PRESS

Yournal of
MATHEMATICAL ANALYSIS AND APPLICATIONS

Differential-algebraic systems with maxima

Tadeusz Jankowski
Gdansk University of Technology, Department of Differential Equations, 11/12 G. Narutowicz Str., 80-952 Gdańsk, Poland
Received 17 January 2001
Submitted by Z.S. Athanassov

Abstract

The numerical-analytic method is applied to a class of nonlinear differential-algebraic systems with maxima to find a solution assuming that functions (f, g) satisfy the Lipschitz conditions in matrix notation. This solution is given as a limit of corresponding sequences including Seidel's iterations too. Some existence results are also obtained for problems with retardations.

© 2002 Elsevier Science (USA). All rights reserved.

1. Introduction

A useful approach in studying of existence of solutions is Samoilenko's numerical-analytic method (for details, see [9,10]). The application of this technique to differential problems with boundary conditions can be found, for example, in papers [1,3,7,8,11]. In this paper we shall extend this method to differential-algebraic boundary-value problems with maxima of the form

$$
\begin{align*}
& \left\{\begin{aligned}
x^{\prime}(t) & =f\left(t, x(t), \max _{[0, t]} x(s), y(t), \max _{[0, t]} y(s)\right) \\
& \equiv f_{0}(t, x, y), \quad t \in J=[0, T] \\
y(t) & =g\left(t, \max _{[0, t]} x(s), y(t)\right) \equiv g_{0}(t, x, y), \quad t \in J,
\end{aligned}\right. \tag{1}\\
& A x(0)+B x(T)=d . \tag{2}
\end{align*}
$$

[^0]Here $f \in C\left(J \times \mathbb{R}^{p} \times \mathbb{R}^{p} \times \mathbb{R}^{q} \times \mathbb{R}^{q}, \mathbb{R}^{p}\right), g \in C\left(J \times \mathbb{R}^{p} \times \mathbb{R}^{q}, \mathbb{R}^{q}\right), A \in \mathbb{R}^{p \times p}$, $B \in \mathbb{R}^{p \times p}, d \in \mathbb{R}^{p}$ and

$$
\max _{[0, t]} x(s)=\left(\max _{[0, t]} x_{1}(s), \max _{[0, t]} x_{2}(s), \ldots, \max _{[0, t]} x_{p}(s)\right)
$$

Existence of solutions for initial-value differential problems with maxima is discussed, for example, in papers [2,4]; see also papers [5,6], where some applications in nonlinear mechanics are given.

The numerical-analytic method combined with the comparison one is used to formulate corresponding results under the assumption that f and g satisfy the Lipschitz conditions in matrix notation. The aim of the present paper is to discuss the conditions under which the solution exists and it is the limit of successive approximations and Seidel's iterations too. Some error estimates are given. This paper contains also some discussion for more general differentialalgebraic problems with retardations and corresponding results are given in the last section of this paper.

2. Assumptions

Put

$$
\mathcal{L} f(x, y)(t)=\left(1-\frac{t}{T}\right) \int_{0}^{t} f_{0}(s, x, y) d s-\frac{t}{T} \int_{t}^{T} f_{0}(s, x, y) d s
$$

Indeed, $\mathcal{L} f(x, y)(0)=\mathcal{L} f(x, y)(T)=O_{p \times 1}$. According to the numericalanalytic method, find the vector δ such that $x(t)=\eta+\mathcal{L} f(x, y)(t)+\delta t$ satisfies condition (2). Hence (1)-(2) give the following auxiliary problem

$$
\begin{cases}x(t)=\eta+\mathcal{L} f(x, y)(t)+t S(\eta) \equiv F(t, x, y ; \eta), & t \in J \tag{3}\\ y(t)=g_{0}(t, x, y), & t \in J\end{cases}
$$

and

$$
\frac{1}{T} \int_{0}^{T} f_{0}(s, x, y) d s=S(\eta)
$$

with $S(\eta)=\frac{1}{T} B^{-1}[d-(A+B) \eta]$ assuming that $\operatorname{det}(B) \neq 0$. Note that, $F(0, x, y ; \eta)=\eta$, so $x(0)=\eta$.

Let us introduce the following
Assumption $\boldsymbol{H}_{\mathbf{1}}$. (1) There are matrices $K_{p \times p}, L_{p \times p}, M_{p \times q}, N_{p \times q}$ with nonnegative entries such that

$$
\begin{aligned}
& |f(t, x, X, y, Y)-f(t, \bar{x}, \bar{X}, \bar{y}, \bar{Y})| \\
& \quad \leqslant K|x-\bar{x}|+L|X-\bar{X}|+M|y-\bar{y}|+N|Y-\bar{Y}|
\end{aligned}
$$

for all $t \in J, x, X, \bar{x}, \bar{X} \in \mathbb{R}^{p}, y, Y, \bar{y}, \bar{Y} \in \mathbb{R}^{q}$.
(2) There are matrices $P_{q \times p}, Q_{q \times q}$ with nonnegative entries, $\rho(Q)<1$ and such that

$$
|g(t, x, y)-g(t, \bar{x}, \bar{y})| \leqslant P|x-\bar{x}|+Q|y-\bar{y}|
$$

for all $t \in J, x, \bar{x} \in \mathbb{R}^{p}, y, \bar{y} \in \mathbb{R}^{q}$. Here $|\cdot|$ denotes the absolute value of the vector, so $|x|=\left(\left|x_{1}\right|, \ldots,\left|x_{p}\right|\right)^{\mathrm{T}}$ or $|y|=\left(\left|y_{1}\right|, \ldots,\left|y_{q}\right|\right)^{\mathrm{T}}$. Moreover, $\rho(Q)$ denotes the spectral radius of the matrix Q.

