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Direct constraint control 
for EM‑based miniaturization 
of microwave passives
Slawomir Koziel1,2 & Anna Pietrenko‑Dabrowska2*

Handling constraints imposed on physical dimensions of microwave circuits has become an important 
design consideration over the recent years. It is primarily fostered by the needs of emerging 
application areas such as 5G mobile communications, internet of things, or wearable/implantable 
devices. The size of conventional passive components is determined by the guided wavelength, 
and its reduction requires topological modifications, e.g., transmission line folding, or utilization of 
compact cells capitalizing on the slow‑wave phenomenon. The resulting miniaturized structures are 
geometrically complex and typically exhibit strong cross coupling effects, which cannot be adequately 
accounted for by analytical or equivalent network models. Consequently, electromagnetic (EM)‑driven 
parameter tuning is necessary, which is computationally expensive. When the primary objective is 
size reduction, the optimization task becomes far more challenging due to the presence of constraints 
related to electrical performance figures (bandwidth, power split ratio, etc.), which are all costly to 
evaluate. A popular solution approach is to utilize penalty functions. Therein, possible violations of 
constraints degrade the primary objective, thereby enforcing their satisfaction. Yet, the appropriate 
setup of penalty coefficients is a non‑trivial problem by itself, and is often associated to extra 
computational expenses. In this work, we propose an explicit approach to constraint handling, which 
is combined with the trust‑region gradient‑search procedure. In our technique, the decision about the 
adjustment of the search radius is determined based on the reliability of rendering the feasible region 
boundary by linear approximation models of the constraints. Comprehensive numerical experiments 
conducted using three miniaturized coupler structures demonstrate superiority of the presented 
method over the penalty function paradigm. Apart from the efficacy, its appealing features include 
algorithmic simplicity, and no need for tailoring the procedure for a particular circuit to be optimized.

One of the important considerations in the design of modern high-frequency circuits and systems is min-
iaturization. Small size has become a prerequisite for a growing number of application areas that include 
mobile  communications1,  wearable2 and implantable  devices3, internet of  things4, medical  imaging5, or energy 
 harvesting6. Physical dimensions of conventional microwave passive components are related to the guided wave-
length, which make them unsuitable for space-limited applications, except for structures implemented on high-
permittivity substrates. In the context of circuit architecture, size reduction can be achieved by various means, 
including transmission line (TL)  folding7,8, replacement of conventional TLs by compact microstrip resonant cells 
(CMRCs)9 capitalizing on slow-wave  phenomenon10, as well as the employment of various geometrical modifica-
tions (e.g., defected ground  structures11,  slots12,  stubs13, shorting  pins14, substrate integrated  waveguides15, etc.). 
The aforementioned techniques generally lead to complex, and often densely arranged layouts. The presence 
of electromagnetic (EM) cross-coupling effects within these structures makes the traditional characterization 
methods (analytical or equivalent network models) inadequate. Instead, reliable evaluation of miniaturized 
circuit has to rely on full-wave EM simulation tools.

Appropriate selection of the circuit architecture is only the first step of rendering a high-performance design. 
In order to achieve the smallest possible size while satisfying requirements imposed on the electrical parameters 
(allocation of operating frequencies, bandwidth, power split ratio, phase response), geometry parameters of the 
circuit have to be carefully tuned. Given multi-dimensional parameter spaces along with the necessity of han-
dling several objectives and constraints, the parameter adjustment process needs to resort to rigorous numerical 
optimization  algorithms16,17. At the same time, EM-driven optimization is computationally expensive: even local 
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(e.g., gradient-based18 or derivative-free19) procedures may require many dozens of EM analyses, whereas tasks 
such as global  search20, multi-objective  design21, or uncertainty  quantification22, are far costlier. Not surprisingly, 
the literature is replete with acceleration  methods23–27. These include utilization of adjoint  sensitivities28 or sparse 
Jacobian  updates29 to expedite gradient-based procedures, the employment of dedicated  solvers30, and, more and 
more popular, surrogate-based  procedures31. The latter may employ data-driven (or approximation-based)32,33, 
and physics-based  metamodels34, but also machine learning  frameworks35. The latter are often combined with 
sequential sampling  methodologies36 for iterative construction and refinement of the models. Some of popular 
approximation-based modelling methods in the context of EM-driven optimization include  kriging37, Gauss-
ian process  regression38, neural networks in many variations (e.g.,39–41), support vector  machines42, polynomial 
chaos  expansion43. Physics-based metamodels are most often constructed using space  mapping44, and response 
correction methods (e.g., adaptive response  scaling45, manifold  mapping46, etc.).

