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Abstract: Nowadays, there are two leading sea sounding technologies: the multibeam echo sounder
and the multiphase echo sounder (also known as phase-difference side scan sonar or bathymetric
side scan sonar). Both solutions have their advantages and disadvantages, and they can be perceived
as complementary to each other. The article reviews the development of interferometric echo
sounding array configurations and the various methods applied to determine the direction-of-arrival.
“Interferometric echo sounder” is a broad term, applied to various devices that primarily utilize phase
difference measurements to estimate the direction-of-arrival. The article focuses on modifications
to the interferometric sonar array that have led to the state-of-the-art multiphase echo sounder.
The main algorithms for classical and modern interferometric echo sounder direction-of-arrival
estimation are also outlined. The accuracy of direction-of-arrival estimation methods is dependent
on the configuration of the array and external and internal noise sources. The main sources
of errors, which influence the accuracy of the phase difference measurements, are also briefly
characterized. The article ends with a review of the current research into improvements in the
accuracy of interferometric echo sounding and the application of the principle of interferometric in
other devices.

Keywords: direction-of-arrival; swath bathymetry; echo sounder; phase difference measurements;
Prony’s method

1. Introduction

Acoustic techniques for surveying the sea bottom have been continuously developing since the
early years of the 20th century. After WWII, the single beam echo sounder (SBES) started to become
standard equipment on most merchant ships, as it facilitated safe navigation at sea [1]. The SBES
uses a simple echolocation method that sounds the sea depth directly below the acoustic transducer
of a small area, the so-called seabed footprint (Figure 1a). This records the depth profile along the
path travelled by the vessel. Regardless of the success and widespread use of SBES, the demands for
precise, high-resolution charting required more efficient means of surveying the sea [2,3]. To meet
these requests, three categories of bathymetric survey systems have been designed:

1. The multi-channel echo sounder (MCES).
2. The multi-beam echo sounder (MBES).
3. The interferometric echo sounder (IES).
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these main limitations [2,3]. Initially, interferometric echo sounders were used in scientific research 

applications. In the mid 1990s, the IES reached a level of advancement that allowed it to be offered 

as a complete, off-the-shelf solution. At the beginning of the current millennium, the interferometric 

echo sounder started to be a viable alternative to the MBES [7]. Its angular coverage is usually 

greater than that of the MBES, which makes it more effective in shallow waters. The following 

sections present a brief description of the subsequent stages of the development of interferometric 

echo sounder array configurations. Factors affecting the accuracy of phase difference measurements 

are also briefly explained. The last section focuses on the current trends in research in the field of 

interferometric echo sounding. 

 

Figure 1. Cross track bottom coverage of various echo sounder systems. (a) Single-beam echo sounder. 

(b) Multi-channel (multi-transducer) echo sounder. (c) Multi-beam echo sounder. —water level. 

Swath (bottom strip personified by a single ping). 

2. Classical Interferometry 

Acoustic interferometry is a method of the measurement of physical properties inferred from the 

properties of the combined interaction of two or more acoustic waves. The most famous example of 

interference, though for electromagnetic waves, is Young’s double slit experiment [8]. If the distance 

between two slits is known and the distance between the maxima of the interference fringes is 

measured, the distance between the slit and the screen can be inferred. This inversion of the Young 

experiment lays the foundations for interferometric techniques and classical acoustic interferometry 

(Figure 2). First, assume that point D, situated on the bottom of the body of water, is the source of the 

echo signal. The distance form this point to receive elements A and B is different ( r  and rr  , 

respectively). If dr  , the value r , from the right triangle ABC, can be calculated: 
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obtained by combining the signals from two receive elements [3]. At first, the transmit element 
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propagates back to a pair of identical receive elements. The distance between receive elements d  
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from the output of the receive elements is amplified and summed. The amplitudes are printed on 

thermal paper as a function of range (Figure 4). One vertical line of the printout represents one 

transmitted impulse. The height of the echogram is equivalent to the selected observation range. 

Figure 1. Cross track bottom coverage of various echo sounder systems. (a) Single-beam echo sounder.
(b) Multi-channel (multi-transducer) echo sounder. (c) Multi-beam echo sounder. ∇—water level.
Swath (bottom strip personified by a single ping).