Assumption $\boldsymbol{H}_{\mathbf{2}}$. For any nonnegative function $h \in C\left(J \times \mathbb{R}^{p}, \mathbb{R}_{+}^{p}\right)$ there exists a unique solution $u \in C\left(J, \mathbb{R}_{+}^{p}\right)$ of the comparison equation

$$
\begin{equation*}
u(t)=(\Omega u)(t)+h(t, \eta), \quad t \in J \tag{4}
\end{equation*}
$$

where

$$
\begin{aligned}
(\Omega u)(t)= & \left(1-\frac{t}{T}\right) \int_{0}^{t}\left[K u(s)+D \max _{[0, s]} u(\tau)\right] d s \\
& +\frac{t}{T} \int_{t}^{T}\left[K u(s)+D \max _{[0, s]} u(\tau)\right] d s, \quad t \in J
\end{aligned}
$$

with $D=L+(N+M)(I-Q)^{-1} P$.
Note that under Assumption H_{1} we have

$$
\begin{align*}
& |\mathcal{L} f(x, y)(t)-\mathcal{L} f(\bar{x}, \bar{y})(t)| \\
& \begin{aligned}
\leqslant & \left(1-\frac{t}{T}\right) \int_{0}^{t}\left|f_{0}(s, x, y)-f_{0}(s, \bar{x}, \bar{y})\right| d s
\end{aligned} \\
& \quad+\frac{t}{T} \int_{t}^{T}\left|f_{0}(s, x, y)-f_{0}(t, \bar{x}, \bar{y})\right| d s \\
& \leqslant
\end{aligned} \quad \begin{aligned}
& \quad\left(1-\frac{t}{T}\right) \int_{0}^{t}\left[K|x(s)-\bar{x}(s)|+\max _{[0, s]}|x(\tau)-\bar{x}(\tau)|\right. \\
& \left.\quad+M|y(s)-\bar{y}(s)|+N \max _{[0, s]}|y(\tau)-\bar{y}(\tau)|\right] d s \\
& \quad+\frac{t}{T} \int_{t}^{T}\left[K|x(s)-\bar{x}(s)|+L \max _{[0, s]}|x(\tau)-\bar{x}(\tau)|\right. \\
& \left.\quad \quad+M|y(s)-\bar{y}(s)|+N \max _{[0, s]}|y(\tau)-\bar{y}(\tau)|\right] d s \\
& \equiv \tag{5}
\end{align*}
$$

3. Lemmas

For $n=0,1, \ldots$ let us define the sequences $\left\{u_{n}, w_{n}\right\}$ by formulas

$$
\begin{align*}
& \begin{cases}u_{0}(t)=u(t), & t \in J, \\
u_{n+1}(t)=\Omega_{0}\left(t, u_{n}, w_{n}\right), & t \in J,\end{cases} \tag{6}\\
& \begin{cases}w_{0}(t)=(I-Q)^{-1}\left[P \max _{[0, t]} u_{0}(s)+r_{1}(\eta)\right], & t \in J, \\
w_{n+1}(t)=P \max _{[0, t]} u_{n}(s)+Q w_{n}(t), & t \in J,\end{cases} \tag{7}
\end{align*}
$$

where u is a solution of (4) with

$$
\begin{aligned}
& h(t, \eta)=R_{1}(\eta)+2 t\left(1-\frac{t}{T}\right)(M+N)(I-Q)^{-1} r_{1}(\eta), \\
& R_{1}(\eta)=\max _{t \in J}\left|F\left(t, x_{0}, y_{0} ; \eta\right)-x_{0}(t)\right| \\
& r_{1}(\eta)=\max _{t \in J}\left|g_{0}\left(t, x_{0}, y_{0}\right)-y_{0}(t)\right| .
\end{aligned}
$$

To obtain a solution of problem (3) we shall first establish some properties for sequences $\left\{u_{n}, w_{n}\right\}$. They are given in the next two lemmas.

Lemma 1. Let Assumptions H_{1} and H_{2} be satisfied. Then,

$$
\begin{equation*}
u_{n+1}(t) \leqslant u_{n}(t) \leqslant u_{0}(t), \quad w_{n+1}(t) \leqslant w_{n}(t) \leqslant w_{0}(t) \tag{8}
\end{equation*}
$$

for $t \in J$ and $n=0,1, \ldots$. Moreover, the sequences $\left\{u_{n}\right\},\left\{w_{n}\right\}$ converge uniformly to zero functions, so $u_{n}(t) \rightarrow 0, w_{n}(t) \rightarrow 0$ on J if $n \rightarrow \infty$.

Proof. Note that the matrix $(I-Q)^{-1}$ exists and its entries are nonnegative because of the condition $\rho(Q)<1$. Put $L_{0}=(M+N)(I-Q)^{-1}, L_{1}=L+L_{0} P$. Then

$$
\begin{aligned}
u_{1}(t)= & \Omega_{0}\left(t, u_{0}, w_{0}\right) \\
= & \left(1-\frac{t}{T}\right) \int_{0}^{t}\left\{K u_{0}(s)+L_{1} \max _{[0, s]} u_{0}(\tau)+L_{0} r_{1}(\eta)\right\} d s \\
& +\frac{t}{T} \int_{t}^{T}\left\{K u_{0}(s)+L_{1} \max _{[0, s]} u_{0}(\tau)+L_{0} r_{1}(\eta)\right\} d s \\
= & (\Omega u)(t)+2 t\left(1-\frac{t}{T}\right) L_{0} r_{1}(\eta) \leqslant u(t), \\
w_{1}(t)= & P \max _{[0, t]} u_{0}(s)+Q w_{0}(t) \\
= & P \max _{[0, t]} u_{0}(s)+Q(I-Q)^{-1}\left[P \max _{[0, t]} u_{0}(s)+r_{1}(\eta)\right]
\end{aligned}
$$

$$
\begin{aligned}
& \leqslant P \max _{[0, t]} u_{0}(s)+Q(I-Q)^{-1}\left[P \max _{[0, t]} u_{0}(s)+r_{1}(\eta)\right]+r_{1}(\eta) \\
& =(I-Q)^{-1}\left[P \max _{[0, t]} u_{0}(s)+r_{1}(\eta)\right]=w_{0}(t) .
\end{aligned}
$$

Using the monotonicity of Ω_{0}, we obtain (8), by mathematical induction.
Hence $u_{n} \rightarrow \bar{u}, w_{n} \rightarrow \bar{w}$ on J if $n \rightarrow \infty$, where (\bar{u}, \bar{w}) is a solution of the system

$$
\bar{u}(t)=\Omega_{0}(t, \bar{u}, \bar{w}), \quad \bar{w}(t)=P \max _{[0, t]} \bar{u}(s)+Q \bar{w}(t), \quad t \in J .
$$

Hence $\bar{w}(t)=(I-Q)^{-1} P \max _{[0, t]} \bar{u}(s), t \in J$. It is simple to see that

$$
\Omega_{0}(t, \bar{u}, \bar{w})=(\Omega \bar{u})(t), \quad t \in J,
$$

so \bar{u} is a solution of equation $\bar{u}(t)=(\Omega \bar{u})(t), t \in J$. By Assumption $H_{2}, \bar{u}(t)=0$ on J, and then $\bar{w}(t)=0$ on J too. It ends the proof.

