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Abstract. We introduce an entropy-based classification method for pairs of se-
quences (ECPS) for quantifying mutual dependencies in heart rate and beat-to-beat
blood pressure recordings. The purpose of the method is to build a classifier for
data in which each item consists of the two intertwined data series taken for each
subject. The method is based on ordinal patterns, and uses entropy-like indices.
Machine learning is used to select a subset of indices most suitable for our classi-
fication problem in order to build an optimal yet simple model for distinguishing
between patients suffering from obstructive sleep apnea and a control group.

Heart rate (HR) and blood pressure (BP) are two important physiological
variables that are tightly interrelated. Monitoring their mutual influence
can provide important information about a person’s cardiovascular health.
In many cases, the altered effect of HR on BP or vice versa is a conse-
quence of a serious disease. Therefore, indices that reflect mutual relation
between these two quantities may support healthcare professionals in the
development of more effective diagnostic and treatment approaches. In
particular, indices based on ordinal patterns and entropy can serve the
purpose of quantitatively measuring mutual relation between two time se-
ries, as well as the complexity of each of them. Using these measures to
quantify mutual dependencies between HR and BP sequences, we intro-
duce a new method that involves machine learning techniques for differ-
entiating between healthy subjects and persons suffering from obstructive
sleep apnea.

1. Introduction

In recent years, the interest in investigating the complex regulatory mechanisms
of the human organism has notably increased. One of the most important directions
of research in this area concerns studying interaction between various components of
the cardiovascular system. This has created the need for more effective mathematical
tools that would be useful in this kind of analysis.

The research goal of this paper is to develop an entropy-based classification method
for the analysis of pairs of sequences (ECPS for short): heart rate (HR) and beat-
to-beat blood pressure (BP), in order to differentiate between the group of healthy
subjects and patients suffering from obstructive sleep apnea (OSA).

The problem of mutual relations between HR and BP is of growing interest in the
community of exact sciences, and medical sciences as well. One of the main challenges
in this kind of analysis is, according to [27], extracting meaningful parameters usable
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DIFFERENTIATING OSA PATIENTS BY HR–BP COUPLING 3

for diagnostics and risk stratification, and we aim at addressing this point with respect
to the patients with OSA.

OSA is a chronic condition characterized by pauses in breathing and/or decreases
in airflow caused by repeated total or partial obstruction to the airway occurring dur-
ing sleep. OSA is highly prevalent especially in patients with cardiovascular diseases.
However, in clinical practice many times it is not recognized and not treated [46].
Although the apnea-hypopnea index (AHI), calculated on the basis of a polysomno-
graphic recording (PSG), remains the main tool for the diagnosis and planning of
a treatment strategy in OSA patients, more detailed personal approach (“Precision
sleep medicine”) is currently being advocated [20].

There are several studies of OSA in which classical linear measures are applied [37],
nonlinear methods have also been used in the last years on a wider scale [44].

It was shown that OSA leads to alterations in baroreflex which is one of the most
important homeostatic mechanisms maintaining blood pressure. Moreover, previous
findings suggested that baroreflex sensitivity is reduced before the onset of cardiovas-
cular complications in OSA patients [21].

We propose a comprehensive collection of indices based on ordinal patterns and
entropy (OPE indices for short) that are known to be successful in the evaluation
of mutual relations between sets of data. We describe these indices in detail in
Appendix A.

In real applications, many of the OPE indices may be correlated with each other.
Moreover, the variability of some others may not be relevant to the actual differences
between the data classes upon consideration. Therefore, in our ECPS method, we
propose to use machine learning in order to select a small number of the most relevant
indices, and to construct a simple nonlinear classifier that provides optimal results.
In this way we develop a model that would distinguish patients that suffer from OSA
from healthy subjects, based solely on the measurement of their HR and BP taken
during an outpatient exam conducted during the day. An overview of our approach
is illustrated in Figure 1.

In [13], symbolic dynamics methods for the HR and BP sequences were successfully
applied to study the cardiovascular regulation during different sleep stages in OSA
syndrome. Our approach, also based on the analysis of ordinal patterns, follows this
promising line of research. However, the novelty of our approach is threefold.

First, we analyze the HR and BP sequences taken during wakefulness, that is, at
the time when the sleep apnea problem does not appear; however, long-term cardio-
vascular consequences of that might be detected.

Second, we compute a large number of entropy-based indices. Last but not least,
we use machine learning to select the most relevant indices which yield an optimal
classifier.

Finally, we demonstrate the advantage of the selected OPE indices over models
built upon traditional measures of HR and BP variability that are typically used in
medical practice.Th
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Input: RR & BP
sequences
of patients
in two groups

Computation of
entropy-based
indices
for each patient

TE3-9=1.74932    TE3-8=1.74871    TE3-7=1.72718
TE3-6=1.70521    TE3-5=1.66166    TE3-4=1.73776
TE3-3=1.71818    TE3-2=1.6479    TE3-1=1.48254
TE3+0=1.6699    TE3+1=1.59906    TE3+2=1.5874

TE3-9=1.78126    TE3-8=1.77329    TE3-7=1.77738
TE3-6=1.78823    TE3-5=1.77447    TE3-4=1.7627
TE3-3=1.78708    TE3-2=1.75637    TE3-1=1.65487
TE3+0=1.67824    TE3+1=1.70224    TE3+2=1.72172

TE3-9=1.74915    TE3-8=1.7678    TE3-7=1.74803
TE3-6=1.75792    TE3-5=1.74451    TE3-4=1.77
TE3-3=1.76371    TE3-2=1.70347    TE3-1=1.65701
TE3+0=1.71957    TE3+1=1.66114    TE3+2=1.67758

etc. etc.

Building
classification
models
using subsets
of the indices

etc. etc.

Evaluation
of the models
and selection
of the best ones

(a) (b) (c) (d)

☐

🗹
☐

☐

Figure 1. Overview of the ECPS method for constructing an optimal
classifier of patients: (a) The input to the method consists of pairs of
time series (HR and BP sequences) defined for each patient; the pa-
tients are split into two groups (CON and OSA). (b) For each patient
separately, a collection of entropy-based indices are computed (see Ap-
pendix A). (c) Several classification SVM models are built using triplets
of indices. (d) All the constructed models are evaluated using ROC
curves, and the best ones are selected as optimal classifiers found using
the ECPS method.