When it comes to EM-driven size reduction, a potentially high-cost of the process is only one of the chal-
lenges. The major issue is to control the constraints. As circuit miniaturization is generally detrimental to elec-
trical performance figures, any practical design has to be a trade-off between achieving a possibly compact size 
and fulfilment of specifications imposed on the circuit characteristics. The latter are often expressed in terms 
of acceptance levels for return loss, bandwidth, power split, etc., over the frequency bands of interest. In math-
ematical terms, these conditions are essentially constraints. Their evaluation is computationally-heavy due to the 
involvement of EM analysis. Consequently, straightforward constraint handling is inconvenient. A widely used 
alternative is to incorporate penalty  functions47, in which the main objective (size reduction) is supplemented 
with a linear combination of appropriately quantified constraint  violations48. The advantage of this approach is 
problem reformulation, so that it becomes a formally unconstrained endeavor. Yet, the efficacy of optimization 
dependent on the setup of the proportionality factors of the aforementioned linear combination (referred to as 
penalty coefficients). Tailoring their values to a specific structure is non-trivial and typically requires execution 
of test runs, contributing to the overall computational cost of the process.

This paper discusses a novel methodology for simulation-driven miniaturization of microwave passive com-
ponents. Our approach employs explicit handling of design constraints, which are approximated—in any given 
iteration of the optimization process—by their linear approximation models. The quality of this approximation, 
in particular the predictions concerning solution feasibility, are verified upon generating a new solution, and used 
to govern the decision-making process that controls the search radius within the trust-region procedure being 
the main optimization algorithm. The decision-making factors include the feasibility status of the current design, 
as well as the amount of constraint violation improvement (of the lack thereof). Furthermore, the tolerance 
levels for constraint violations are gradually tightened in the course of the optimization process, governed by its 
convergence indicators. The proposed constraint handling method is simple to implement and does not require 
any setup of control parameters (as opposed to penalty coefficients within the penalty function approach). It is 
validated using three structures of miniaturized rat-race and branch-line couplers with the constraints imposed 
on the circuit bandwidth and power split ratio. The obtained results are benchmarked against the penalty function 
techniques. We demonstrate that the presented procedure allows for a precise control over constraints, as well 
as for achieving competitive miniaturization rates. Perhaps its most appealing feature is that it does not have to 
be tuned to any specific circuit at hand.

Miniaturization of microwave passives with direct constraint control
Here, we introduce the procedure for miniaturization of microwave components proposed in this work. “Simula-
tion-based size reduction: problem formulation” provides the formulation of the miniaturization task. In “Explicit 
constraint handling: the concept”, we discuss the concept of direct control of CPU-heavy constraints within 
trust-region gradient-based algorithm. The technical details of controlling the tolerance levels for constraint 
violation as well as decision-making process that adjusts search radius are elaborated on in “Explicit constraint 
handling: constraint-related gain ratios”. Finally, “Explicit constraint handling: optimization algorithm” sum-
marizes the entire procedure.

Simulation‑based size reduction: problem formulation. We denote by x = [x1 ⋯ xn]T a vector of 
adjustable parameters of the circuit under design. For passive components, these are normally geometry param-
eters (circuit dimensions). Let A(x) be the circuit size, e.g., its footprint area. The objective is to reduce the size 
as much as possible, i.e., to solve

where x* is the optimum parameter vector to be identified, whereas U(x) is the objective function. In the case of 
miniaturization, we have U(x) = A(x). The problem (Eq. 1) is subject to constraint, which can be of

or equality type

In this work, we will only consider inequality constraints, which are the most common. Also, an equality 
constraint ηk(x) = 0 can be represented in an inequality form as |ηk(x)|≤ 0.

Let us consider an example of a microwave coupler, which is to be miniaturized while satisfying the follow-
ing conditions.

(1)x∗ = argmin
x

U(x)

(2)γk(x) ≤ 0, k = 1, ..., nγ

(3)ηk(x) = 0, k = 1, ..., nη
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• The power split ratio |S31(x,f) − S21(x,f)| is zero at f = f0 (the operating frequency);
• The matching and isolation characteristics are supposed to satisfy |S11(x,f)| ≤ − 20 dB, and |S41(x,f)| ≤ − 20 dB 

for f ∈ F, where F is a frequency range of interest (intended circuit bandwidth).

These conditions can be formulated as constraints γ1(x) ≤ 0 and γ2(x) ≤ 0, with γ1(x) =||S31(x,f) − S21(x,f)||, and 
γ2(x) = max{f ∈ F: max{|S11(x,f)|, |S41(x,f)|}} + 20.

Thus, for the exemplary coupler, we may formulate the miniaturization task as

subject to constraints

For the sake of illustration, let us consider another example of an optimization task, which is but oriented 
towards improving selected electrical performance figures rather than size reduction. Assume that the goal is to 
minimize the maximum reflection within the frequency range of interest of an impedance matching transformer. 
In this case, the merit function is defined as

In Eq. (7), |S11(x,f)| stands for the circuit reflection, whereas F refers to the frequency range of interest.

