl(A = 0|a = 0,b = 0)
and Pl(A = 1|a = 0,b = 0), respectively, allowed by quantum
mechanics. Note that these functions do not depend on l,
since they do not make any assumptions about the state and
the measurements, so they give device-independent bounds.
Examples of these functions for h given by Eq. (16) are shown
in Fig. 2.

V. SEMIDEFINITE PROGRAMMING RELAXATION
OF THE GUESSING PROBABILITY

This section describes how to use semidefinite program-
ming [25] methods to evaluate upper bounds for functions
�0(h) and �1(h). Expressing them as a semidefinite problem
is desired, since such programs may be efficiently treated
numerically using the primal-dual interior point algorithm
[26,27].

In [9] the authors have been able to use a hierarchy of
semidefinite programs from [23,24], called NPA, to find upper
bounds for their case. It was possible because they were
interested in the probability of guessing the outcome if the
setting is known, P (a|A). These probabilities appear directly
in the semidefinite programs as problem variables. In our case
there is no variable corresponding to P (A|a,b), and therefore
we have to find it another way.
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FIG. 2. (Color online) Functions �0(h) and �1(h) for uniform
and nonuniform (see Sec. VII B 2) distribution of settings. These
functions give upper bounds for values of P (A = 0|a = 0,b = 0)
and P (A = 1|a = 0,b = 0) for h given by (16).

Let us consider a subsystem l. Without loss of generality,
using no signaling principle, we may assume that the eaves-
dropper performs her measurement with result e before Alice
and Bob start the protocol. This does not reduce the generality
of the attacks available to the eavesdropper [9]. Moreover,
to consider probability distributions allowed for a particular
subsystem l, we may trace out other subsystems and perform
optimization over bipartite states.

To use the NPA method, we introduce functions �̃0(h),
and �̃1(h), which give the relevant upper bounds on P (A|a =
0,b = 0) assuming that the state under consideration is pure.
Then �0(h), and �1(h), are concave hulls of �̃0(h), and �̃1(h),
respectively.

We are interested in using the NPA hierarchy in order to
calculate �̃0(h). Since the expressions in (14a) and (14b) are
not linear in variables occurring in NPA, they cannot by used
either as target, or as constraint.

To overcome this difficulty, we notice that both σ and ν

in (15a) and (15b) are linear in NPA variables. In the general
case we need to perform the optimization in two stages. In the
first stage we impose the constraints given by the vector h,
which can be easily done in the NPA hierarchy, and calculate
the scope of the allowed values of σ for given h. In the second
stage we calculate the scope of the allowed values of ν for given
h and given value of σ , for some grid of values. This way we
obtain a boundary of some region for which it is possible to
evaluate the bounds on both (14a) and (14b).

For Hardy’s paradox the optimization is much simpler.
In this case σ is a function of h. It is easy to see that the
expressions (14a) and (14b) achieve their maximal values, if ν

gets it’s minimal or maximal value, respectively.
Obviously calculating a function for all possible values of

a continuous parameter is impossible. Instead we calculate it
only for some grid of values. Now, if we represent the function
with a set of vectors, each containing the coordinates of a single
point together with the value of the function, then the problem
of linearly constrained optimization over this function can be
solved with linear programming. Examples of such problems
are programs stated in Eqs. (17) and (18) further in this paper.

VI. EVALUATING KEY RATES AND POSTPROCESSING
STRATEGIES

Here we describe the method of evaluating the key rate
achieved by protocols based on Hardy-like paradoxes. We
also discuss some postprocessing strategies that allow one to
increase the key rate.

A. Basic case

In the simplest case described in Sec. II B, the best thing the
eavesdropper may do is to maximize his guessing probability,
namely P (1)

guess(h). Subsystems can be divided into two groups.
For states within the first group, the eavesdropper makes a
guess that the key value is 0, and for states from the second
group, she guesses the key value 1.

The probability that a subsystem belongs to the first group
is p0. The average values of the Bell observables (12) (or
statistics) from this group is given by h0, which allows for
guessing 0 by the eavesdropper with the probability upper
bounded by �0(h0). The remaining part of subsystems (with
probability p1 = 1 − p0) has the statistics given by h1, and the
eavesdropper guesses correctly the key value 1 with probability
not exceeding �1(h1).