2. Materials and Methods

2.1. Patients. There were 19 patients diagnosed with obstructive sleep apnea (OSA)
and 19 healthy volunteers (CON) included in the study. The participants were re-
cruited in 2013–2018 from the outpatient hypertension clinic of the University Clinical
Centre in Gdańsk and with the help of local advertisements. The study complied with
the Declaration of Helsinki; a written informed consent was obtained from each stud-
ied person. All of the subjects were males. There were no significant differences with
respect to age between OSA and CON groups (48.84 ± 6.48 vs 51.11 ± 8.80, respec-
tively). Except for one OSA person, the patients were treated for hypertension but
they did not differ significantly according to office blood pressure compared to the
subjects in the CON group.

2.2. Obtaining raw RR and BP sequences. For each study participant, a 20-
minute recording of ECG (with the PowerLab system and Lab Chart software, sam-
pling rate 1000 Hz) and of non-invasive beat-to-beat blood pressure (with FINOME-
TER device) were taken in the supine position (except for one patient in the OSA
group for whom a recording of 18 minutes is available only due to technical reasons).
All the subjects were asked to relax but not to fall asleep. We denote the two time
series obtained for each patient p as follows:

• {rp,i}kp

i=0 – a sequence of RR interval lengths, further called “the RR sequence”
for short,

• {bp,i}kp

i=0 – a sequence of systolic blood pressure (BP) readouts, further called
“the BP sequence” for short.
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DIFFERENTIATING OSA PATIENTS BY HR–BP COUPLING 5
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Figure 2. Samples of ECG (top figure) and blood pressure (bottom
figure) signals with detected peaks marked with red dots. The green
and blue crosses indicate other local maxima found in the signal that
were excluded from the list of R’s and systolic blood pressure readouts.
An artifact caused by the blood pressure measuring device calibration
procedure can be seen in the middle of the bottom figure.

The length of an RR interval is the distance in time between consecutive R peaks
in the ECG signal recording. The associated time of its occurrence is defined as the
moment of occurrence of the second R in the ECG signal (the right end-point of the
RR interval), and is denoted as time(rp,i). The time of occurrence of each element in
the BP sequence is denoted as time(bp,i).

Raw RR and BP sequences were automatically generated from raw ECG and blood
pressure signals using heuristic algorithms; see Figure 2 for a real sample.

2.3. Cleaning and matching the RR and BP sequences. The automatically
detected R and BP peaks were visually inspected and manually corrected where
necessary. Outliers in both sequences were marked as artifacts. These sequences
may also contain other points marked as artifacts or there might be some missing
data points, which is due to signal disturbances or other kinds of problems, such
as ectopic heartbeats (some detected automatically, some marked manually) in the
RR sequence, or short periods of calibration of the blood pressure measuring device
(detected automatically; shown in Figure 2).

These kinds of problems are unavoidable in the real clinical data. Therefore, in
order to match the sequences in a reliable way for cause-and-effect analysis, their
subsequences {rp,κ(i)} and {bp,θ(i)} were selected in such a way that the chosen RR
and BP readouts were not artifacts, and were interleaving in time: each RR interval
occurrence time must be followed by a BP occurrence, which must in turn be followed
by another RR interval occurrence, and so on. Specifically,

time(rp,κ(i)) < time(bp,θ(i)) < time(rp,κ(i+1)) for all i.
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Figure 3. Matching an RR sequence with a BP sequence. Two ectopic
beats in the RR sequence (at time 670 s) were marked as artifacts (blue
crosses), which left the corresponding BP values unmatched (marked
with black crosses). There are also a few unmatched BP values at the
beginning of the sequence, preceding the first RR detected, and some
unmatched RR values at the end of the sequence; this kind of lack of
matching often happens at the beginning or at the end of the recording
and is normal.

All the elements of the RR and BP sequences that were not included in these subse-
quences were marked as artifacts by the software. See Figure 3 for an example.

We use the two subsequences for further computations. Whenever a tuple of ele-
ments of any of the sequences is encountered whose indices are not consecutive (that
is, there is some artifact between them), such a tuple is not taken into consideration.

2.4. Ensuring proper definition of ordinal patterns. It is required in (A.1) that
each subsequence that defines an ordinal pattern must consist of pairwise different
terms. However, we cannot expect that real time series that comes from measure-
ments made with finite resolution would satisfy this assumption. One solution to this
problem might be to put terms with lower indices first, but then certain patterns
would be favored, which we would like to avoid. Therefore, we propose the following
procedure (cf. [7] and the discussion about equal values in ordinal patterns in the
recent paper [48]).

Before computing ordinal patterns from time series, we add pairwise different small
pseudo-random numbers to all the elements in all the sequences. By “small” we
mean numbers of 3 orders of magnitude smaller than the granularity of the specific
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DIFFERENTIATING OSA PATIENTS BY HR–BP COUPLING 7

sequence. The “granularity” is the smallest positive distance between any two terms
in the sequence, not necessarily consecutive. For example, if we are given a sequence
of integers then we add pseudo-random numbers from the open interval (0, 0.001).

Justification for this procedure is the following. In case of equal results of mea-
surements, it may turn out that increasing the precision would reveal that one of the
numbers is actually greater. However, we do not have this information, so we make
a “random choice” in order to compensate for the indeterminacy.

2.5. Computation of the entropy-based indices. We chose two different lengths
L of ordinal patterns obtained from the RR and BP series: 3 and 4, and the shift
Λ varying from 0 to 9. More precisely, we considered the following collection of
quantities; see Appendix A for the definitions and explanations of the entropy-based
indices listed here.