Explicit constraint handling: the concept. Evaluation of constraints imposed on electrical character-
istics of microwave components is computationally expensive: their values are obtained by post-processing EM 
simulation data. This is troublesome from the point of view of numerical optimization procedures, as local 
methods typically require constraint gradients. Unless adjoint sensitivities are  available49, estimation of these 
requires finite differentiation, and the constraints may not be differentiable due to their very formulation as 
minimax functions (cf. “Simulation-based size reduction: problem formulation”). Also, EM simulation results 
may contain a certain level of numerical noise, being a result of adaptive meshing techniques, or specific termi-
nation criteria used by the EM solvers. As mentioned before, a common mitigation method is a penalty func-
tion  approach47, where the cost function is defined through aggregation of the main objective (size reduction) 
and contributions from constraint violations, appropriately scaled using weighting factors (penalty coefficients). 
Although conceptually attractive, optimum setup of the coefficient values is generally an intricate task, often 
associated with preparatory optimization runs.

This paper offers an alternative approach to constraint handling, which is an explicit method. It employs 
linear approximation models of the system response, therefore, a natural choice for the underlying optimiza-
tion algorithm is the trust-region (TR)  framework50. The standard TR procedure yields a series of approximate 
solutions x(i), i = 0, 1, …, that converge to x*. The new vector x(i+1) is obtained by solving

where UL
(i) is a first-order Taylor model of the scalar merit function U. The solution to Eq. (8) is restricted to the 

vicinity of x(i) determined by the size parameter δ(i). Additionally, we have inequality constraints of the form of 
Eq. (2); equality constraints are not considered for the sake of simplicity, cf. “Simulation-based size reduction: 
problem formulation”. The TR radius δ(i) is adaptively adjusted using the standard TR rules (e.g.50).

The problem (Eq. 8) is solved using Matlab’s fmincon algorithm, which implements the Sequential Quadratic 
Programming (SQP) procedure, one of the state-of-the-art procedures for constrained continuous optimization. 
The SQP procedure directly handles geometry constraints (here, the TR condition ||x − x(i)|| ≤ δ(i)), whereas the 
constraints related to electrical performance figures are controlled using the explicit approach being the subject 
of this paper. The details are explained in the remaining part of this section.

If size reduction is of interest, the evaluation of the merit function incurs negligible costs: the structure size 
can be obtained directly from the system geometry parameters, i.e., the vector x. On the other hand, maintaining 
solution feasibility becomes problematic due to expensive constraints. In this work, constraint control is achieved 
by the incorporation of linearized models γL.k of the constraints γk, k = 1, …, nγ, and adaptive adjustment of the 
trust-region size parameter δ(i). The decision-making process governing the latter involves quantification of the 
reliability of γL.k in predicting the feasibility status in the course of the optimization process.

In the following, we will denote as r(x) the vector of EM-simulated outputs (e.g., S-parameters) of the circuit 
of interest. A first-order Taylor model rL(i)(x) of the response r(x), established at the design x(i), is defined

where the Jacobian matrix of the component response at the design x(i) is denoted as J(x(i)). In most cases, it is 
estimated by means of finite differentiation. For the purpose of subsequent considerations, we will explicitly 
indicate that the constraints are functions of the circuit characteristics, i.e., we have γk = γk(r(x)). Then, the linear 
model γL.k is defined as

(4)x∗ = argmin
x

A(x)

(5)
∥

∥S31
(

x, f
)

− S21
(

x, f
)∥

∥ ≤ 0

(6)max
{

f ∈ F : max
{

S11
(

x, f0
)

, S41
(

x, f0
)}}

+ 20 ≤ 0

(7)U(x) = max
{

f ∈ F : max
{

S11
(

x, f0
)}}

(8)x(i+1) = arg min
x; ||x−x(i)||≤δ(i)

U
(i)
L (x)

(9)r
(i)
L (x) = r(x(i))+ J(x(i)) · (x − x(i))
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When solving the trust-region sub-problem (Eq. 2), the exact constraints γk(r(x)) will be replaced by their 
linearized versions (Eq. 10). The accuracy of representing γk by γL.k depends on a particular location in the 
parameter space and on the trust-region size parameter δ(i), which is because ||γk(r(x)) − γL.k(x)|| is proportional 
to ||x − x(i)||2 (for sufficiently small design relocations). Consequently, a proper updating procedure for δ(i) is 
essential. In particular, maintaining small values of the TR radius improves the alignment between γL.k(x) and 
γk(r(x)), whereas increasing it allows for increased-size steps in the design space while solving (Eq. 8). The 
adjustment of δ(i) should take into account the solution feasibility predictions according to γL.k(x), but also the 
actual feasibility status (as verified by EM simulation). At the generic level, the adaptation scheme is arranged 
the same way as for conventional TR  algorithms50, i.e.,

In Eq. (11), the coefficients minc and mdec are used for incrementing and decrementing the TR region size, 
respectively, whereas θinc and θdec represent appropriate threshold. In our approach, we employ their typical 
values, i.e., we have minc = 2 and minc = 3, as well as θinc = 0.75 and θdec = 0.2550. As mentioned earlier, these are the 
typical values used in the TR algorithms. According to classical theory (e.g.50), the specific values of coefficients 
are not critical for the algorithm operation.