Lemma 2. Assume that $f \in C\left(J \times \mathbb{R}^{p} \times \mathbb{R}^{p} \times \mathbb{R}^{q} \times \mathbb{R}^{q}, \mathbb{R}^{p}\right), g \in C\left(J \times \mathbb{R}^{p} \times\right.$ $\left.\mathbb{R}^{q}, \mathbb{R}^{q}\right)$, and $A_{p \times p}, B_{p \times p}$ and $d_{p \times 1}$ are given constant matrices. Assume that $\operatorname{det}(B) \neq 0$. Let Assumptions H_{1} and H_{2} be satisfied. Then, for $t \in J, n, k=$ $0,1, \ldots$, we have the estimates

$$
\left\{\begin{array} { l }
{ | x _ { n } (t) - x _ { 0 } (t) | \leqslant u _ { 0 } (t) , } \tag{9}\\
{ | x _ { n + k } (t) - x _ { k } (t) | \leqslant u _ { k } (t) , }
\end{array} \quad \left\{\begin{array}{l}
\left|y_{n}(t)-y_{0}(t)\right| \leqslant w_{0}(t), \\
\left|y_{n+k}(t)-y_{k}(t)\right| \leqslant w_{k}(t),
\end{array}\right.\right.
$$

where $x_{0} \in C^{1}\left(J, \mathbb{R}^{p}\right), y_{0} \in C\left(J, \mathbb{R}^{q}\right)$ and

$$
\begin{equation*}
x_{n+1}(t)=F\left(t, x_{n}, y_{n} ; \eta\right), \quad y_{n+1}(t)=g_{0}\left(t, x_{n}, y_{n}\right) . \tag{10}
\end{equation*}
$$

Moreover,

$$
A x_{n+1}(0)+B x_{n+1}(T)=d, \quad n=0,1, \ldots
$$

Proof. Indeed,

$$
\begin{aligned}
\left|x_{1}(t)-x_{0}(t)\right| & \leqslant R_{1}(\eta) \leqslant h(t, \eta) \leqslant u_{0}(t), \quad t \in J, \\
\left|y_{1}(t)-y_{0}(t)\right| & \leqslant r_{1}(\eta) \leqslant\left[Q(I-Q)^{-1}+I\right] r_{1}(\eta)=(I-Q)^{-1} r_{1}(\eta) \\
& \leqslant w_{0}(t), \quad t \in J .
\end{aligned}
$$

Assume that

$$
\left|x_{k}(t)-x_{0}(t)\right| \leqslant u_{0}(t), \quad\left|y_{k}(t)-y_{0}(t)\right| \leqslant w_{0}(t), \quad t \in J
$$

for some $k \geqslant 0$. Then, by (5), we have

$$
\begin{aligned}
\left|x_{k+1}(t)-x_{0}(t)\right| & \leqslant\left|F\left(t, x_{k}, y_{k} ; \eta\right)-F\left(t, x_{0}, y_{0} ; \eta\right)\right|+R_{1}(\eta) \\
& \leqslant \Omega_{0}\left(t, u_{0}, w_{0}\right)+R_{1}(\eta)=u_{0}(t), \quad t \in J
\end{aligned}
$$

$$
\begin{aligned}
\left|y_{k+1}(t)-y_{0}(t)\right| \leqslant & \left|g_{0}\left(t, x_{k}, y_{k}\right)-g_{0}\left(t, x_{0}, y_{0}\right)\right|+r_{1}(\eta) \\
\leqslant & P \max _{[0, t]} u_{0}(s)+Q w_{0}(t)+r_{1}(\eta) \\
= & P \max _{[0, t]} u_{0}(s)+Q(I-Q)^{-1}\left[P \max _{[0, t]} u_{0}(s)+r_{1}(\eta)\right] \\
& +r_{1}(\eta) \\
= & (I-Q)^{-1}\left[P \max _{[0, t]} u_{0}(s)+r_{1}(\eta)\right]=w_{0}(t) .
\end{aligned}
$$

Hence, by mathematical induction, we have

$$
\left|x_{n}(t)-x_{0}(t)\right| \leqslant u_{0}(t) \quad \text { and } \quad\left|y_{n}(t)-y_{0}(t)\right| \leqslant w_{0}(t)
$$

for $t \in J, n=0,1, \ldots$. Basing on the above, let us assume that

$$
\left|x_{n+k}(t)-x_{k}(t)\right| \leqslant u_{k}(t), \quad\left|y_{n+k}(t)-y_{k}(t)\right| \leqslant w_{k}(t), \quad t \in J
$$

for all n and some $k \geqslant 0$. Then, again by (5), we see that

$$
\begin{aligned}
\left|x_{n+k+1}(t)-x_{k+1}(t)\right| & =\left|F\left(t, x_{n+k}, y_{n+k} ; \eta\right)-F\left(t, x_{k}, y_{k} ; \eta\right)\right| \\
& \leqslant \Omega_{0}\left(t, u_{k}, w_{k}\right)=u_{k+1}(t), \quad t \in J \\
\left|y_{n+k+1}(t)-y_{k+1}(t)\right| & =\left|g_{0}\left(t, x_{n+k}, y_{n+k}\right)-g_{0}\left(t, x_{k}, y_{k}\right)\right| \\
& \leqslant P \max _{[0, t]} u_{k}(s)+Q w_{k}(t)=w_{k+1}(t), \quad t \in J .
\end{aligned}
$$

Hence, by mathematical induction, the estimates (9) hold. It is quite simple to verify that x_{n+1} satisfies integral condition (2) for any $n=0,1, \ldots$ It ends the proof.