• permutation entropy for both RR and BP series, as defined by Equation (A.4):
RR_PE3, RR_PE4, BP_PE3 and BP_PE4 (note that all permutations are bijective);

• statistical complexity for both RR and BP series, as defined by Equation (A.11):
RR_SC3, RR_SC4, BP_SC3 and BP_SC4;

• transcript entropy between the RR and BP series shifted by Λ ∈ {0, 1, . . . , 9},
as defined by Equation (A.13):
TE3+0, . . . , TE3+9 and TE4+0, . . . , TE4+9,
or between the BP and RR series shifted by Λ ∈ {1, 2, . . . , 9}:
TE3-1, . . . , TE3-9 and TE4-1, . . . , TE4-9;

• self-transcript entropy of the RR and BP series with the shift Λ ∈ {1, 2, . . . , 9},
as defined by Equation (A.14):
RR_STE3+1, . . . , RR_STE3+9, and RR_STE4+1, . . . , RR_STE4+9,
as well as BP_STE3+1, . . . , BP_STE3+9 and BP_STE4+1, . . . , BP_STE4+9;

• mutual information between RR and BP series shifted by Λ ∈ {−9, . . . , 9}, as
defined by Equation (A.15):
MI3-9, . . . , MI3+9 and MI4-9, . . . , MI4+9;

• transcript mutual information from RR to BP with the shift Λ ∈ {1, 2, . . . , 9},
as defined by Equation (A.16); see also [4, formula (19)]:
TMI3+1, . . . , TMI3+9 and TMI4+1, . . . , TMI4+9,
and also from BP to RR with the same range of shifts:
TMI3-1, . . . , TMI3-9 and TMI4-1, . . . , TMI4-9.

With the above selection of entropy-based indices, we expect to capture most char-
acteristics of the signals to be analyzed below. Indeed, entropy is a measure of
randomness, achieving its maximum value for equiprobable ordinal patterns and tran-
scripts, e.g., white noise. On the other hand, statistical complexity focuses rather on
the “structure” of the signal, taking the largest values for signals with intermediate
normalized permutation entropies and vanishing for both white noise and zero-entropy
signals [22]. As for the mutual information, it is a nonlinear measure of dependence
between two random variables [9], which is symmetric in the conventional case and
asymmetric if transcripts are used; as said in Section A.3.2, transcript mutual infor-
mation is a causality indicator. In addition, all these indices are model-free, although
they depend on one or two parameters: L (the length of the ordinal patterns) and
Λ (coupling delay). The values of L and Λ were chosen based on our experience
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8 P. PILARCZYK, G. GRAFF, J. M. AMIGÓ, K. TESSMER, K. NARKIEWICZ, AND B. GRAFF

[4, 5, 6, 14] and, as shown by the results, they turned out to be satisfactory for our
purposes.

2.6. Computation of the classical HRV and BPV indices. For comparison,
several classical heart rate variability (HRV) parameters were also computed for the
RR series using the “hrv-analysis” Python module.1 They were computed for the RR
series after exclusion of artifacts (such as outliers or ectopic beats, as explained in
Section 2.3). We analyzed the following parameters:

• time domain features: mean_nni, sdnn, sdsd, pnni_50, pnni_20, rmssd,
median_nni, range_nni, cvsd, cvnni, mean_hr, max_hr, min_hr, std_hr;

• geometrical features: triangular_index, tinn;
• CSI CVI features: csi, cvi, Modified_csi;
• Poincaré plot features: sd1, sd2, ratio_sd2_sd1;
• frequency domain features: lf, hf, lf_hf_ratio, lfnu, hfnu, total_power,

vlf.
Note that we excluded sample entropy from the list of the classical HRV parameters,
because this already is an entropy-based index, and our intention was to compare our
entropy-based indices with indices of different type.

We also computed the following quantities for determining the degree of blood
pressure variability (BPV):

• time domain features: mean, sd;
• frequency domain features: hf, lf, vlf;

see [29, Figure 2 and Table 2] for justification of our selection of the features in
addition to the most obvious choice of the mean and standard deviation. Similarly to
the HRV indices, we did not include sample entropy in our comparison. The results
of the computation of all these indices are available in [30].

2.7. Choosing an optimal set of indices. The OPE indices listed in Section 2.5
give rise to 156 variables that can be taken as a basis for statistical analysis and
machine learning. In our ECPS method, we are specifically interested in building an
effective classifier.

Since it happens that variables irrelevant to the classification may degrade the
quality of the classifier, we propose to choose a small subset of the indices that would
yield an optimal classifier. Since it is not obvious which lengths L, which coupling
delays Λ, and which specific indices are optimal for a specific application, we propose
to test all the possible triplets of indices, and choose the triplet that provides optimal
results. These results can be assessed using a chosen method for the assessment of
the classification model of the type that we use.

Taking this into consideration, we used receiver operating characteristic curves
(ROC curves) and we computed average area under the curve (AUC) for the ROC
curves obtained in 5 repetitions of a 3-fold cross-validation test for the non-linear
support vector machine (SVM) binary classifier with the radial basis function (RBF)
kernel (see e.g. [16]) for all the possible triplets of OPE indices. Although it may seem
a computationally demanding task, in fact all these computations were completed by
a Python script on a modern PC within less than 30 minutes. After the model has

1Heart Rate Variability analysis, https://github.com/Aura-healthcare/hrv-analysis/.
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DIFFERENTIATING OSA PATIENTS BY HR–BP COUPLING 9

been constructed, applying it to new data (e.g., diagnosing another patient) is very
fast.

More specifically, we generated the collection C of all the 620,620 subsets of car-
dinality 3 of the set of all the 156 features (such as MI4+3) computed for the ordinal
patterns, listed in Section 2.5. For each set c ∈ C we conducted the following test.
We split the set of subjects into 3 subsets of approximately equal size with approx-
imately the same proportion of subjects in both groups (which is known under the
term “with stratification”). We then built a classifier using the standard nonlinear
SVM model with the RBF kernel on two of these three sets, and tested this model
on the third set. The quality of the classifier can be assessed visually on the basis
of the ROC curves, and numerically by computing the area under the curve (AUC).
The higher the AUC value, the better the classifier: the value of about 0.5 indicates
a classifier that is as good as random choice, while the value of 1.0 indicates the
perfect classifier that makes no mistakes. We computed the mean of the three AUCs.
We repeated this procedure of training the SVM model and testing it for the three
possibilities of choosing the sets for building the model. This procedure of splitting
the set of subjects, building the classifier, and testing it was repeated 5 times in order
to ensure that the good or bad result is not due to a more or less lucky subdivision of
the set of subjects into the three subsets. In this way, for each triplet of the indices
under consideration, we computed the mean AUC, the standard deviation of all the
15 AUCs obtained in the 5 repetitions, as well as the minimum and the maximum
values of the five mean AUCs. The computed values were gathered in a table, which
we then sorted by mean AUC.