However, the decision-making factor θ in Eq. (11) is the gain ratio pertinent to the constraints. It compares 
the actual alteration of constraint violations to those predicted by the linear model for subsequent iterations 
(specifically, the (i + 1)th versus the ith one). The modification coefficients as well as the thresholds in Eq. (11) 
mimic the conventional rules of the TR frameworks (cf.51).

In the case of multiple constraints, the coefficient ρ is generalized to account for the worst-case situation over 
the entire set gk, k = 1, …, ng. We have

Definition of the factors θk for each γk(x), k = 1, …, nγ, is pivotal to the successful operation of the proposed 
optimization procedure. It will be discussed at length in the next section.

Explicit constraint handling: constraint‑related gain ratios. This section elaborates on the defini-
tion and evaluation of the constraint-based gain ratios θk, utilized to control the trust region size as discussed in 
“Explicit constraint handling: the concept”. In the following, we will denote by Γk

(i) the threshold for accepting 
the violation of γk(x) at the iteration i. The threshold is iteration dependent for the reasons explained at the end 
of the section. At this point, we will outline the rules for computing the ratios θk utilized in decision-making 
process that governs the search radius adjustments:

• Rule 1: If γk(r(x(i))) > Γk
(i), i.e., the constraint violation before executing the (i + 1)th iteration exceeds the 

acceptance threshold, then

• Rule 2: If γk(x(i)) ≤ Γk
(i), i.e., the constraint violation is at the acceptable level, then

• Rule 3: If θk < 0 (as computed using Eqs. (13) or (14)) but γk(r(x(i+1))) ≤ Γk
(i), i.e., EM-evaluated constraint 

violation is acceptable, then the value of θk is overwritten to θk = 0.5.

The above rules serve for two purposes. On the one hand, one needs to impose penalty on insufficient predic-
tion accuracy of γL.k if the constraint violation is large (Rule 1), or the feasibility condition has not been improved 
in the case of minor constraint infringement (Rule 2). On the other hand, the conditions (Eqs. 13 and 14) are 
employed to promote sufficient prediction of γk by γL.k (cf. Eq. (13)), or relocation of the design towards the 
feasible region (cf. Eq. (14)). The role of Rule 3 is to overwrite the previous ones if the EM-evaluated constraint 
violation γk(r(x(i+1))) at the candidate design x(i+1) is within the acceptance threshold. Rule 3 has been introduced 
to prevent erratic operation for the designs residing in the vicinity of the feasible region boundary, in particular, 
near-zero constraint infringements (either positive or negative) in any given iteration. The graphical illustration of 
acceptable and insufficient evaluation of the constraint γk by the linearized model γL.k has been provided in Fig. 1.

In the remaining part of this section we discuss the acceptance thresholds Γk
(i). At the early stages of the 

optimization process (far from convergence), it is advantageous to relax the acceptance thresholds for con-
straint violation in order to facilitate identification of small-size designs. However, when close to convergence, 
the thresholds should be tightened to ensure more precise control over constraints. In practice, this is realized 
by adjusting the threshold values based on the convergence status of the optimization process. Let Γk.max be a 
user-defined maximum violation level. Further, let ε be a small positive number determining the algorithm 

(10)γL.k(x) = γk(r
(i)
L (x))

(11)δ(i+1) =







minc δ
(i) if θ ≥ θinc

δ(i) if θdec ≤ θ < θinc
δ(i)

�

mdec if θ < θdec

(12)θ = min{θ1, ..., θnγ }

(13)θk =
γk(r(x

(i+1)))− γk(r(x
(i)))

γL.k(x
(i+1))− γL.k(x

(i))

(14)θk =
1

2

[

1+ sgn
(

γk(r(x
(i)))− γk(r(x

(i+1)))

)]
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termination. In this work, the termination condition is formulated as ||x(i+1) − x(i)||< ε or δ(i) < ε. For a given itera-
tion i, let us define the convergence indicator

Note that ψ(i) is large when the optimization process is launched, and it is reduced to unity upon convergence. 
We also have the threshold

As Γk
(i+1) is proportional to ψ(i), it is initially equal to Γk.max, and gradually diminished to αΓk.max upon con-

vergence. Here, α is assumes small values greater than zero, e.g., 0.1 or 0.01. This value is not of key importance 
for the operation of the procedure.

Explicit constraint handling: optimization algorithm. Figure 2 shows the operating flowchart of the 
proposed size reduction procedure with explicit handling of design constraints. Apart from the termination 
threshold, the algorithm only contains the following control parameters: the threshold Γk.max (maximum toler-
ance for constraint violation), and the scaling coefficient α. These parameters are not critical for the algorithm 
performance. As a matter of fact, we will keep these values fixed for all verification case studies considered in 
“Demonstration examples”. The acceptance of the candidate design x(i+1) produced by solving (Eq. 8) is based on 
the standard TR rules, i.e., it is accepted if the decision-making factor θ is positive, and rejected otherwise. In 
the latter case, the iteration is repeated with a reduced search region. Note that θ > 0 if either the violation of the 
constraint has been reduced to a sufficient extent, or the design was relocated to the feasible region.