4. Existence results

Combining Lemmas 1 and 2 we have
Theorem 1. Assume that $f \in C\left(J \times \mathbb{R}^{p} \times \mathbb{R}^{p} \times \mathbb{R}^{q} \times \mathbb{R}^{q}, \mathbb{R}^{p}\right)$, $g \in C\left(J \times \mathbb{R}^{p} \times\right.$ $\left.\mathbb{R}^{q}, \mathbb{R}^{q}\right)$, and $A_{p \times p}, B_{p \times p}$ and $d_{p \times 1}$ are given constant matrices. Assume that $\operatorname{det}(B) \neq 0$. Let Assumptions H_{1} and H_{2} be satisfied. Then, for every $\eta \in \mathbb{R}^{p}$, there exists a unique solution (\bar{x}, \bar{y}) of problem (3) where $x_{n}(t) \rightarrow \bar{x}(t), y_{n}(t) \rightarrow$ $\bar{y}(t)$ on J as $n \rightarrow \infty$ and we have the estimates

$$
\left|x_{n}(t)-\bar{x}(t)\right| \leqslant u_{n}(t), \quad\left|y_{n}(t)-\bar{y}(t)\right| \leqslant w_{n}(t)
$$

for $t \in J$, and $n=0,1, \ldots$
Moreover, (\bar{x}, \bar{y}) is the solution of problem (1)-(2) iff

$$
\frac{1}{T} \int_{0}^{T} f_{0}(s, \bar{x}, \bar{y}) d s=S(\eta)
$$

Remark 1. Note that Assumption H_{2} holds if we assume that

$$
\rho(W)<1 \quad \text { for } W=\frac{T}{2}(K+D) .
$$

To get this condition we apply the Banach fixed point theorem. Denote the right-hand side of Eq. (4) by \mathcal{D}. Then, for $u, \bar{u} \in C\left(J, \mathbb{R}_{+}^{p}\right)$ we have

$$
\begin{aligned}
&|\mathcal{D} u(t)-\mathcal{D} \bar{u}(t)| \\
& \leqslant\left(1-\frac{t}{T}\right) \int_{0}^{t}\left[K|u(s)-\bar{u}(s)|+D \max _{[0, s]}|u(\tau)-\bar{u}(\tau)|\right] d s \\
&+\frac{t}{T} \int_{t}^{T}\left[K|u(s)-\bar{u}(s)|+D \max _{[0, s]}|u(\tau)-\bar{u}(\tau)|\right] d s \\
& \leqslant 2 t\left(1-\frac{t}{T}\right)(K+D) \max _{t \in J}|u(t)-\bar{u}(t)| \leqslant W \max _{t \in J}|u(t)-\bar{u}(t)| .
\end{aligned}
$$

Hence, operator \mathcal{D} is a contraction mapping, so Eq. (4) has a unique solution.
In place of iterations (10), it is sometimes convenient to use Seidel's method described by

$$
\left\{\begin{array} { l }
{ \tilde { x } _ { n + 1 } (t) = F (t , \tilde { x } _ { n } , \tilde { y } _ { n } ; \eta) , } \tag{11}\\
{ \tilde { y } _ { n + 1 } (t) = g _ { 0 } (t , \tilde { x } _ { n + 1 } , \tilde { y } _ { n }) , }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
\bar{y}_{n+1}(t)=g_{0}\left(t, \bar{x}_{n}, \bar{y}_{n}\right), \\
\bar{x}_{n+1}(t)=F\left(t, \bar{x}_{n}, \bar{y}_{n+1} ; \eta\right)
\end{array}\right.\right.
$$

for $t \in J$, and $n=0,1, \ldots$.
For $t \in J$ and $n=0,1, \ldots$, let us define the sequences:

$$
\begin{aligned}
& \left\{\begin{array}{l}
\tilde{u}_{0}(t)=u_{0}(t), \quad \tilde{w}_{0}(t)=w_{0}(t), \\
\tilde{u}_{n+1}(t)=\Omega_{0}\left(t, \tilde{u}_{n}, \tilde{w}_{n}\right), \\
\tilde{w}_{n+1}(t)=P \max _{[0, t]} \tilde{u}_{n+1}(s)+Q \tilde{w}_{n}(t),
\end{array}\right. \\
& \left\{\begin{array}{l}
\bar{u}_{0}(t)=u_{0}(t), \quad \bar{w}_{0}(t)=w_{0}(t), \\
\bar{w}_{n+1}(t)=P \max _{[0, t]} \bar{u}_{n}(s)+Q \bar{w}_{n}(t), \\
\bar{u}_{n+1}(t)=\Omega_{0}\left(t, \bar{u}_{n}, \bar{w}_{n+1}\right) .
\end{array}\right.
\end{aligned}
$$

Now, by mathematical induction, we are able to show the following result
Lemma 3. Let Assumptions H_{1} and H_{2} hold. Then

$$
\begin{aligned}
& \bar{u}_{n}(t) \leqslant u_{n}(t), \quad \bar{w}_{n}(t) \leqslant w_{n}(t), \quad t \in J, n=0,1, \ldots, \\
& \tilde{u}_{n}(t) \leqslant u_{n}(t), \tilde{w}_{n}(t) \leqslant w_{n}(t), \quad t \in J, n=0,1, \ldots, \\
& \text { and } \bar{u}_{n}(t) \rightarrow 0, \bar{w}_{n}(t) \rightarrow 0, \tilde{u}_{n}(t) \rightarrow 0, \tilde{w}_{n}(t) \rightarrow 0 \text { on } J \text { if } n \rightarrow \infty .
\end{aligned}
$$

The simple consequence of Lemma 3 is the following

Theorem 2. Assume that all assumptions of Theorem 1 are satisfied. Let $\bar{x}_{0}(t)=$ $\tilde{x}_{0}(t)=x_{0}(t), \bar{y}_{0}(t)=\tilde{y}_{0}(t)=y_{0}(t), t \in J$. Then, $\bar{x}_{n}(t) \rightarrow \bar{x}(t), \bar{y}_{n}(t) \rightarrow \bar{y}(t)$, $\tilde{x}_{n}(t) \rightarrow \bar{x}(t), \tilde{y}_{n}(t) \rightarrow \bar{y}(t)$ on J as $n \rightarrow \infty$.