3. Results

Recall that whenever any of the ordinal patterns under analysis contained an ar-
tifact in the RR or BP series, its appearance was not counted. The percentage of
this kind of situations was recorded. In our dataset, there were no ordinal patterns
omitted in the sequences for 21 subjects. The number of omitted patterns was below
1% in the data of further 11 subjects, below 2% for the next 5 subjects, and reached
the maximum of 2.6% for one subject. In total, less than 0.305% of all the patterns
were omitted in all the analyses. The results of the computation of all these indices
are available in [30].

Before proceeding with machine learning, we applied the U Mann-Whitney test to
verify whether any single index could be used alone to differentiate between the two
groups of patients (with p-value below 0.05). The result was positive for two classical
HRV indices: HRV_mean_nni (p-value 0.0308) and HRV_median_nni (p-value 0.0329),
and four OPE indices: TMI4-9, TMI4+5, TMI4+6, TMI4+7 (p-values between 0.0102
and 0.0307).

We also computed Pearson linear correlations (with p-values) between all the OPE
and classical HRV and BPV indices on the set of all the subjects together and also on
the CON and OSA groups. The results are gathered in CSV files and in illustrations
available in [30]. We found several strong correlations between some HRV indices,
mainly due to the way they were defined, and other correlations that were well known
already. The classical BPV indices did not exhibit such strong correlations with any of
the classical HRV or BPV indices. In the case of the OPE indices that we computed,
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however, we found a considerable number of very strong correlations, in some cases
even above 0.98 in absolute value. Finally, we verified correlations between the OPE
indices and the classical HRV and BPV indices, but we did not find very strong
correlations there.

The best triplets of the indices derived from ordinal patterns following the proce-
dure described in Section 2.7 are listed in Table 1, ordered by mean AUC. The table
also contains the standard deviation of the AUCs computed in the five attempts, as
well as the minimum and the maximum mean AUC encountered in the five attempts.

Mean AUC ± SD Min AUC Max AUC the triplet of indices
0.857 ± 0.086 0.800 0.897 RR_STE3+6,MI3+4,MI4+9
0.853 ± 0.070 0.811 0.885 RR_STE3+6,MI3+4,MI4+8
0.846 ± 0.072 0.800 0.875 RR_STE3+6,MI3+5,MI4+8
0.846 ± 0.076 0.794 0.888 RR_STE3+6,MI3+4,MI4+7
0.838 ± 0.068 0.790 0.879 MI3+4,RR_STE4+5,MI4+8
0.833 ± 0.104 0.737 0.870 RR_STE3+6,MI3+5,MI4+7
0.831 ± 0.113 0.741 0.876 RR_STE3+6,MI4+7,MI4+8
0.831 ± 0.088 0.776 0.895 MI3+4,RR_STE4+5,MI4+9
0.822 ± 0.094 0.779 0.838 RR_STE3+6,MI3+5,MI4+9
0.819 ± 0.078 0.780 0.857 RR_STE3+4,RR_STE3+6,MI4+8

Table 1. The triplets of OPE indices that yield the best non-linear
SVM models based on the OPE indices.

In order to obtain a reference point to benchmark the performance of the OPE
indices, an analogous computation was conducted using the 33 classical HRV and
BPV features described in Section 2.6 (5,456 triplets), and the best results are shown
in Table 2.
Mean AUC ± SD Min AUC Max AUC the triplet of indices

0.694 ± 0.137 0.614 0.763 HRV_range_nni,HRV_min_hr,HRV_triangular_index
0.691 ± 0.161 0.532 0.779 HRV_min_hr,HRV_triangular_index,BPV_sd
0.689 ± 0.120 0.583 0.762 HRV_pnni_20,HRV_range_nni,HRV_triangular_index
0.669 ± 0.144 0.548 0.771 HRV_median_nni,HRV_range_nni,HRV_triangular_index
0.668 ± 0.138 0.599 0.730 HRV_cvnni,HRV_min_hr,HRV_Modified_csi
0.667 ± 0.107 0.562 0.751 HRV_pnni_20,HRV_range_nni,HRV_cvnni
0.665 ± 0.100 0.592 0.728 HRV_pnni_20,HRV_cvnni,HRV_lf
0.664 ± 0.140 0.572 0.746 HRV_range_nni,HRV_mean_hr,HRV_triangular_index
0.661 ± 0.151 0.566 0.755 HRV_cvnni,HRV_min_hr,HRV_lf
0.660 ± 0.139 0.544 0.755 HRV_mean_nni,HRV_range_nni,HRV_triangular_index

Table 2. The triplets of indices that yield the best non-linear SVM
models built upon the classical HRV and BPV indices.

The results of the computation of all these triplets of indices are available in [30].
One CSV file contains all the OPE triplets, and another CSV file contains all the
classical HRV and BPV triplets, together with the data indicated in Tables 1 and 2,
sorted by the mean AUC value in the descending order.
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DIFFERENTIATING OSA PATIENTS BY HR–BP COUPLING 11

The ROC curves and AUCs computed for the best of the 5 cases of the 3-fold cross
validation for the best triplets of indices are shown in Figure 4 for the OPE indices,
and in Figure 5 for the others.
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ROC for CON vs. OSA with 3-fold cross-validation

ROC fold 1 (AUC = 0.93)
ROC fold 2 (AUC = 0.88)
ROC fold 3 (AUC = 0.89)
Chance
Mean ROC (AUC = 0.897 ± 0.021)
± 1 std. dev.

Figure 4. Results for one of the nonlinear SVM classification models
built upon the top-ranked triplet of OPE indices: RR_STE3+6, MI3+4,
MI4+9.

For the purpose of measuring the overall performance of the specific indices that
participated in all the tested triplets, we computed the average value of 1% of the best
mean AUCs in which each of the features was included. The best ten OPE indices
turned out to be RR_STE3+6, TMI4+1, RR_STE4+5, MI4+9, MI4+8, RR_STE3+3, BP_-
STE3+3, TE3+1, MI4-5, and MI4+7 (in this order), and the best ten classical HRV and
BPV indices were: HRV_pnni_20, HRV_triangular_index, BPV_sd, HRV_range_nni,
HRV_cvi, HRV_Modified_csi, BPV_vlf, HRV_min_hr, HRV_cvnni, and HRV_lf,] (in
this order). It is interesting to see that the indices successful in statistical tests are
not present in these lists. Indeed, as far as the TMI4-based indices are concerned, their
values are statistically different in the two groups, but the ranges overlap considerably,
which apparently does not help in building a successful classifier.