(15)ψ(i) = max

{

1,
min

{

||x(i+1) − x(i)||, δ(i)
}

ε

}

(16)Ŵ
(i+1)
k = Ŵk. max min

{

1,αψ(i)
}

Infeasible 

region

Feasible 

region

x(i)

x(i+1)

Feasible region boundary 

according to γL.k(x)

Infeasible 

region

Feasible 

region

x(i+1)

Feasible region boundary 

according to γk(r(x))

Infeasible 

region

Feasible 

region

x(i+1)

Feasible region boundary 

according to γk(r(x))

Example 2: poor constraint 

prediction by γL.k
Example 1: good constraint 

prediction by γL.k

Figure 1.  Prediction of design constraints by means of linear approximation model γL.k of (Eq. 10). The 
top picture illustrates relocation of the design from x(i) to x(i+1) obtained by solving (Eq. 8). In this example, 
x(i) is assumed feasible, whereas x(i+1) is allocated at the boundary of the feasible region according to the 
approximation model γL.k. The bottom-left picture illustrates a case of satisfactory constraint prediction by γL.k, 
i.e., the design x(i+1) is feasible according to the EM simulation data. The bottom-right picture shows a case 
of poor prediction: the design x(i+1) is infeasible according to the true constraint value evaluated through EM 
analysis. The latter will result in a reduction of the search region size δ(i) in the next iteration (cf. Eqs. (13, 14)).
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Demonstration examples
This section summarizes the results of numerical experiments conducted to validate and benchmark the proposed 
size reduction approach. Verification is based on three compact microstrip couplers, including a branch-line 
and two rat-race circuits. Our procedure is compared to optimization involving penalty function approach in 
several variations featuring different setups of penalty coefficients. The performance figures of interest include 
the obtained circuit size, as well as the accuracy of controlling the constraints, related to the circuit bandwidth 
and the power split ratio.

Verification circuits. The considered circuits have been shown in Fig. 3. Their computational models are 
implemented in CST Microwave Studio and evaluated using the time-domain solver. In all cases, the main objec-
tive is reduction of the circuit footprint area. There are two constraints imposed on the circuit S-parameters: γ1
(x) =||S31(x,f0) − S21(x,f0)|| − 0.1 dB, and γ2(x) = max{f ∈ F: max{|S11(x,f)|, |S41(x,f)|}} + 20 dB, where f0 is the center 
frequency, and F is the intended circuit bandwidth. Two scenarios are considered with different choice of band-
width for each circuit.

The first constraint enforces equal power split ratio within 0.1 dB tolerance, whereas the second ensures that 
the circuit impedance matching and port isolation are better or equal − 20 dB within the operating band. Table 1 
provides essential data about all three structures.

Experimental setup and results. The proposed optimization procedure has been applied to the circuits 
of Fig. 3. In each case, the initial design (the last row of Table 1) was obtained by optimizing the respective cir-
cuits to improve the matching and isolation within the operating bandwidth F, subject to equal power split con-
straint. This means, in particular, that the starting points are feasible from the point of view of both constraints 
γ1 and γ2 (cf. “Verification circuits”). The termination threshold is set to ε =  10−3, the acceptance threshold are 
chosen to be Γ1.max = 1 dB, Γ2.max = 0.3 dB, and α = 0.1.

Initial design x(0)

Evaluate response r(x(i)) and gradients J(x(i))

Set iteration index i = 0

Prepare linear models γL.k, k = 1,...,nγ

Constraints γk, k = 1,...,nγ

Compute convergence factor ψ(i) 

and thresholds Γk
(i), k = 1,...,nγ

  Find new design:

Compute gain radio  and update (i)

Termination condition?

Yes

END

No
 > 0

i = i + 1

No

Yes

( ) ( )

)()1(

; || ||
arg min ( )

i i

ii
LU

x x x
xx

Figure 2.  Flow diagram of the proposed size reduction algorithm with explicit constraint handling.
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The results are compared to the algorithm employing the penalty function approach. Therein, the objective 
function is defined as

where the penalty functions c1 and c2 measure relative constraint violations, i.e., we have

The benchmark algorithm is run for all combinations of the penalty coefficients β1 ∈ {10, 100, 1000, 10,000}, 
β2 ∈ {10, 100, 1000, 10,000}. This is to illustrate the fact that optimum performance of the algorithm requires 
identification of the appropriate setup of the penalty terms, and sub-optimal setup leads to inferior constraint 
control or miniaturization rates.