Moreover, we have the estimates

$$
\begin{array}{ll}
\left|\bar{x}_{n}(t)-\bar{x}(t)\right| \leqslant \bar{u}_{n}(t), & \left|\bar{y}_{n}(t)-\bar{y}(t)\right| \leqslant \bar{w}_{n}(t), \\
\left|\tilde{x}_{n}(t)-\bar{x}(t)\right| \leqslant \tilde{u}_{n}(t), & \left|\tilde{y}_{n}(t)-\bar{y}(t)\right| \leqslant \tilde{w}_{n}(t)
\end{array}
$$

for $t \in J$, and $n=0,1, \ldots$.
Note that iterations (10) and (11) converge to (\bar{x}, \bar{y}) under the same conditions but basing on Lemma 3 we see that the error estimates for (11) are better in comparing with the corresponding estimates for (10). This notice is important since $\left\{x_{n}, y_{n}\right\},\left\{\bar{x}_{n}, \bar{y}_{n}\right\}$ and $\left\{\tilde{x}_{n}, \tilde{y}_{n}\right.$) are approximated solutions of problem (3).

Theorem 3. Assume that all assumptions of Theorem 1 are satisfied. Then

$$
\begin{aligned}
& \left|\Delta(\bar{x}, \bar{y} ; \eta)-\Delta\left(x_{n}, y_{n} ; \eta\right)\right| \leqslant \bar{\Omega}\left(u_{n}, w_{n}\right), \\
& \left|\Delta(\bar{x}, \bar{y} ; \eta)-\Delta\left(\tilde{x}_{n}, \tilde{y}_{n} ; \eta\right)\right| \leqslant \bar{\Omega}\left(\tilde{u}_{n}, \tilde{w}_{n}\right), \\
& \left|\Delta(\bar{x}, \bar{y} ; \eta)-\Delta\left(\bar{x}_{n}, \bar{y}_{n} ; \eta\right)\right| \leqslant \bar{\Omega}\left(\bar{u}_{n}, \bar{w}_{n}\right), \\
& \left|\Delta\left(x_{n}, y_{n} ; \eta\right)-\Delta\left(\tilde{x}_{n}, \tilde{y}_{n} ; \eta\right)\right| \leqslant \bar{\Omega}\left(u_{n}, w_{n}\right)+\bar{\Omega}\left(\tilde{u}_{n}, \tilde{w}_{n}\right), \\
& \left|\Delta\left(x_{n}, y_{n} ; \eta\right)-\Delta\left(\bar{x}_{n}, \bar{y}_{n} ; \eta\right)\right| \leqslant \bar{\Omega}\left(u_{n}, w_{n}\right)+\bar{\Omega}\left(\bar{u}_{n}, \bar{w}_{n}\right), \\
& \left|\Delta\left(\tilde{x}_{n}, \tilde{y}_{n} ; \eta\right)-\Delta\left(\bar{x}_{n}, \bar{y}_{n} ; \eta\right)\right| \leqslant \bar{\Omega}\left(\tilde{u}_{n}, \tilde{w}_{n}\right)+\bar{\Omega}\left(\bar{u}_{n}, \bar{w}_{n}\right)
\end{aligned}
$$

for $t \in J, n=0,1, \ldots$, where

$$
\begin{aligned}
& \Delta(x, y ; \eta)=\int_{0}^{T} f_{0}(s, x, y) d s-T B^{-1}[d-(A+B) \eta) \\
& \bar{\Omega}(u, w)=\int_{0}^{T}\left[K u(s)+L \max _{[0, s]} u(\tau)+M w(s)+N \max _{[0, t]} w(\tau)\right] d s .
\end{aligned}
$$

5. Differential-algebraic systems with retardations

Let $\alpha, \beta, \gamma, \delta, \mu \in C(J, J)$. For $t \in J$, let us consider the following problem

$$
\left\{\begin{align*}
x^{\prime}(t) & =f\left(t, x(\alpha(t)), \max _{[0, \beta(t)]} x(s), y(\gamma(t)), \max _{[0, \delta(t)]} y(s)\right) \tag{12}\\
& \equiv f_{1}(t, x, y) \\
y(t) & =g\left(t, \max _{[0, \mu(t)]} x(s), y(t)\right) \equiv g_{1}(t, x, y)
\end{align*}\right.
$$

with condition (2), where $f \in C\left(J \times \mathbb{R}^{p} \times \mathbb{R}^{p} \times \mathbb{R}^{q} \times \mathbb{R}^{q}, \mathbb{R}^{p}\right)$, $g \in C\left(J \times \mathbb{R}^{p} \times\right.$ $\left.\mathbb{R}^{q}, \mathbb{R}^{q}\right)$. Let $\operatorname{det}(B) \neq 0$. According to the numerical-analytic method find the vector δ such that

$$
\begin{aligned}
& x(t)=\eta+\mathcal{P} z(t)+\delta t \\
& \text { with } \quad \mathcal{P} z(t)=\left(1-\frac{t}{T}\right) \int_{0}^{t} z(s) d s-\frac{t}{T} \int_{t}^{T} z(s) d s
\end{aligned}
$$

satisfies condition (2). Then, this and (12) give the following auxiliary problem

$$
\left\{\begin{array}{c}
z(t)=f\left(t, \eta+\mathcal{P} z(\alpha(t))+\alpha(t) S(\eta), \max _{[0, \beta(t)]}[\eta+\mathcal{P} z(s)+s S(\eta)]\right. \tag{13}\\
\left.y(\gamma(t)), \max _{[0, \delta(t)]} y(s)\right) \equiv \mathcal{F}(t, z, y ; \eta) \\
y(t)=g\left(t, \max _{[0, \mu(t)]}[\eta+\mathcal{P} z(s)+s S(\eta)], y(t)\right) \equiv \mathcal{G}(t, z, y ; \eta)
\end{array}\right.
$$