The quality of the indices found in the best triplets can be illustrated by the
fact that one can see relatively good separation of the data groups already in a 2-
dimensional plot in two selected coordinates; see Figure 6 for an example. We would
like to remark that it is a common practice to apply PCA in order to visualize the
separation of data groups in the plane of greatest variability of the variables. We
made such an attempt using all the OPE indices together, but – although we do not
show the corresponding figures here – we did not see any separation in the first few
components. This proves that variability of some of the indices was in fact useless for
distinguishing the two groups. Our machine learning approach helped us ignore such
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ROC for CON vs. OSA with 3-fold cross-validation

ROC fold 1 (AUC = 0.93)
ROC fold 2 (AUC = 0.64)
ROC fold 3 (AUC = 0.72)
Chance
Mean ROC (AUC = 0.763 ± 0.120)
± 1 std. dev.

Figure 5. Results for one of the nonlinear SVM classification models
built upon the top-ranked triplet of HRV and BPV indices: HRV_-
range_nni, HRV_min_hr, HRV_triangular_index.

indices and extract the useful ones, so that we obtained satisfactory effect by simply
selecting two of the optimal variables found.

1.68 1.70 1.72 1.74 1.76 1.78
RR_STE3+6
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Figure 6. Data points projected onto the plane spanned by two OPE
indices RR_STE3+6 and MI4+9 that participate in the best triplet found.
Note the relatively good non-linear separation of the groups.
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DIFFERENTIATING OSA PATIENTS BY HR–BP COUPLING 13

4. Disscussion

Our results, including the application of the ECPS method (Section 2.7) to the
two groups of subjects, confirm the importance of conducting the analysis of mutual
relation between heart rate variability (HRV) and blood pressure variability (BPV),
particularly if one aims at the development of machine learning methods that could
support one in diagnosing certain diseases. With the help of several indices based
on ordinal patterns and entropy (OPE indices), we developed a satisfactory classifier
capable of distinguishing patients that suffered from obstructive sleep apnea (OSA)
from a control group (CON). A similarly built classifier that was based on the classical
analysis of HRV and BPV sequences without delving into their mutual relationship
(and without considering the entropy) achieved considerably worse results.

We would like to point out the fact that in order to measure the quality of the
classifier in Section 2.7, we did not only look at mean AUC, but also at the consistency
between results obtained for different train–test splits of the data, reflected by their
standard deviation that is shown in the tables. Indeed, as one can see in Tables 1
and 2, some results with relatively high AUCs in fact corresponded to models whose
reliability could be questioned, because in spite of high AUC for some subdivisions
of the set of subjects, in some other cases the results were considerably worse. This
is very well reflected in Figures 4 and 5, where one can see the wide gray belt and
one poor classification result (AUC=0.64) for the standard HRV and BPV indices, as
opposed to constantly valuable results achieved for the OPE indices.

Correlations between the OPE indices and the classical HRV and BPV indices
might provide some hints for the interpretation of the actual physiological features
that were reflected by the OPE indices. In particular, stronger correlations in general
could be noticed in the CON group than in the OSA group, which might indicate
impaired regulation between HR and BP in the latter patients.

At this point, we would like to make a comment on why we chose to investigate
triplets of indices, and not pairs or quadruplets (or larger tuplets). In fact, we did
conduct analogous computations for pairs and quadruplets of indices. However, the
results for pairs were clearly worse than those for the triplets, while the computa-
tions for quadruplets yielded essentially as good results as for the triplets, but were
considerably more costly in terms of computation time, because we had to run each
individual machine learning test for each of the 23,738,715 quadruplets, as opposed to
the 620,620 triplets. We suspect that the fact that the results were not significantly
improved could be attributed to strong correlation (negative or positive) between
many OPE indices, which one can easily see in the illustrations provided in [30].

It might also be tempting to build a classification model based on all the indices
together. Indeed, we conducted such an experiment. We used all the 156 OPE indices
together for one model, and all the 33 classical HRV and BPV indices together for
the other model. We tried both linear SVM and the nonlinear SVM with the RBF
kernel. The results of 3-fold cross-validation in all the tested cases were discouraging
– the quality of the SVM classifier was essentially equivalent to the “random choice”
classifier, as the resulting mean AUCs were rarely above 0.6. This shows why it
is beneficial to choose a selection of indices in the ECPS method, as described in
Section 2.7.
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We would like to emphasize the fact that the ECPS method may be enriched
by adding other types of indices, and then using the wider selection for choosing
an optimal subset. Indeed, the interaction between time series that represent HR
and BP has been observed and analyzed using a variety of methods in many recent
studies, such as [10, 11, 12, 17, 23, 32, 41, 45]; see also the review papers [27, 36] and
the references therein. For example, momentary information transfer was introduced
in [31] for multivariate analysis of coupling between two time series. In order to verify
whether adding this index to our analysis could yield better results, we additionally
computed this index with delays in {−9, . . . , 9}, as defined by [31, Formula (9)]; we
shall further denote these indices as MIT-9, . . . , MIT+9. Then we applied the analysis
described in Section 2.7 to the resulting set of 175 features (instead of the original
156 ones). Some of the new indices indeed appeared in the tested triplets at relatively
high positions, e.g., MIT-7 in a triplet yielding AUC 0.835 (position 6 in the ranking)
and AUC 0.831 (position 8), and MIT-4 in a triplet yielding AUC 0.824 (position
10). This indicates the usefulness of the MIT indices, although adding them did not
improve the best triplet found.

Another question is whether our method is specific to the OSA patients, or maybe
it might be applied to other pairs of time series, too. In order to verify this, we tested
our method on an artificial set of 20 RR and BP sequences generated by bidirectionally
coupled logistic maps, as defined in [31, Formula (25) and Figure 2(a)]. Already using
basic statistical tests, a multitude of the OPE indices, and also all the MIT indices
allowed to significantly differentiate between the group of these pairs of sequences
and a set of 20 other pairs of sequences generated by uncoupled logistic maps. This
shows that with machine learning support, the ECPS method is capable of finding
much more subtle differences in pairs of time series than those discussed in [31].