The MCES is a straightforward modification of the SBES (Figure 1b) [4]. It consists of several
acoustic transducers mounted on horizontal booms at each side that operate in a synchronized manner.
Nowadays, this solution is still used in rivers and in areas where the application of other systems is not
economically justified or impractical. Instead, the MBES is the standard surveying tool (Figure 1c) [5].
It utilizes a wide fan of electronically-steered beams that allow for a wide strip of sea bottom to
be simultaneously scanned. The MBES achieves the highest accuracy requirements as defined by
the International Hydrographic Organization (IHO) [6]. Nevertheless, it has two main limitations:
high purchase cost and a rapid decrease of accuracy for large angles of incidence. The third type of
bathymetric system, the IES, was developed alongside the MBES in order to overcome these main
limitations [2,3]. Initially, interferometric echo sounders were used in scientific research applications.
In the mid 1990s, the IES reached a level of advancement that allowed it to be offered as a complete,
off-the-shelf solution. At the beginning of the current millennium, the interferometric echo sounder
started to be a viable alternative to the MBES [7]. Its angular coverage is usually greater than that
of the MBES, which makes it more effective in shallow waters. The following sections present a
brief description of the subsequent stages of the development of interferometric echo sounder array
configurations. Factors affecting the accuracy of phase difference measurements are also briefly
explained. The last section focuses on the current trends in research in the field of interferometric
echo sounding.

2. Classical Interferometry

Acoustic interferometry is a method of the measurement of physical properties inferred from the
properties of the combined interaction of two or more acoustic waves. The most famous example of
interference, though for electromagnetic waves, is Young’s double slit experiment [8]. If the distance
between two slits is known and the distance between the maxima of the interference fringes is measured,
the distance between the slit and the screen can be inferred. This inversion of the Young experiment
lays the foundations for interferometric techniques and classical acoustic interferometry (Figure 2).
First, assume that point D, situated on the bottom of the body of water, is the source of the echo
signal. The distance form this point to receive elements A and B is different (r and r + ∆r, respectively).
If r >> d, the value ∆r, from the right triangle ABC, can be calculated:

d sin(γ) = ∆r (1)

where d is the distance between receive elements and γ is the direction-of-arrival (DOA) in relation to
the receive array maximum response axis (MRA).
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Figure 2. Interferometric echo sounder measurement principle.

In the interferometric echosounder, the value γ is sought based on the interference pattern obtained
by combining the signals from two receive elements [3]. At first, the transmit element generates a wide
beam impulse (Figure 3). After being reflected from the bottom, the impulse echo propagates back to a
pair of identical receive elements. The distance between receive elements d is fixed and usually equals
several wavelengths (see Table 1, positions 1 and 2). The electrical signal from the output of the receive
elements is amplified and summed. The amplitudes are printed on thermal paper as a function of
range (Figure 4). One vertical line of the printout represents one transmitted impulse. The height of
the echogram is equivalent to the selected observation range. Adjacent lines form the interferogram.
The interference fringes are equivalent to those in Young’s double slit experiment, and the interference
pattern is used to assess the value of ∆r in Equation (1).
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Table 1. Parameters of selected scientific research interferometric systems (classical and differential) [3,9–13].

No. System Name
(Prod. Year)

Freq.
[kHz] 1

No. of Receive
Elements d Beam Width

[deg. × deg.] 3

1 Telesounding
(1974) 250 1 2

2
33/60 λ

33 λ
1 × 50

2 Bathyscan
(1982) 300 2 10 λ, 11 λ 1 × 25

3 TOPO-SSS
(1982) 160 2 1.9 λ 2 × 45

4 SeaMARC II
(1983) 11, 12 2 0.5 λ 2 × 55

5 SeaMARC/S
(1985) 150 3 λ 2 × 45

6 SeaMARC/R
(1989) 11, 12 2 0.5 λ 2 × 55

7 SYSTEM120
(1989) 120 3 λ 2 × 50

8
SeaMARC

TAMU
(1990)