and

$$
\int_{0}^{T} z(s) d s=T S(\eta)
$$

Assumption $\boldsymbol{H}_{\mathbf{3}}$. For any nonnegative function $H \in C\left(J \times \mathbb{R}^{p}, \mathbb{R}_{+}^{p}\right)$ there exists a unique solution $V \in C\left(J, \mathbb{R}_{+}^{p}\right)$ of the comparison equation

$$
V(t)=\left(\Omega_{1} V\right)(t)+H(t, \eta)
$$

with

$$
\begin{aligned}
&\left(\Omega_{1} V\right)(t)= K \Lambda(\alpha(t), V)+L \max _{[0, \beta(t)]} \Lambda(s, V) \\
&+M(I-Q)^{-1} P \max _{[0, \mu(\gamma(t))]} \Lambda(s, V) \\
&+N(I-Q)^{-1} P \max _{[0, \delta(t)][0, \mu(s)]} \Lambda(\tau, V) \\
& \Lambda(t, V)=\left(1-\frac{t}{T}\right) \int_{0}^{t} V(s) d s+\frac{t}{T} \int_{t}^{T} V(s) d s .
\end{aligned}
$$

Put

$$
\begin{aligned}
\bar{\Lambda}(t, u, w)= & K \Lambda(\alpha(t), u)+L \max _{[0, \beta(t)]} \Lambda(s, u)+M w(\gamma(t)) \\
& +N \max _{[0, \delta(t)]} w(s) .
\end{aligned}
$$

For $t \in J$, and $n=0,1, \ldots$, let us define the sequences $\left\{U_{n}\right\},\left\{W_{n}\right\}$ by relations

$$
\begin{align*}
& \left\{\begin{array}{l}
U_{0}(t)=V(t), \\
U_{n+1}(t)=\bar{\Lambda}\left(t, U_{n}, W_{n}\right),
\end{array}\right. \tag{14}\\
& \left\{\begin{array}{l}
W_{0}(t)=(I-Q)^{-1}\left[P \max _{[0, \mu(t)]} \Lambda\left(s, U_{0}\right)+r_{2}(\eta)\right], \\
W_{n+1}(t)=P \max _{[0, \mu(t)]} \Lambda\left(s, U_{n}\right)+Q W_{n}(t),
\end{array}\right. \tag{15}
\end{align*}
$$

where V is defined as in Assumption H_{3} with

$$
\begin{aligned}
H(t, \eta) & =(M+N)(I-Q)^{-1} r_{2}(\eta)+R_{2}(\eta) \\
r_{2}(\eta) & =\max _{t \in J}\left|\mathcal{G}\left(t, Z_{0}, Y_{0} ; \eta\right)-Y_{0}(t)\right| \\
R_{2}(\eta) & =\max _{t \in J}\left|\mathcal{F}\left(t, Z_{0}, Y_{0} ; \eta\right)-Z_{0}(t)\right|
\end{aligned}
$$

Lemma 4. Let Assumptions H_{1} and H_{3} be satisfied. Then the sequences $\left\{U_{n}\right\}$, $\left\{W_{n}\right\}$ satisfy the relations

$$
\begin{equation*}
U_{n+1}(t) \leqslant U_{n}(t) \leqslant U_{0}(t), \quad W_{n+1}(t) \leqslant W_{n}(t) \leqslant W_{0}(t) \tag{16}
\end{equation*}
$$

for $t \in J, n=0,1, \ldots$ Moreover U_{n}, W_{n} converge uniformly to zero functions if $n \rightarrow \infty$.

Proof. Note that

$$
\begin{aligned}
U_{1}(t) & =\bar{\Lambda}\left(t, U_{0}, W_{0}\right)=\left(\Omega_{1} U_{0}\right)(t)+(M+N)(I-Q)^{-1} r_{2}(\eta) \leqslant U_{0}(t), \\
W_{1}(t) & =P \max _{[0, \mu(t)]} \Lambda\left(s, U_{0}\right)+Q(I-Q)^{-1}\left[P \max _{[0, \mu(t)]} \Lambda\left(s, U_{0}\right)+r_{2}(\eta)\right] \\
& \leqslant\left[(I-Q)(I-Q)^{-1}+Q(I-Q)^{-1}\right]\left[P \max _{[0, \mu(t)]} \Lambda\left(s, U_{0}\right)+r_{2}(\eta)\right] \\
& =(I-Q)^{-1}\left[P \max _{[0, \mu(t)]} \Lambda\left(s, U_{0}\right)+r_{2}(\eta)\right]=W_{0}(t) .
\end{aligned}
$$

By mathematical induction, it is simple to show that (16) holds. Hence $U_{n} \rightarrow U$, $W_{n} \rightarrow W$ on J if $n \rightarrow \infty$. Indeed, the pair (U, W) is a solution of the system

$$
U(t)=\bar{\Lambda}(t, U, W), \quad W(t)=P \max _{[0, \mu(t)]} \Lambda(s, U)+Q W(t), \quad t \in J
$$

It gives $U(t)=\left(\Omega_{1} U\right)(t), t \in J$ because $W(t)=(I-Q)^{-1} P \max _{[0, \mu(t)]} \Lambda(s, U)$. Hence, by Assumption H_{3}, we see that $U=0$ on J, and then $W=0$ on J too. It ends the proof.

Lemma 5. Assume that $f \in C\left(J \times \mathbb{R}^{p} \times \mathbb{R}^{p} \times \mathbb{R}^{q} \times \mathbb{R}^{q}, \mathbb{R}^{p}\right)$, $g \in C\left(J \times \mathbb{R}^{p} \times\right.$ $\left.\mathbb{R}^{q}, \mathbb{R}^{q}\right), \alpha, \beta, \gamma, \delta, \mu \in C(J, J)$. Moreover, $A_{p \times p}, B_{p \times p}$ and $d_{p \times 1}$ are given constant matrices. Assume that $\operatorname{det}(B) \neq 0$. Let Assumptions H_{1} and H_{3} be satisfied. Then