The quantitative definitions and qualitative meanings of the OPE indices were given
in Appendix A and Section 2.5, respectively. It is remarkable that the best four OPE
indices in statistical tests (Section 3) were based on transcripts; namely, this was the
transcript mutual information with different coupling delays. Similarly, among the
best ten OPE indices that participated in all the tested triplets (Section 3), six of
them were also based on transcripts; namely, self-transcript entropy appeared four
times, and transcript mutual information and transcript entropy appeared once. We
conclude that transcripts have a noteworthy potential for discrimination. Note that
the SC indices did not participate in high ranked classification models, even though
they are often taken into consideration in the literature. It is also a noticeable fact
that among all the classical HRV and BPV indices, the only statistically significant
differences between the groups were exhibited by the mean and median length of time
intervals between heartbeats.

The results illustrated in Figure 6 showed that, when considering simultaneously
both indices RR_STE3+6 and MI4+9, patients with OSA have lower values of MI4+9 and
the same or greater values of RR_STE3+6. Recall that MI4+9, the mutual information,
is a symmetric measure of dependence. Its lower values indicate weaker coupling that
reflects impaired information flow between RR and BP series. The greater values
of RR_STE3+6 are related to higher predictability of the RR series of OSA patients,
which may be interpreted as a loss of complexity in heart rate in comparison of healthy
subjects, a typical syndrome in pathology or aging. Let us remark that we observed
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DIFFERENTIATING OSA PATIENTS BY HR–BP COUPLING 15

the same regularities in case of data points projected onto the plane spanned by two
other OPE indices: RR_STE3+6 and MI3+4 that are present in the best triplet found.

It might be tempting to create a “profile” of a healthy patient with respect to the
indices that we computed, or to indicate ranges of values of concern with respect to
OSA. However, the separation of the two groups of patients is not linear, as shown
in Figure 6, which makes description of such a profile cumbersome. Moreover, the
number of patients tested in our research is too small to make a reliable profile; a
more involved research would be necessary. Nevertheless, based on our results one
might make an attempt, for example, to claim that RR_STE3+6 values between 1.74
and 1.79 might be an indicator of possible OSA problems, provided that MI4+9 is
within 0.17 and 0.27 and MI3+4 is between 0.03 and 0.08.

The main conclusion from the specific application of our ECPS method to the
RR and BP time series is that the OPE methods might show altered cardiovascular
regulation in awake OSA patients. Although there is a number of studies on HRV and
BPV in OSA patients, they differ with the time of assessment (mostly night-time),
parameters tested (usually HR only) and indices used for the parameters’ variability
analysis (typically standard, linear methods) [33, 43].

Non-linear parameters have been recently proven to have a great potential for
showing specific features of HRV in a large group of OSA patients. With the increasing
severity of the disease, lower complexity of heart rate during sleep [19] was found in
OSA subjects, and, what is more, also during wakefulness [34].

Studying the relation between heart rate and blood pressure in continuous record-
ings might be challenging. Most of the studies in OSA subjects in this area were based
on the assessment of baroreflex sensitivity (BRS). The question remains, however,
whether the standard BRS assessment is able to catch the whole range of autonomic
disturbances in OSA patients [21].

Another approach has been proposed recently that allows the assessment of non-
linear nature of cardiovascular regulation based on information transfer quantification
[11, 12, 17, 41]. To our best knowledge, this is the first study which successfully
combines the above kind of approach with the use of advanced symbolic methods and
machine learning for the elucidation of changes in awake OSA patients. However,
the interpretation of physiological meaning of OPE indices is challenging and needs
further investigation in a larger group of patients. For example, in our study the
best discrimination power was achieved by the MI and TMI indices for larger lags,
which cannot be directly explained by baroreflex or Frank-Starling mechanisms. We
hypothesized that in group of OSA patients altered respiration has to be considered
first looking for the explanation.

In our recent pilot study, patients with apnea episodes and desaturations character-
ized with the increased respiratory variability in short recordings during wakefulness
which could impact cardiovascular coupling [15]. There is also an emerging area of
growing interest considering various vascular or blood pressure response to sympa-
thetic outflow (i.e., sympathetic transduction), depending for example on age, sex or
obesity status, which might explain the delay of 6–9 heartbeats. It was also hypothe-
sized that altered sympathetic transduction might be a compensatory mechanism in
subjects with baroreflex dysfunction; in fact, it is known that baroreflex impairment
is present in OSA patients [47]. Summarizing, further studies are needed to assess
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the actual mechanisms underlying our findings related to the role of long delays as
well as the effectiveness of the ordinal pattern parameters in differentiating the two
groups of subjects that we considered.

Data Availability

The data that support the findings of this study are available from the correspond-
ing authors upon reasonable request.
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Appendix A. Mathematical tools: Ordinal patterns and
entropy-based indices (OPE indices)

Let (Ω, B, µ) be a probability space where, for the sake of this paper, Ω is a com-
pact manifold, B is the Borel sigma-algebra of Ω, and µ is a probability over the
measurable space (Ω, B). If, furthermore, the map f : Ω → Ω is µ-invariant, i.e.,
f is measurable and µ(f−1B) = µ(B) for all B ∈ B, then (Ω, B, µ, f) is called a
(discrete-time, measure-preserving) dynamical system. The working hypothesis of
nonlinear time series analysis (NTSA) is that real world (univariate) time series are
scalar observations of a generally higher dimensional dynamical system (Ω, B, µ, f)
which, moreover, is either unknown, only partially known, or too complex for its
knowledge to be of any practical use. This being the case, it is assumed hereafter
that any time series (xn)n≥0, xn ∈ R, is not, in general, an orbit of an autonomous
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dynamic f but an orbit of a non-autonomous dynamic φ ◦ f , where φ : Ω → R is a
so-called observation function, typically a projection x 7→ x from Ω onto one of its
local coordinates. From the point of view of time series analysis, this results in that
the observations (xn)n≥0 can be viewed as random, unless Ω ⊂ R and φ is invertible
(e.g., the identity). For this reason, we will write

(xn)n≥0 = (φ ◦ fn(x0))n≥0 = (φ(xn))n≥0 =: X(x0)
and say that (xn)n≥0 is a trajectory or realization of the random process X. Here fn

is the nth iterate of f for n ≥ 1, f 0 is the identity, and xn = fn(x0) ∈ Ω. Formally,
X(x0) is a deterministic orbit with dynamical noise.