The solution of the following program gives the relevant
upper bound for the average guessing probability:

maximize p0�0(h0) + p1�1(h1),
(17)

subject to p0h0 + p1h1 =h,

p0 + p1 =1,

p0,p1 �0.

Solutions of this program for h given by (16) are shown in
Fig. 3.

The key rate is given by the following formula:

K1 = P (a = 0,b = 0)
{ − log2

[
P (1)

guess(h)
] − H (A|B)

}
,

where both expressions, P (a = 0,b = 0) and the conditional
entropy H (A|B), can be evaluated from the setup. Examples

 0.5

 0.6

 0.7

 0.8

0  0.005  0.01  0.015

gu
es

si
ng

 p
ro

ba
bi

lit
y

η

nonuniform
uniform

FIG. 3. (Color online) Solutions of the program (17) for cases
with uniform and nonuniform (see Sec. VII B 2) distribution of
settings.
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FIG. 4. (Color online) Values of conditional entropies of the
setting of Alice given the setting of Bob, H (A|B), if outcomes on
both sides were equal to 0. The cases with uniform and nonuniform
distribution of settings, and with and without dropping strategy, are
considered. The η parameter refers to the state given by Eq. (13).
In the case with nonuniform distribution, the line referring to use of
dropping strategy is slightly above the one without dropping.

of conditional entropies for different setups from Sec. IV B
and postprocessing strategies are shown in Fig. 4.

B. Dropping strategy

In a long sequence of N runs, the number of runs with both
outcomes equal to 0 is

n ≈ P (a = 0,b = 0)N.

Eve in p0 fraction of all runs tries to guess that the key value
is 0, and in p1 ≡ 1 − p0 part of the runs, that it is 1. The former
part of runs gives statistics h0, and the latter h1. Since the
observed statistics are given by h, we have h = p0h0 + p1h1.

Let her success probability in each of these two cases be
denoted by P0 and P1, respectively.

Now, let us consider only those runs in which both published
outcomes were 0. Among them the number of runs with the
setting of Alice equal to 0 is

[p0P0 + p1(1 − P1)]n ≡ pA
0 n,

and equal to 1 is

[p0(1 − P0) + p1P1]n ≡ pA
1 n.

If pA
0 < pA

1 , then Alice discards (or drops) (pA
1 − pA

0 )n
runs with the value 1. After dropping she has equal number of
both values, namely pA

0 n of each. In this situation Eve correctly

guesses p0P0n of runs with the value 0, and pA
0

pA
1
p1P1n of runs

with the value 1, so her guessing probability (among those
runs that were not dropped) is given by

P (2)
guess ≡ 1

2pA
0 n

(
p0P0n + pA

0

pA
1

p1P1n

)

= 1

2

(
p0P0

pA
0

+ p1P1

pA
1

)
.

The case with pA
0 > pA

1 gives exactly the same formula.
To calculate P (2)

guess(h) (as a function of h) via a linear
optimization, the values pA

0 = P (A = 0|a = 0,b = 0) and
pA

1 = P (A = 1|a = 0,b = 0) have to be calculated from the
setup. Then the bound on the guessing probability is given by
the solution of the following program:

maximize
1

2

(
1

pA
0

p0�0(h0) + 1

pA
1

p1�1(h1)

)

(18)
subject to p0h0 + p1h1 =h,

p0 + p1 =1,

p0,p1 �0.

The key rate is now given by the following formula:

K2 =P (a = 0,b = 0)[2 min(pA
0 ,pA

1 )]

× { − log2

[
P (2)

guess(h)
] − H (A|B,dropping)

}
.

Both expressions P (a = 0,b = 0) and the conditional
entropy H (A|B,dropping) can be evaluated directly from the
setup.

VII. ROBUSTNESS OF QUANTUM KEY DISTRIBUTION
PROTOCOLS BASING ON HARDY’S PARADOX

In this section the method described in Secs. V and VI is
applied to the experimental setup described in Sec. IV B. The
resulting key rates are shown in Fig. 5.