$$
\left\{\begin{array} { l }
{ | Z _ { n } (t) - Z _ { 0 } (t) | \leqslant U _ { 0 } (t) , } \tag{17}\\
{ | Z _ { n + k } (t) - Z _ { k } (t) | \leqslant U _ { k } (t) , }
\end{array} \quad \left\{\begin{array}{l}
\left|Y_{n}(t)-Y_{0}(t)\right| \leqslant W_{0}(t), \\
\left|Y_{n+k}(t)-Y_{k}(t)\right| \leqslant W_{k}(t)
\end{array}\right.\right.
$$

for $t \in J$ and $n=0,1, \ldots$, where

$$
Z_{n+1}(t)=\mathcal{F}\left(t, Z_{n}, Y_{n} ; \eta\right), \quad Y_{n+1}(t)=\mathcal{G}\left(t, Z_{n}, Y_{n} ; \eta\right)
$$

with $Z_{0} \in C\left(J, \mathbb{R}^{p}\right), Y_{0} \in C\left(J, \mathbb{R}^{q}\right)$.
Proof. Note that

$$
\begin{aligned}
\left|Z_{1}(t)-Z_{0}(t)\right| & \leqslant R_{2}(\eta) \leqslant H(t, \eta) \leqslant U_{0}(t) \\
\left|Y_{1}(t)-Y_{0}(t)\right| & \leqslant r_{2}(\eta) \leqslant\left[(I-Q)(I-Q)^{-1}+Q(I-Q)^{-1}\right] r_{2}(\eta) \\
& =(I-Q)^{-1} r_{2}(\eta) \leqslant W_{0}(t)
\end{aligned}
$$

If we assume that $\left|Z_{k}(t)-Z_{0}(t)\right| \leqslant U_{0}(t),\left|Y_{k}(t)-Y_{0}(t)\right| \leqslant W_{0}(t), t \in J$ for some $k \geqslant 1$, then we see that

$$
\begin{aligned}
&\left|Z_{k+1}(t)-Z_{0}(t)\right| \\
& \leqslant\left|\mathcal{F}\left(t, Z_{k}, Y_{k} ; \eta\right)-\mathcal{F}\left(t, Z_{0}, Y_{0} ; \eta\right)\right|+R_{2}(\eta) \\
& \leqslant K \Omega\left(\alpha(t), U_{0}\right)+L \max _{[0, \beta(t)]} \Lambda\left(s, U_{0}\right) \\
&+M(I-Q)^{-1} P \max _{[0, \mu(\gamma(t))]} \Lambda\left(s, U_{0}\right) \\
&+N(I-Q)^{-1} P \max _{[0, \delta(t)][0, \mu(s)]} \Lambda\left(\tau, U_{0}\right) \\
&+(M+N)(I-Q)^{-1} r_{2}(\eta)+R_{2}(\eta) \\
&=\left(\Omega_{1} U_{0}\right)(t)+H(t, \eta)=U_{0}(t), \\
&\left|Y_{k+1}(t)-Y_{0}(t)\right| \\
& \leqslant\left|\mathcal{G}\left(t, Z_{k}, Y_{k} ; \eta\right)-\mathcal{G}\left(t, Z_{0}, Y_{0} ; \eta\right)\right|+r_{2}(\eta) \\
& \leqslant P \max _{[0, \mu(t)]} \Lambda\left(s, U_{0}\right)+Q(I-Q)^{-1}\left[P \max _{[0, \mu(t)]} \Lambda\left(s, U_{0}\right)+r_{2}(\eta)\right]+r_{2}(\eta) \\
&= {\left[(I-Q)(I-Q)^{-1}+Q(I-Q)^{-1}\right]\left[P \max _{[0, \mu(t)]} \Lambda\left(s, U_{0}\right)+r_{2}(\eta)\right] } \\
&= W_{0}(t) .
\end{aligned}
$$

Hence, by mathematical induction, we have the assertion of this lemma. It ends the proof.

Lemma 5 follows

Theorem 4. Assume that all assumptions of Lemma 4 are satisfied. Then, for every $\eta \in \mathbb{R}^{p}$, the pair $\left\{Z_{n}, Y_{n}\right\}$ converges to the unique solution (\bar{Z}, \bar{Y}) of problem (13), so $Z_{n}(t) \rightarrow \bar{Z}(t), Y_{n}(t) \rightarrow \bar{Y}(t)$ on J if $n \rightarrow \infty$, and for $t \in J$ we have the error estimates

$$
\left|Z_{n}(t)-\bar{Z}(t)\right| \leqslant U_{n}(t), \quad\left|Y_{n}(t)-\bar{Y}(t)\right| \leqslant W_{n}(t), \quad n=0,1, \ldots .
$$

Moreover, (\bar{X}, \bar{Y}) with $\bar{X}(t)=\eta+\int_{0}^{t} \bar{Z}(s) d s, t \in J$ is the solution of problem (12) with condition (2) iff

$$
\int_{0}^{T} \bar{Z}(s) d s=T S(\eta)
$$

Remark 2. Note that Assumption H_{3} holds if we assume that $\rho(W)<1$, where

$$
\begin{aligned}
W=2 \max _{t \in J}\{ & K \alpha(t)\left[1-\frac{\alpha(t)}{T}\right]+L \max _{[0, \beta(t)]} s\left(1-\frac{s}{T}\right) \\
& +M(I-Q)^{-1} P \max _{[0, \mu(\gamma(t))]} s\left(1-\frac{s}{T}\right) \\
& \left.+N(I-Q)^{-1} P \max _{[0, \delta(t)] 0, \mu(s)]} \tau\left(1-\frac{\tau}{T}\right)\right\} .
\end{aligned}
$$

The matrix W can be obtained in the same way as in Remark 1. Note that condition $\rho(W)<1$ can be replaced by $\rho(\bar{W})<1$, where

$$
\bar{W}=2 K \max _{t \in J} \alpha(t)\left[1-\frac{\alpha(t)}{T}\right]+\frac{T}{2}\left[L+(M+N)(I-Q)^{-1} P\right] .
$$

Indeed, $\rho(W)<1$ and $\rho(\bar{W})<1$ hold if we assume that $\|\bar{W}\|<1$, where $\|\cdot\|$ denotes any norm of a matrix.