11, 12 3 0.45 λ 2 × 65

9 SYSTEM09
(1990) 9, 10 2 0.8 λ 2.5 × 65

10 GLORI-B
(1992) 6.8, 6.3 2 0.7 λ 2.7 × 35

11 Deepscan
(1999) 60, 120 3 0.8 λ 1.5 × 50

1 Double values separated by a comma mean a different frequency for each side—port and starboard. 2 Mirror
bottom reflection generated by a specially designed baffle. 3 Horizontal × vertical.
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Figure 4. Interferometric fringes identification example. Image was generated using the raw signal
from an EdgeTech 6205 system. d = 4.5λ, H = 13 m , and ψ = 35◦. Bottom configuration—flat.
r0 ≈ H/ sin(ψ) ≈ 30 m. The fringes’ centers (the brightest parts of the fringes) indicate the maxima
positions. The wave pattern on the interferogram was caused by the platform rolling.
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The number of fringes and their locations in the interferogram depend on d, the characteristics of
the transmit and receive elements, array tilt angle, depth, and selected observation range (Figure 4).
Each maximum is related to the difference of acoustic path ∆r, which is equal to an integer number of
wavelengths λ, and Equation (1) transforms into [3]:

d sin(γnp) = npλ (2)

where γnp is the direction-of-arrival assigned to the given maximum, np is the integer number assigned
to the maximum, and λ is the acoustic wavelength at the receive elements.

Each maximum, for a given transmit impulse, is assigned to the distance r, which is equivalent to
the two-way propagation time of the acoustic impulse in the water. This way, pairs of polar coordinates(
rnp , γnp

)
are obtained. The beginning of this coordinate system is located at the reference receive

element (A in Figure 2). Its axis is aligned with the MRA. If array tilt angle ψ is known, the location of
the echo source can be determined (see Figure 2):

X = r sinθ = r sin(ψ+ γ) (3)

H = r cosθ = r cos(ψ+ γ) (4)

where H is the depth below the receive array, X is the cross-track distance from the receive array, ψ is
the array tilt angle in relation to the vertical, θ is the angle of incidence, and r is the distance from echo
source to receive element A.

The advantage of the classical interferometric echo sounder is undoubtedly its simple design.
Using only two receive elements, it can produce bottom estimates of good quality. This technique was
therefore suitable for the general survey of large, deep areas such as the ocean’s abyss. Its heads (one
at each side) were usually towed below the surface, which limited the impact of surface reflections
(Figure 5). The main disadvantage of the interferometric echo sounder is its vulnerability to interfering
signals coming from directions other than the sea bottom [14]. Classical interferometry, by principle,
can only determine one DOA at a time. Other sources of echoes introduce biases in the determined
direction. Another disadvantage is the fact that classical interferometry requires the manual and
time-consuming post-processing of the interferograms to find the maxima and assign a number and
range to each image strip [15]. Another minor limitation is that the angular separation between
subsequent fringes varies because Equation (2) is nonlinear. Though towing the sonar heads away
from the sea surface improves the accuracy of depth determination, this solution requires a layback
calculation system to correctly georeference the results and assign final depths (corrected by the array
draft). Another minor disadvantage is the need to find the np = 0 fringe. To properly identify its
location, approximate depth and tilt angle data are required (see the caption below Figure 4). An initial
depth estimate can be obtained from a single-beam echo sounder, and the current tilt angle is the sum
of the mounting tilt angle and the roll angle (registered by the on-board motion sensor).
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3. Differential Interferometry

Classical interferometric methods are based on the analog signal processing scheme, but the
development of fast digital processors and new transducer technologies have allowed for the application
of digital processing to interferometric echo sounding. To facilitate this, the received signal is
transformed inside the receiver into its analytic representation. Using I/Q decoding, the in-phase and
quadrature components are calculated to enable the extraction of the signal instantaneous amplitude
and phase [16]:

An(t) =
∣∣∣sn(t)

∣∣∣ = √
xn(t)

2 + yn(t)
2 (5)

φn(t) = arg(sn(t)) = arctan
(

yn(t)
xn(t)

)
(6)

sn(t) = xn(t) + j yn(t) (7)

where sn(t) is the analytic (complex) signal at nth receiver, An(t) is the signal instantaneous amplitude,
φn(t) is the signal phase, x(t) is the in-phase signal component, arg is the complex number argument,
and y(t) is the quadrature signal component.