Because of the applications of NTSA to real world observations, specially to irreg-
ular time series, the underlying dynamical system (Ω, B, µ, f) is generally supposed
to be chaotic, and Ω to be an attractor. Some techniques of NTSA aim to recon-
struct and characterize the attractors of such systems from the observations (xn)n≥0
using time delay coordinates [42, 35, 40]. Such characterization include Lyapunov
exponents, several dimensions and dynamical entropies such as the Kolmogorov-Sinai
entropy [18, 38]. However, since our goal in this paper is to classify patients into two
groups based on their heart rate and blood pressure, it will suffice to characterize
the structure and complexity of those recordings. To this end, there are two main
options: linear (statistical) and nonlinear tools. As the former have been well inves-
tigated already, we focus here on the latter. Specifically, we will calculate various
kinds of entropy and mutual information using ordinal patterns, which are the build-
ing blocks of the so-called ordinal methodology. This is a convenient way to convert
continuous-valued time series into finite-valued (or symbolic-valued) time series for
the reasons that we mention in the following section.

A.1. Ordinal patterns and transcripts. To characterize the complexity of the
time series X(x0) we will use the ordinal methodology, which trades off blocks xL

n :=
xn, xn+1, ..., xn+L−1 of length L ≥ 2 for rank vectors called ordinal patterns or simply
permutations of length L [7]. Ordinal patterns are conceptually simple and their cal-
culation can be done in real time because knowledge of the data range is not required
in advance. In addition, since ordinal patterns can be identified with permutations,
one can take advantage of their algebraic structure, e.g., through transcripts, as we
will do in Section A.3. Last but not least, the Shannon entropy rate of the ordinal
patterns as L → ∞ equals the Kolmogorov-Sinai entropy of the underlying dynamics
in the case of one-dimensional interval maps under very mild assumptions [8], which
shows that ordinal patterns can capture the complexity of time series. For generaliza-
tions of the ordinal methodology to higher dimensional maps, the interested reader
is referred to [2].

Next we introduce the conceptual and notational setting of the ordinal methodol-
ogy. Let (r0, r1, ..., rL−1) be a permutation of {0, 1, ..., L − 1}, L ≥ 2. We say that the
block xL

n of X(x0) defines the ordinal pattern of length L (or simply ordinal L-pattern)
r = (r0, r1, ..., rL−1) if
(A.1) xn+r0 < xn+r1 < . . . < xn+rL−1

(other rules can be found in the literature). We use the notation r = rank(xL
n) or

rn = rank(xL
n) to associate ordinal patterns and blocks. Since r is a permutation of
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{0, 1, ..., L−1}, sometimes one also speaks of permutations instead of ordinal patterns
and writes r ∈ SL, where SL denotes the set (actually a group) of such permutations.
Therefore, the number of ordinal L-patterns is |SL| = L!.

For example, if L = 5 and
(A.2) xn = 0.4, xn+1 = −0.5, xn+2 = 1.5, xn+3 = −0.8, xn+4 = 1.4,

then rank(x5
n) = (3, 1, 0, 4, 2). In case of ties, several conventions can be adopted. If

the number of ties in (xn)n≥0 is small (as we will suppose here), it can be agreed that
the earlier entry is the smaller, or a small amplitude noise can be added to the signal
to eliminate the ties [28].

More generally, the ordinal representation R(L) = (rn)n≥0 of a time series X(x0) =
(xn)n≥0 is obtained by rank-ordering a sliding window of size L along X(x0), i.e.,
rn = rank(xL

n). Therefore, ordinal representations are finite-state random processes
because they are obtained by discretizing continuous-valued times series. In practice,
X(x0) is also randomized by observational noise.

Also in practice, time series have a finite length N . In this case, the ordinal repre-
sentation of (xn)0≤n≤N−1 of parameter L ≤ N is (rn)0≤n≤N−L, a symbolic representa-
tion of length N −L+1. Furthermore, it may be convenient not to consider the com-
plete sequence (xn)0≤n≤N−1 but only an equally spaced subsequence (xmτ )0≤m≤M−1,
where τ ≥ 1 is called a delay time (or lag) and M =

⌊
N−1

τ
+ 1

⌋
. Therefore, an or-

dinal representation has in general two parameters: the length L ≥ 2 of the ordinal
patterns (sometimes called the embedding dimension of the representation) and the
delay time τ (= 1 unless otherwise stated). Delay times greater than 1 are used, for
example, when the sampling frequency of an analog signal is high compared to the
inverse of the typical time constant of the sampled signal. For methods to select the
parameters L and τ and the subtleties involved, see e.g. [28].

A.2. Entropies and entropy-like quantities based on ordinal patterns. From
the toolbox of Information Theory, we will resort to the perhaps simplest, uni- and
two-variate quantities, namely, entropy and mutual information.

A.2.1. Permutation entropy. Suppose that X(x0) = (xn)n≥0 are scalar observations
of a chaotic dynamical system (Ω, B, µ, f), where Ω is a minimal attractor and, hence,
f is ergodic on Ω. Then the probabilities p(r) of the ordinal L-patterns generated
by X (i.e., the probability that rank(xL

n) = r for any n ≥ 0) can be estimated by
the empirical probabilities p̂N(r), that is, the normalized count of sliding windows xL

n

with ordinal pattern r ∈ SL. For a time series of length N ≫ L we have

(A.3) p̂N(r) = #{n : rank(xL
n) = r, 0 ≤ n ≤ N − L}
N − L + 1 .

The permutation entropy of order L of a process X, whether random or determin-
istic, is the Shannon entropy of the probability distribution of ordinal L-patterns,
{p(r) : r ∈ SL}, generated by X, i.e.,
(A.4) X_PE(L) = −

∑
r∈SL

p(r) ln p(r).

By convention, 0 · ln 0 := limx→0+ x ln x = 0. We use natural logarithms (entropy in
nats) throughout.
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The maximum of the Shannon entropy is achieved for flat distributions [9]. There-
fore, the maximum of the permutation entropy of order L occurs when p(r) = 1/L!
for all r ∈ SL, which implies X_PE(L) ≤ ln L!. This bound prompts to define the
normalized permutation entropy of order L,

(A.5) X_NPE(L) = X_PE(L)
ln L! = − 1

ln L!
∑

r∈SL

p(r) ln p(r),

so that
(A.6) 0 ≤ X_NPE(L) ≤ 1.