Similarly as before to find a solution (\bar{Z}, \bar{Y}) of problem (13) we can apply Seidel's method to use iterations:

$$
\left\{\begin{array} { l }
{ \tilde { Z } _ { n + 1 } (t) = \mathcal { F } (t , \tilde { Z } _ { n } , \tilde { Y } _ { n } ; \eta) , } \\
{ \tilde { Y } _ { n + 1 } (t) = \mathcal { G } (t , \tilde { Z } _ { n + 1 } , \tilde { Y } _ { n } ; \eta) , }
\end{array} \quad \left\{\begin{array}{l}
\bar{Y}_{n+1}(t)=\mathcal{G}\left(t, \bar{Z}_{n}, \bar{Y}_{n} ; \eta\right), \\
\bar{Z}_{n+1}(t)=\mathcal{F}\left(t, \bar{Z}_{n}, \bar{Y}_{n+1} ; \eta\right)
\end{array}\right.\right.
$$

for $t \in J, n=0,1, \ldots$.
For $t \in J, n=0,1, \ldots$, we put

$$
\begin{aligned}
& \left\{\begin{array}{l}
\tilde{U}_{0}(t)=U_{0}(t), \\
\tilde{U}_{n+1}(t)=\bar{\Lambda}\left(t, \tilde{U}_{n}, \tilde{W}_{n}\right),
\end{array}\right. \\
& \left\{\begin{array}{l}
\tilde{W}_{0}(t)=W_{0}(t), \\
\tilde{W}_{n+1}(t)=P \max _{[0, \mu(t)]} \Lambda\left(s, \tilde{U}_{n+1}\right)+Q \tilde{W}_{n}(t),
\end{array}\right. \\
& \left\{\begin{array}{l}
\bar{W}_{0}(t)=W_{0}(t), \\
\bar{W}_{n+1}(t)=P \max _{[0, \mu(t)]} \Lambda\left(s, \bar{U}_{n}\right)+Q \bar{W}_{n}(t),
\end{array}\right. \\
& \left\{\begin{array}{l}
\bar{U}_{0}(t)=U_{0}(t), \\
\bar{U}_{n+1}(t)=\bar{\Lambda}\left(t, \bar{U}_{n}, \bar{W}_{n+1}\right) .
\end{array}\right.
\end{aligned}
$$

Note that under Assumptions H_{1} and H_{3} we have $\tilde{U}_{n}(t) \leqslant U_{n}(t), \bar{U}_{n}(t) \leqslant U_{n}(t)$, $\tilde{W}_{n}(t) \leqslant W_{n}(t), \bar{W}_{n}(t) \leqslant W_{n}(t)$ on J and $\tilde{U}_{n} \rightarrow 0, \bar{U}_{n} \rightarrow 0, \tilde{W}_{n} \rightarrow 0, \bar{W}_{n} \rightarrow 0$ on J too.

Using the method of mathematical induction we are able to prove the following
Theorem 5. Let all assumptions of Lemma 4 be satisfied. Let $\bar{Z}_{0}(t)=\tilde{Z}_{0}(t)=$ $Z_{0}(t), \bar{Y}_{0}(t)=\tilde{Y}_{0}(t)=Y_{0}(t), t \in J$. Then the results of Theorem 4 hold and $\tilde{Z}_{n}(t) \rightarrow \bar{Z}(t), \bar{Z}_{n}(t) \rightarrow \bar{Z}(t), \tilde{Y}_{n}(t) \rightarrow \bar{Y}(t), \bar{Y}_{n}(t) \rightarrow \bar{Y}(t)$ on J if $n \rightarrow \infty$.

Moreover we have the error estimates

$$
\left\{\begin{array} { l }
{ | \overline { Z } _ { n } (t) - \overline { Z } (t) | \leqslant \overline { U } _ { n } (t) , } \\
{ | \tilde { Z } _ { n } (t) - \overline { Z } (t) | \leqslant \tilde { U } _ { n } (t) , }
\end{array} \quad \left\{\begin{array}{l}
\left|\bar{Y}_{n}(t)-\bar{Y}(t)\right| \leqslant \bar{W}_{n}(t), \\
\left|\tilde{Y}_{n}(t)-\bar{Y}(t)\right| \leqslant \tilde{W}_{n}(t)
\end{array}\right.\right.
$$

for $t \in J, n=0,1, \ldots$.

References

[1] P.N. Denisenko, A numerical-analytic method for the solution of boundary value problems, Dokl. Akad. Nauk Ukrainy, Ser. A 5 (1978) 390-394, in Russian.
[2] T. Jankowski, Systems of differential equations with maxima, Dokl. Acad. Nauk Ukrainy 8 (1997) 57-60.
[3] M. Kwapisz, Some remarks on an integral equation arising in applications of numerical-analytic method of solving of boundary value problems, Ukrain. Mat. Zh. 44 (1992) 128-132.
[4] A.R. Magomedov, Differential equations with maxima, Acad. Nauk Azerb. (1991), in Russian.
[5] E.P. Popov, Automatic regulation and control systems (1962), in Russian.
[6] Yu.A. Rjabov, A.R. Magomedov, Differential equations with maxima, Acad. Nauk Azerb. 75 (1983), in Russian.
[7] M. Ronto, I. Mesarosh, Some remarks on the convergence of the numerical-analytic methods to successive approximations, Ukrain. Mat. Zh. 48 (1996) 90-95, in Russian.
[8] N.I. Ronto, A.M. Samoilenko, S.I. Trofimchuk, The theory of the numerical-analytic method: Achievements and new directions of development. I, Ukrain. Math. Zh. 50 (1998) 102-117, in Russian.
[9] A.M. Samoilenko, N.I. Ronto, A numerical-analytic method for solving boundary value problems for ordinary differential equations, Ukrain. Mat. Zh. 33 (1981) 467-475, in Russian.
[10] A.M. Samoilenko, N.I. Ronto, Numerical-Analytic Methods of Investigating Boundary Value Problems, Naukova Dumka, Kiev, 1986, in Russian.
[11] A.M. Samoilenko, N.I. Ronto, A modification of numerical-analytic method of successive approximations for boundary value problems for ordinary differential equations, Ukrain. Mat. Zh. 42 (1990) 1107-1116, in Russian.

[^0]: E-mail address: tjank@mif.pg.gda.pl.