The numerical results have been gathered in Tables 2, 3 and 4. These include the achieved footprint area of 
the respective circuits, as well as constraint violations at the final design. Figures 4, 5 and 6 show the circuit char-
acteristics at the initial and the optimized designs for all circuits, along with the history of the circuit footprint 
area and violation of constraints during the optimization run.

Discussion. The results presented in “Experimental setup and results” allow us to formulate a number of 
remarks concerning performance of the proposed optimization procedure with explicit handling of design con-
straints. Furthermore, our methodology can be conclusively compared with the benchmark methods employing 
the penalty function approach. The observations are as follows.

(17)U(x) = A(x)+ β1c1(x)
2 + β2c2(x)

(18)c1(x) = max

{

0,
γ1(x)+ 0.1

0.1

}

and c2(x) = max

{

0,
γ2(x)+ 20

20

}
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Figure 3.  Passive microstrip components utilized for verification of the proposed optimization procedure: (a) 
compact branch-line coupler (Circuit I)52, (b) rat-race coupler with folder transmission lines (Circuit II)53, (c) 
rat-race coupler with defected microstrip structure (Circuit III)54.

Table 1.  Benchmark microwave components. a Initial design obtained by optimizing the circuit for best 
matching/isolation within the frequency range F, under equal-power-split constraint.

Case study

Circuit I Circuit II Circuit III

Substrate AD300
(εr = 2.97, h = 0.76 mm)

RO4003
(εr = 3.38, h = 0.762 mm)

FR4
(εr = 4.4, h = 1.55 mm)

Design parameters x = [g l1r la lb w1 w2r w3r w4r wa wb]T x = [l1 l2 l3 d w w1]T x = [L1 br g hfr s lfr]T

Other parameters
L = 2dL + Ls, Ls = 4w1 + 4 g + s + la + lb, 
W = 2dL + Ws, Ws = 4w1 + 4 g + s + 2wa, 
l1 = lbl1r,  w2 = waw2r, w3 = w3rwa, and 
w4 = w4rwa, wc = 1.9 mm

d1 = d + |w − w1|, d = 1.0, w0 = 1.7, and 
l0 = 15 mm

L2 = L1 − g − w0, a = (lf − 17s)/16, 
b = (hf − s)br, lf = L2 lfr, lv = L1 − 2g − 2w0, and 
hf = s + (w0 − s)hfr; dW = dL = 10 mm

Operating parameters (design scenario I) f0 = 1.5 GHz
F = [1.45 1.55] GHz

f0 = 1.0 GHz
F = [0.9 1.1] GHz

f0 = 1.2 GHz
F = [1.15 1.25] GHz

Operating parameters (design scenario II) f0 = 1.5 GHz
F = [1.47 1.53] GHz

f0 = 1.0 GHz
F = [0.95 1.05] GHz

f0 = 1.2 GHz
F = [1.18 1.22] GHz

Initial  designa x(0) = [0.45 0.69 6.25 10.32 0.96 0.39 0.14 
0.57 4.62 0.60]T x(0) = [5.27 13.33 21.51 0.96 0.89 0.90]T x(0) = [31.79 0.67 2.12 0.80 0.49 0.33]T
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• The proposed algorithm performs consistently for all considered verification circuits. In particular, it enables a 
satisfactory control of both design constraints. There is no violation for power split ratio constraint observed, 
whereas the maximum violation for the matching/isolation constraint is only 0.5 dB for Circuit II (design 
scenario II); however, it should be noted that the acceptance threshold is − 20 dB.

• The performance of benchmark methods is highly dependent on the penalty coefficient setup. Among sixteen 
combination of parameters, only a few lead to satisfactory results in terms of both ensuring good miniaturiza-
tion ratio and sufficiently precise constraint handling. For Circuit I we have about three of such ‘good’ setups, 
for Circuit II there is only one (per design scenario), whereas for Circuit III about three.

Table 2.  Optimization results for Circuit I.

Optimization approach

Performance parameters

Design scenario I (F = [1.45 1.55] GHz) Design scenario II (F = [1.47 1.53] GHz)

Method Setup
Footprint area A 
 (mm2)

Violation of 
constraint γ1 (dB)

Violation of 
constraint γ2 (dB)

Footprint area A 
 (mm2)

Violation of 
constraint γ1 (dB)

Violation of 
constraint γ2 (dB)

Implicit constraint 
handling (penalty 
function approach)