For any given moment t, the phase difference between two receive elements can be calculated [17]:

∆φ12(t) = φ1(t) −φ2(t) (8)

In practice, using properties of complex numbers, the phase difference is calculated using the
following formula [18]:

∆φ12(t) = arg
(
s1(t) · s∗2(t)

)
(9)

where ∗ denotes complex conjugate. The DOA was calculated from [16]:

γ = arcsin
(

∆ϕ12 + 2πnp

kd

)
, np = . . . ,−2,−1, 0, 1, 2, . . . , (10)
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where k is the wavenumber (k = 2π/λ). When d ≤ λ/2, the DOA is calculated unambiguously.
If d > λ/2, phase ambiguity exists and assigning each measured difference to a certain np value is
required (analogously to classical interferometry).

The Vernier method might be applied to help to resolve phase ambiguity [19]. It requires an
additional receive element, however. The extraneous element is used to form two pairs that differ
slightly in distance d (Figure 6). The phase difference is calculated from [11]:

∆φV(t) = φ12(t) −φ23(t), (11)

where the values φ12(t), φ23(t) can be calculated using Equations (8) or (9). The phase difference is
limited to 〈−2π, 2π〉. In the case of low noise, the vast majority of the calculated differences lie within
〈−π, π〉 and the ambiguity is eliminated. When |d1 − d2| > λ/2, ambiguity still remains, but even then,
the number of fringes to resolve is greatly reduced or results for n , 0 can simply be rejected [20].
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Figure 6. Vernier interferometer receive array configuration.

Difference interferometry was widely used for surveying the bottom of the oceans. Scientific
research systems such as SeaMARC and TOPO-SSS used towed arrays [11] (see Table 1). Another method
to limit the signals from undesired directions is the application of specially desired baffles [14].
The advantage of difference interferometry over classical interferometry is the improvement in the
number of bottom samples. The number of samples depends on the signal sampling frequency and
the maximum observation range. Similarly to classical interferometry, good quality data are obtained
for large angles of incidence. The number of samples is usually less than 5000 per side per pulse,
which provides high resolution survey data.

The disadvantage of this solution is the requirement of a more sophisticated digital receiver with
high processing power to produce real-time results. Initially, the receive signals were recorded and
analyzed in post-processing [21]. Though difference interferometry eliminated many of the problems
of classical interferometry, it was still unable to resolve more than one DOA at a time. This limited the
shallow-water applicability of the solution, as the platform has to be towed away from the surface
of the water. Another disadvantage is its poor performance in the vertical direction [11]. In fact,
the coverage of bathymetry is equivalent to that of the side scan sonar, which has a blind spot in the
nadir area, as hardly any reliable data can be obtained from this direction.
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4. Multi-Phase Difference Interferometry

The multi-phase echo sounder (MPES) also known as the phase differencing side scan sonar (PDSS)
or multi-phase difference interferometry (MPDI) is another step in the evolution of the interferometric
echo sounder. It was designed to overcome main limitations of previous interferometric solutions,
such as the capacity of one DOA at a time. It uses computed angle-of-arrival transient imaging (CAATI),
which assumes the following (Figure 7) [22–25]:

1 A linear N -element equispaced array (uniform linear array—ULA) is used to measure transmitted
signal echoes propagating in the same plane as the array.

2. At each instant in time, exactly M -independent, coplanar plane waves are incident on the
receiving array.

3. The acoustic backscatter is narrowband.
4. The receiving array element output signals are in a steady state across the entire array.
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What is more, elements are located at distances of less than half wavelength to avoid phase
ambiguity. According to the above assumptions, at each receive element, the signal can be written as
(generic formulation, time dependence of samples is omitted for clarity) [23]:

s(n) =
M∑

i=1
ai e(αi+ j ui) d(n−1) + w(n)

ai = Aie
jΘi , ui = k sinγi , k = 2π

λ , n = 1, 2, · · · , N
(12)

where Ai is the signal amplitude at the reference receive element, Θi is the signal phase at the reference
receive element, λ is the acoustic wavelength, ui is the spatial wavenumber, αi is the exponential
damping factor, w(n) is noise.
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In most practical applications, exponential damping factors αi are assumed to be zero. From N
signal samples, a set of linear backward–forward equations can be formed (forward-only or
backward-only formulation is also possible) [22,23,26]:

s(L) s(L− 1) · · · s(1)
s(L + 1) s(L) · · · s(2)

...
...