A. Results

The numerical results concerning the obtained key rates in
different situations are shown in Fig. 5. The optimal choice of
the distribution of settings depends on the value of the noise
parameter η. Although the nonuniform distribution gives better
key rates with lower noise, the uniform distribution can be
more robust.

In the case of nonuniform distribution, the role of the
dropping strategy seems to be marginal. This is not surprising,
since the aim of that distribution is to make the number of
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FIG. 5. (Color online) Comparison of key rates in different
scenarios.
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values 0 and 1 more or less equal. Similar results refer to
conditional entropies (cf. Fig. 4).

A characteristic property of these protocols is the fact that
the use of nonuniform distribution of settings not only requires
less randomness, but also in some cases improves the key rate.

B. Case without noise

The analysis of the case without noise gives an insight to the
reason why the use of the dropping strategy can increase the
key rate. It also explains the role of nonuniform distribution of
settings.

1. Dropping strategy

In the perfect case with uniform distribution we have
P (a = 0,b = 0|A = 0,B = 0) = 5

√
5−11
2 ≈ 0.090167 and

P (a = 0,b = 0|A = 1,B = 1) = √
5 − 2 ≈ 0.236068, so

P (a = 0,b = 0|A = 0,B=0)<P (a = 0,b = 0|A=1,B=1).
Hence the guessing probability for Eve is higher than 1

2 . The
following dropping strategy makes the guessing probability
equal to 1

2 .
After performing her measurements, Alice randomly se-

lects only P (a=0,b=0|A=0,B=0)
P (a=0,b=0|A=1,B=1) runs from the total runs with

a = b = 0, where her measurement settings were A = 1 (in
the perfect case, then also B = 1). Alice sends the list of
selected runs to Bob via a public channel.

For this reduced list (from which the key is generated) of
runs Alice has an equal number of 0’s and 1’s. (In the perfect
case they correspond to the same values on the side of Bob.)
Hence the guessing probability is now exactly equal to 1

2 .
We have

Pnot dropped(a = 0,b = 0|A = 0,B = 0)

+ Pnot dropped(a = 0,b = 0|A = 1,B = 1)

= 5
√

5 − 11 ≈ 0.180334.

To get the actual ratio of runs that are contained in the key, this
should be multiplied by

P (A = B = 0) = P (A = B = 1) = 1
4 .

Thus the key rate is approximately 5
√

5−11
4 ≈ 0.04508.

2. Nonuniform distribution of settings

Instead of choosing measurement settings with equal
probabilities, both Alice and Bob may choose the observables
A = 0 (B = 0) and A = 1 (B = 1) with a ratio r : 1 − r , for
some r .

Let us denote for simplicity P (a = 0,b = 0|A = 0,B =
0) = x and P (a = 0,b = 0|A = 1,B = 1) = y. Then to ob-
tain guessing probability equal to 1

2 , the condition for r is

xr2 = y(1 − r)2, or equivalently (19a)

r =
√

y√
x + √

y
. (19b)

The key rate is thus 2xr2 = 2x
y

(
√

x+√
y)2 .

In the perfect case x = 5
√

5−11
2 and y = √

5 − 2, so the

key rate is 2xr2 ≈ 0.06888. The ratio is r = 1
2 (

√
5 − 1) ≈

0.61803.

VIII. CONCLUSIONS

Our paper provides an example of an entirely different class
of QKD protocols and provides tools for their analysis.

We have presented a QKD protocol based on Hardy’s
paradox and analyzed its security in both ideal and noisy
scenarios. It has two features. (a) The bits used for the secret
key do not come from the results of the measurements on an
entangled state, but from the choices of settings which are
more difficult for an eavesdropper to influence. (b) Instead of
a single security parameter a set of them is used to estimate
the level of trust in the secrecy of the key, or to construct a
certifying observable.

We have shown that these two properties were not chosen
by accident. They both make the eavesdropping harder, leading
to protocols which can produce a positive amount of shared
key even if the biases of the source of randomness are strong.
Using more than a single parameter for security provides more
information to the parties about the correlations that they share
and puts more limits on the eavesdropping strategies.
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