β1 =  101, β2 =  101 241 0.03 6.8 264 0.07 3.5

β1 =  101, β2 =  102 259 0.06 5.3 264 0.07 3.5

β1 =  101, β2 =  103 301 − 0.01 1.9 272 0.02 2.1

β1 =  101, β2 =  104 325 0.01 0.2 293 0.02 0.2

β1 =  102, β2 =  101 247 − 0.05 6.6 264 0.07 3.5

β1 =  102, β2 =  102 258 − 0.02 5.7 276 0.00 1.7

β1 =  102, β2 =  103 318 0.01 1.0 292 − 0.01 0.5

β1 =  102, β2 =  104 319 0.00 0.3 297 − 0.08 0.3

β1 =  103, β2 =  101 247 − 0.04 7.1 333 − 0.00 0.5

β1 =  103, β2 =  102 264 − 0.03 53 335 − 0.01 1.0

β1 =  103, β2 =  103 318 − 0.01 1.3 322 − 0.02 − 1.1

β1 =  103, β2 =  104 319 0.00 0.2 301 − 0.05 0.1

β1 =  104, β2 =  101 242 0.00 6.9 323 − 0.00 0.5

β1 =  104, β2 =  102 258 − 0.05 5.7 292 − 0.06 0.8

β1 =  104, β2 =  103 310 − 0.03 1.4 325 − 0.00 0.0

β1 =  104, β2 =  104 317 0.00 0.4 302 − 0.07 0.1

Explicit constraint handling (this work) 323 0.00 0.0 293 − 0.05 0.3

Table 3.  Optimization results for Circuit II.

Optimization approach

Performance parameters

Design scenario I (F = [0.9 1.1] GHz) Design scenario II (F = [0.95 1.05] GHz)

Method Setup
Footprint area A 
 (mm2)

Violation of 
constraint γ1 (dB)

Violation of 
constraint γ2 (dB)

Footprint area A 
 (mm2)

Violation of 
constraint γ1 (dB)

Violation of 
constraint γ2 (dB)

Implicit constraint 
handling (penalty 
function approach)

β1 =  101, β2 =  101 124 0.01 16.8 114 0.00 16.6

β1 =  101, β2 =  102 104 0.02 17.0 90 0.00 17.6

β1 =  101, β2 =  103 464 0.27 3.2 439 0.21 2.9

β1 =  101, β2 =  104 508 0.17 − 0.1 364 − 0.09 0.2

β1 =  102, β2 =  101 593 0.04 − 3.4 593 0.04 − 5.2

β1 =  102, β2 =  102 593 0.04 − 3.4 593 0.04 − 5.2

β1 =  102, β2 =  103 538 0.07 − 1.9 593 0.04 − 5.2

β1 =  102, β2 =  104 593 0.04 − 3.4 593 0.04 − 5.2

β1 =  103, β2 =  101 595 0.04 − 3.4 595 0.04 − 5.2

β1 =  103, β2 =  102 595 0.04 − 3.4 595 0.04 − 5.2

β1 =  103, β2 =  103 595 0.04 − 3.4 595 0.04 − 5.2

β1 =  103, β2 =  104 595 0.04 − 3.4 595 0.04 − 5.2

β1 =  104, β2 =  101 595 0.04 − 3.4 595 0.04 − 5.2

β1 =  104, β2 =  102 595 0.04 − 3.4 595 0.04 − 5.2

β1 =  104, β2 =  103 595 0.04 − 3.4 595 0.04 − 5.2

β1 =  104, β2 =  104 595 0.04 − 3.4 595 0.04 − 5.2

Explicit constraint handling (this work) 510 0.00 0.1 363 − 0.03 0.4
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• For the particular setups ensuring good performance of the benchmark procedure, the obtained circuit sizes 
are comparable to those obtained by the proposed algorithm (which, on the other hand, does not require any 
setup or tailoring to the task at hand).

• In the case of Circuit II, for most combinations of penalty coefficients featuring β1 ≥  102, the optimization 
process becomes stuck at the early stages of the optimization process, leaving large feasibility margin for the 
second constraint. This is due to the fact that a large value of the first penalty coefficient along with a small 
margin for the power split ratio constraint (only 0.1 dB), makes the problem numerically challenging. More 
specifically, the objective function becomes highly nonlinear near the feasible region boundary, which hin-
ders exploration of that region and leads to a premature convergence of the process. A similar effect can be 
observed for Circuit III, although it is less pronounced.

• The proposed algorithm turns out to be less prone to the aforementioned issues due to the adaptive adjust-
ment of the acceptance thresholds governed by the convergence status of the algorithm (cf. Eqs. (15, 16)).

• The average costs of rendering the optimal designs by the proposed approach equal: 110, 80 and 55 full-wave 
simulations, for Circuit I, II and III, respectively. Whereas in the case of the benchmark procedure the cor-
responding costs are: 115, 57 and 45 EM simulations. Therefore, the proposed procedure is around 20% more 
expensive in terms of the number of EM analyses necessary for the algorithm to converge. Yet, given that in 
our approach there is virtually no need for tailoring the algorithm to render a satisfactory design meeting 
the design specifications, this additional cost seems to be justifiable. This is because tuning the optimization 
procedure to ensure its satisfactory operation normally entails additional computational expenses (e.g., for 
adjusting penalty coefficients in the case of implicit methods). Furthermore, the primary purpose of the 
presented technique was to improve the precision of controlling design constraints, and miniaturization rate, 
both of which have been conclusively demonstrated.