. . .
...

s(N − 1) s(N − 2) · · · s(N − L)
−−−− −−−− −−−− −−−−

s∗(2) s∗(3) · · · s∗(L + 1)
s∗(3) s∗(4) · · · s∗(L + 2)

...
...

. . .
...

s∗(N − L + 1) s∗(N − L + 2) · · · s∗(N)




g1

g2
...

gL

 = −



s(L + 1)
s(L + 2)

...
s(N)

−−−−

s∗(1)
s∗(2)

...
s∗(N − L)



(13)

or briefly in the vector/matrix notation:
Ag = −h (14)

From Equation (14), vector g is calculated, and its elements gl are used as coefficients of the
polynomial equation:

Ht(z) = 1 +
L∑

k=1

gkz−k = 0 (15)

where Ht(z) is the transfer function of the associated linear filter [26]. Complex zeros of Equation (15)
are related to the sought directions by the relation [23]:

zi = e(αi+ jui)d (16)

The direction can therefore be calculated from (compare Equation (10)):

γi = arcsin
(

arg(zi)

kd

)
(17)

Once directions γi are determined, amplitudes ai can be calculated by solving another set of
equations [23]. The aim of this technique is to extract unknown parameter pairs (ai, γi). However,
this generally requires N > 2M receive elements. In this solution, echoes not originating from the
bottom are treated as additional unknown signals. The basic approach utilizes the least-squares
solution to Equation (14) for L = M. Extraneous echoes, not originating from the bottom, are rejected
in the filtering process [23].

The interferometric and multibeam echo sounder are both used for bottom mapping, but they
are based on different measuring principles. The difference can be best described by the approach to
Equations (3) and (4). The interferometric echo sounder determines angle (-s) γ for the given range r,
while the MBES resolves range r within the predefined directions γ (beams).

While the MBES usually produces 200–400 beams (measuring points) per ping, the IES usually
produces 8000–10,000 measuring points per ping (total of two heads). Nevertheless, a single-point
measurement is generally noisier, meaning it has a greater depth variance than a single-point
measurement of the MBES. Therefore, data reduction and generalization techniques have to be used to
produce less measuring points for further processing (similar number of points to MBES processing).
There is also a different distribution of measuring errors. While the accuracy of the IES is best around
the crossing point of the MRA and bottom (see Section 4), the MBES is most accurate directly below
the array, i.e., in the nadir zone. Some IES systems do not produce data in this blind spot, while others
produce sparse, very noisy bottom samples in this area. The IES is a modification of side scan sonar,
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so it naturally produces a side scan sonar bottom image co-registered with bathymetry. Thanks to
this, data processing and interpretation is much easier. The MBES lacks this feature. Generally the IES
produces wider swaths than the MBES, especially for shallow water, which can significantly reduce
survey time. For a depth range of 2–20 m, the width of the acceptable swath usually equals 8–12
times the depth below the transducer (H). MPDI may be directly attached to the hull of the survey
vessel, which improves positioning accuracy, as the layback calculation system is no longer necessary.
Currently, MPDI is capable of fulfilling the most stringent accuracy requirements and can provide
real-time data [6,7,27]. Some of the systems struggle, however, with poor data in the nadir zone or no
data at all in this direction.

5. Sources of Errors

The accuracy of the estimation of the DOA of an interferometric echo sounder, like any other
measuring system, is dependent on various factors [17,18,28–30]. In the description provided below,
we only focus on those specific to interferometric measurements. In the most basic propagation
model, the accuracy of the measurement of the phase difference in Equation (8) is only dependent
on the signal-to-noise ratio (SNR) (assuming a point-like coherent echo model and only two receive
elements) [17]. This model, however, is too simplistic for the spatial and time variability of the echo
signal received in an underwater environment and does not explain the observed phase difference
variability [18].