A.2.2. Statistical complexity. Among the entropy-like quantities that we will use in
Section 2 for classification is the statistical (permutation) complexity of order L of
a continuous-valued process X. Its definition, adapted to our setting and notation,
comprises two ingredients: the normalized permutation entropy X_NPE(L), Equation
(A.5), and the desequilibrium Q(L), which we define next.

Let

(A.7) DJS(L) = U_PE(L) − 1
2X_PE(L) − 1

2 ln L!

be the Jensen-Shannon divergence from the probability distribution {p(r) : r ∈ SL}
of the ordinal L-patterns of the process X to the probability distribution

(A.8) {p(u) : u ∈ SL} =
{1

2

(
p(r) + 1

L!

)
: r ∈ SL

}
of the ordinal L-patterns of an auxiliary process U. DJS(L) is a symmetrized version
of the Kullback-Leibler divergence [9]; its square root is a distance, in our case between
the probability distributions {p(r) : r ∈ SL} and {p(u) : u ∈ SL}. Then [22]
(A.9) Q(L) = Q0DJS(L)
is the desequilibrium of order L of X, where Q0 is the normalization constant

(A.10) Q0 = −2
[

L! + 1
L! ln(L! + 1) − 2 ln(2L!) + ln L!

]−1

.

Finally, the statistical complexity of order L of X is defined as
(A.11) X_SC(L) = Q(L) · (X_NPE(L)) .

A.3. Entropies and entropy-like quantities based on transcripts. As men-
tioned in Section A.1, ordinal representations have an additional property that can
also be exploited in time series analysis, namely: their symbols (permutations) belong
to an algebraic group. Indeed, SL is a group under the composition (or “product”)
of permutations, called the symmetric group of degree L. Precisely, transcripts is
perhaps the simplest way to capitalize on the algebraic structure of SL.

Thus, consider two ordinal representations (rn)n≥0 and (sn)n≥0 of the time series
X(x0) = (xn)n≥0 and Y(y0) = (yn)n≥0, respectively, with the same embedding dimen-
sion L ≥ 2. We say that the symbolic sequence (tΛ

n)n≥0, where Λ ∈ Z and tΛ
n ∈ SL for

all n ≥ 0, is a transcript representation from the process X(x0) to the process Y(y0)
with coupling delay Λ if
(A.12) tΛ

n = sn+Λ ◦ r−1
n ,
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where r−1
n is the inverse of rn in the group SL [24, 1]. Note that SL is non-commutative

for L ≥ 3, so the order of the factors in (A.12) matters. To distinguish the par-
ticular case X(x0) = Y(y0) from the general case X(x0) ̸= Y(y0), one speaks of
self-transcripts and cross-transcripts, respectively.

The algebraic properties of transcripts and their generalization to more than two
time series have been studied in [25, 3].

A.3.1. Transcript entropy. The transcript entropy of order L and coupling delay Λ
from the process X to the process Y is the Shannon entropy of the time series (tΛ

n)n≥0
(see Equation (A.12)), i.e.,
(A.13) XY_TE(L,Λ) = −

∑
t∈SL

p(tΛ) ln p(tΛ) = XYΛ_TE(L),

where YΛ=(yn+Λ)n≥[−Λ]+ (i.e., n ≥ 0 if Λ ≥ 0 and n ≥ −Λ if Λ < 0). Here the
probabilities p(tΛ) are estimated by the frequencies

p̂N(tΛ) = #{n : rank(xL
n) = r & rank(yL

n+Λ) = tΛ◦r, [−Λ]+ ≤ n ≤ N − L}
N − L + 1

for any r ∈ SL, since then and only then rank(yL
n+Λ)◦ (rank(xL

n))−1 = tΛ◦r ◦ r−1 = tΛ.
Moreover, N ≫ L and [−Λ]+ ≪ N − L for statistical significance.

If Y(y0) = X(x0) and Λ ̸= 0, then we speak of self-transcript entropy,
(A.14) X_STE(L,Λ),
to distinguish this special case from the general “cross-transcript” entropy (A.13)
with Y(y0) ̸= X(x0). If the data X(x0) and Y(y0) are clear from the context, we
shorten the notations (A.13) and (A.14) to TE(L,Λ) and STE(L,Λ), respectively. If
Λ = 0, the parameter Λ is dropped.

A.3.2. Permutation and transcript mutual information. The permutation mutual in-
formation of order L and coupling delay Λ between the processes X and Y is defined
as
(A.15) XY_MI(L,Λ) = X_PE(L) + Y_PE(L) − XYΛ_PE(L) ≥ 0,

where XYΛ_PE(L) is the permutation entropy of order L of the joint probability dis-
tribution {p(r, sΛ) : r, sΛ∈SL}, where p(r, sΛ) is the probability that rank(xL

n) = r
and rank(yL

n+Λ) = sΛ for any n ≥ 0.
Finally, we will also use a particular sort of transcript-based mutual information

that was proposed in [26] as a causality indicator. We define the transcript mutual
information of order L and coupling delay Λ from X to Y as
(A.16) XY_TMI(L,Λ) = XY_TE(L) + YΛY_TE(L) − XY_YΛY_TE(L),
where (see Equation (A.13)) XY_TE(L), YΛY_TE(L) and XY_YΛY_TE(L) are the Shan-
non entropies of the transcript probability distributions {p(s ◦ r−1) : r, s ∈ SL},
{p(s ◦ (sΛ)−1) : r, sΛ ∈ SL}, and the joint transcript probability distribution {p(s ◦
r−1, s ◦ (sΛ)−1) : r, s, sΛ ∈ SL}, respectively.

While the permutation mutual information XY_MI(L,Λ) is symmetric under the
exchange of X and Y (hence, useless for detecting the information direction in coupled
processes), for the transcript mutual information XY_TMI(L,Λ) ̸= YX_TMI(L,Λ). If
the processes X and Y are clear from the context, we shorten the previous notation
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to MI(L,Λ) and TMI(L,Λ). The transcript mutual information is a two-dimensional
approximation of the three dimensional symbolic transfer entropy [39] and it was
shown in [4, 5, 6] to be an efficient indicator of information directionality.
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