Given a large combined number of circuits, design scenarios, as well as penalty coefficient setups involved 
in this verification study, the observations summarized above should be categorized as conclusive. Overall, the 
performance of the presented procedure can be considered competitive over the benchmark (implicit) methods, 
both with respect to the accuracy of constraint handling and achievable miniaturization rates. The important 
advantages of the proposed algorithm include easy implementation and no need for adjusting any control param-
eters. The latter normally incurs extra computational expenses and may require a certain level of experience 
pertinent to optimization methods.

Table 4.  Optimization results for Circuit III.

Optimization approach

Performance parameters

Design scenario I (F = [1.15 1.25] GHz) Design scenario II (F = [1.18 1.22] GHz)

Method Setup
Footprint area A 
 (mm2)

Violation of 
constraint γ1 (dB)

Violation of 
constraint γ2 (dB)

Footprint area A 
 (mm2)

Violation of 
constraint γ1 (dB)

Violation of 
constraint γ2 (dB)

Implicit constraint 
handling (penalty 
function approach)

Z`β1 =  101, β2 =  101 1067 0.17 0.7 1043 0.12 − 0.7

β1 =  101, β2 =  102 681 0.01 10.4 679 0.00 9.4

β1 =  101, β2 =  103 1063 − 0.03 0.1 1063 − 0.03 − 1.0

β1 =  101, β2 =  104 1097 0.02 − 0.1 1097 0.02 − 1.2

β1 =  102, β2 =  101 1120 0.04 0.6 1120 0.04 − 0.5

β1 =  102, β2 =  102 1134 0.00 − 0.3 1134 0.00 − 1.7

β1 =  102, β2 =  103 1133 0.00 0.1 1133 0.00 − 1.2

β1 =  102, β2 =  104 1038 − 0.03 1.1 1038 − 0.03 0.0

β1 =  103, β2 =  101 1165 − 0.05 − 0.3 1165 − 0.05 − 1.7

β1 =  103, β2 =  102 1119 0.01 − 0.1 1119 0.01 − 1.3

β1 =  103, β2 =  103 1152 − 0.06 − 0.3 1152 − 0.06 − 1.6

β1 =  103, β2 =  104 1117 − 0.08 − 0.1 1047 − 0.08 − 1.7

β1 =  104, β2 =  101 1218 0.00 − 0.0 1136 − 0.02 0.2

β1 =  104, β2 =  102 1208 0.00 − 0.2 1132 0.01 − 2.1

β1 =  104, β2 =  103 1152 0.00 − 0.5 1152 0.00 − 1.7

β1 =  104, β2 =  104 1152 − 0.02 − 0.1 1134 0.00 − 2.2

Explicit constraint handling (this work) 1106 − 0.04 − 0.1 1045 0.01 − 0.1
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Conclusion
The purpose of this work was to propose a novel procedure for simulation-based miniaturization of microwave 
passives. Our approach involves direct control of constraints imposed on electrical performance figures of the 
circuit under design. Linear approximation models of the constraint functions are employed to make predictions 
concerning solution feasibility. Appropriately quantified quality of these predictions is utilized in the decision-
making process that controls the search region size within the trust region framework. Furthermore, the con-
straint violation tolerance thresholds are governed by the convergence indicators of the optimization process 
in order to foster more aggressive size reduction at the early stages of the optimization process. Comprehensive 
numerical verification involving three microstrip couplers and six design scenarios demonstrate superior perfor-
mance of the proposed technique as compared to the benchmark methods employing a penalty function approach 
for implicit constraint handling. Its major advantages include competitive size reduction ratios, accuracy in 
controlling constraint violation levels, consistency of results obtained for a variety of problems, straightforward 
implementation, as well as no need for tailoring the procedure to handle a particular microwave structure. The 
last feature is particularly important in practical applications: tuning the optimization procedure to ensure 
satisfactory operation (e.g., setting up penalty coefficients for implicit methods) normally entails additional 
computational expenses and may require optimization-related knowhow lacking by many microwave engineers.

Figure 4.  Initial (gray) and optimized (black) S-parameters of Circuit I. The vertical and horizontal lines mark 
the target operating bandwidth and the acceptance level for the matching |S11| and isolation |S41| responses. Also 
shown is the evolution of the circuit size and constraint violations (in case of feasibility, violations shown as 
zero): (a) design scenario I (bandwidth 1.45–1.55 GHz), (b) design scenario II (bandwidth 1.47–1.53 GHz).
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Figure 5.  Initial (gray) and optimized (black) S-parameters of Circuit II. The vertical and horizontal lines mark 
the target operating bandwidth and the acceptance level for the matching |S11| and isolation |S41| responses. Also 
shown is the evolution of the circuit size and constraint violations (in case of feasibility, violations shown as 
zero): (a) design scenario I (bandwidth 0.9–1.1 GHz), (b) design scenario II (bandwidth 0.95–1.05 GHz).
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The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request. Contact person: anna.dabrowska@pg.edu.pl.
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