The spatial dimensions of the receive array and the finite size of the echo sources (acoustic
footprints) result in inter-element coherence loss. This negative effect can be attributed to two main
factors, i.e., the shifting footprint and baseline decorrelation (Figure 8) [18]. The shifting (sliding)
footprint coherence loss is caused by the fact that for each receive element, the active footprint position
is slightly different. The uncommon part of one footprint acts as noise for the other receiver signal,
and only the common part of the footprints carries useful direction information. The shifting footprint
effect is minimal around the MRA (Figure 9). Baseline decorrelation coherence loss is caused by the
random distribution of the position, strength, and phase delay of the scatterers within the footprint.
The resulting echo wavefront is not planar but is randomly distorted (Figure 8). These distortions
gradually vanish with range, as the wavefront is smoothed. The impact of baseline decorrelation is
greatest directly below the array (nadir zone) and diminishes with range (Figure 9). The element
spacing in relation to the wavelength, array tilt, and bottom depth determine the actual impact of these
two effects on accuracy [17].

The third type of noise is caused by volume reverberation that comes from random reflections from
inhomogeneities in the water column. Reverberation can be treated as an additional range-dependent
level of ambient noise, thus lowering the actual SNR. Additional sources of reflection, e.g., surface
reverberation and multipath, lead to the degradation of the accuracy of those methods that assume
only one source [18]. Generally, all noise sources cause signal decorrelation, which translates into the
loss of the accuracy of the DOA estimation. Their impact on accuracy can be modelled by the notion of
an equivalent SNR, which represents the global usable energy quota (i.e., carrying DOA information;
see Figure 9) [17]. These sources of errors also apply to MPDI, which can be viewed as a superposition
of several phase difference interferometers.

Another source of error for difference interferometry is caused by mistakes in the phase unwrapping
operation [31]. The phase unwrapping errors are significantly limited by the application of the Vernier
technique [32,33]. Nevertheless, they are inevitable when d > λ/2.
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6. Current Research Review

Currently, many MPDI systems fulfill hydrographic survey accuracy requirements and are treated
as equivalent to the MBES, especially in shallow waters applications [7,27]. However, there are still
grounds for further research. First of all, the requirements might become more stringent, especially
in the military and industrial areas of interest. Secondly, with the increase of the computational
power of processing units, more computationally heavy methods might become available for real-time
processing. Furthermore, other measuring devices might benefit from the application of interferometric
echo sounding. Generally we can indicate three current areas of research into the interferometric echo
sounding techniques:

1. Improvement in DOA accuracy.
2. The application of subarray processing.
3. The application of interferometric bathymetry to synthetic aperture sonar (SAS).

Improvements in the accuracy of interferometric echo sounding can be achieved in a number
of ways. The most obvious one would be to increase the SNR by increasing the source level (of
course, within the limit imposed by cavitation). However, once the SNR is above the decorrelation
sources, a further increase in the source level will not provide any further improvement in accuracy
(see Figure 9). Range and accuracy can also be improved by increasing the pulse length, but this
also lowers the spatial resolution of the bottom image. A remedy to this range–resolution trade-off

might be the application of FM pulses and matched filter processing [34–36]. The application of FM
pulses lowers the impact of the shifting footprint. Unfortunately, increasing the effective pulse length
unfavorably impacts baseline decorrelation. The net result is that FM can improve accuracy for low
grazing angles, though not directly below the array. On the other hand, when using shorter pulses,
the shifting footprint might become the limiting factor on accuracy.

The general trend outlined in Table 2 is the increase in the number of receive elements being utilized.
In the case of difference interferometry, and one source of echo, multiple phase difference estimations
during one time sample are being obtained, thus improving DOA estimation accuracy [37,38]. In the
presence of multiple sources of echoes (a multipath, shallow water environment), MPDI accuracy is
also being improved thanks to extraneous receive elements. Additionally, this increase also opens up
the possibility of application of other than the least squares method outlined in Section 4, including
subspace methods, with the possibility of achieving increased accuracy. From all the available
methods to solve Equation (14), which are direct or indirect modifications of Prony’s method, the most
representative examples are [26,39–42]:

1. Total least-squares.
2. Modified Prony.
3. Root-MUSIC.
4. ESPRIT-TLS.
5. Matrix Pencil.

Each method requires a different number of computations, and their immunity to modelling errors
and noise levels is also different [41]. Usually, there is a compromise between the accuracy of the method
and the number of computations required to achieve the final solution [42]. The above-mentioned
high-resolution methods (including least-squares) also require the estimation of the number of
signal echoes prior to the solution, i.e., model order (M) selection to perform subspace separation.
However, standard procedures, such as the Akaike information criterion and the minimum description
length methods [43], are not suitable for underwater acoustics. These methods assume a constant
direction-of-arrival and do not take into account the inter-element coherence loss characteristic of the
bathymetric sonar echo signals described in Section 4. As a result, these methods tend to overestimate
the number of signal echoes. Recently, a new method for determining the number of signal echoes
has been proposed by the authors, which is dedicated for this very purpose [27,44,45]. The proposed
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method takes inter-element coherence loss into account to apply a modified version of the matrix
perturbation method [46]. This technique, although initially designed for the modified Prony method,
might also be successfully applied to other model-based methods [27]. The application of subspace
methods in conjunction with the proposed technique to determine the number of echo signals improves
the accuracy of DOA estimation compared to the standard least-squares (LS) method. ESPRIT-TLS and
root-MUSIC perform similarly but generally require a larger number of computations [27].

Table 2. Multi-phase difference interferometry (MPDI) systems. 1 (Source: system manuals, data sheets,
and private correspondence).

No. Manufacturer,
System Name

Freq.
[kHz] 1

No. of Receive
Elements

Beam Width
[deg. × deg.]

1 Klein,
HydroChart 3500/5000 455 4/5 0.4 × 120

2 ITER Systems,
Bathyswath-2

117
234
468

4
0.85
0.55
0.55

× 140

3 Kongsberg,
GeoswathPlus

125
250
500

4
0.85
0.55
0.55

× 140

4 Teledyne,
Benthos C3D 2 200 6 1 × 100

5 Edgetech,
4600

230
550 8 0.64

0.5 × 100

6 Edgetech,
6205/6205s

230
550 10 0.7

0.5 × 100

1 Element separation approx. 0.5 λ. 2 No longer in production.

A further increase in the number of receiving elements allows for the application of a hybrid
approach, called subarray processing [47,48]. First, initial bottom estimates are obtained, and then the
array is divided into several overlapping subarrays that are steered (beamformed) in the direction
of the initial bottom estimates. Finally, interferometric processing is applied to the outputs of the
subarrays giving the final DOA estimation for each bottom sample. Beamforming partially suppresses
signals from unwanted directions, thus limiting their negative impact on accuracy. Either a uniform
and non-uniform linear array can be used in this solution [49,50]. A variant of this method is commonly
used in the MBES to increase accuracy for low grazing angles. This variant uses two subarrays and the
initial bottom estimates are obtained via beamforming [51].

With the advent of SAS, it was soon realized that interferometric techniques might be used to
obtain depth estimates based on the high-quality sonar images it produces [52]. To obtain depth
estimates, one or two rows of receive elements are placed above the original receive array [53,54].
Since SAS devices are mounted on underwater vehicles, the multipath echoes caused by proximity to
the sea surface are absent, and simple—assuming one echo—difference interferometry or the Vernier
technique might be used [55].

7. Conclusions

Changes in the DOA estimation methods applied in interferometric echo sounding reflect the
increasing need to obtain more accurate and effective depth measuring devices. Modifications in
array configuration have allowed for the application of more complex algorithms for DOA estimation,
which, combined with advanced signal processing techniques, have helped to eliminate its main
shortcomings. The multiphase echo sounder is expected to gain more interest in the following years
due to its multiple advantages. Its higher efficiency at surveying in shallow waters and lower cost of
manufacturing, as compared to the MBES, make it a reasonable choice for coastal waters and harbors.
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It is also a solution that is easily applied in underwater and surface unmanned autonomous vehicles
due to the reduced array size. Constant demands for large amounts of high-quality bathymetric data
and advances in the software and hardware for signal processing are expected to be the driving factor
behind the development and proliferation of multiphase survey techniques in the years to come. It is
also expected that subarray processing will gain more interest in the future because it is a solution that
combines the advantages of both interferometric and multibeam processing.
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