
ð

Abstract4Application logs record the behavior of a system

during its runtime and their analysis can provide useful

information. In this article, we propose a method of automated

log analysis to discover interactions taking place between

applications in an enterprise. We believe that such an

automated approach can greatly support enterprise architects

in building an up-to-date view of a governed system in a

modern, fast-paced development environment. Our

contribution is the following: we propose a new method for log

template generation called SLT (Simple Log Template), we

propose a method of extracting knowledge about application

interactions from logs, and we validate the proposed methods

on a real system running at Nordea Bank. Additionally, we

collect statistical information about application logs from the

real-life system, based on which we formulate some

observations that support our method.

I. INTRODUCTION

NE of the challenges faced by enterprise architect

teams in large organizations is to ensure an up-to-date

overview of the systems they are governing. Traditionally,

the governance process relies on manual updates to the sys-

tem representation stored in the architecture repository.

However, in the age of microservices and cloud deploy-

ments, where significant changes to architecture can take

place overnight, this is barely sufficient. There is a clear

need for a better, more automated way of maintaining

knowledge about systems across an enterprise.

O

Automation of system knowledge discovery is a big help

for enterprise architects, especially in recent times, when

new applications are created at an increasing pace and their

architecture changes rapidly. Manually updated architecture

repositories no longer keep up with the reality of systems de-

ployed to a production environment. This problem is further

emphasized by long, heavy, and manual processes of intro-

ducing changes to architecture repositories, which do not fit

the time-to-market expectations of the business stakeholders.

Having a decent representation of current production deploy-

ment allows for reasoning about the architecture, detecting

non-compliance with internal or external regulations, and

helps the development of the enterprise architecture in a

planned direction. It also improves building always up-to-

date overview of the enterprise system which is beneficial

ðThis work was supported by GdaEsk University of Technology

not only for architects but for developers, analysts, and

testers for building a mental model of the system they are

working with. One of the potential approaches is to utilize

application logs which provide a common, always up-to-date

view of applications during their runtime.

Application logs have several compelling advantages as

compared to other sources of knowledge about the system

(e.g., documentation or source code). Firstly, logging is the

most widespread way of tracking system behavior that is

present in software development since its beginning. Thanks

to that we can assume that nearly every software system,

even legacy, implements some form of logging. In the reality

of many enterprises, logs may prove to be the only common

source of knowledge about systems still running on main-

frame platforms. Secondly, logs (which traditionally are

stored as text files) are usually human-readable and therefore

are suitable for processing by text tools. Additionally, they

are a mixture of technical information and narrative. Lastly,

logs usually follow the changes in the source code of appli-

cations, so they contain the historical aspect of software evo-

lution. All of that makes application logs a rich source of

data for various analyses. Because of our focus on automa-

tion of knowledge discovery about systems, we are only in-

terested in automated log analysis. According to [1], auto-

mated analysis of application logs is a widely studied disci-

pline with growing interest among researchers in recent

years. The most obvious usage of log analysis lies in the op-

erations area (intrusion detection, monitoring) but its poten-

tial in reasoning about the business domain or the design of

the software is also explored.

In this paper, we try to derive knowledge about enterprise

systems (specifically about interactions between applica-

tions) from application logs. Our work fits in the design/

component dependency inference area of the landscape of

automated log analysis proposed by the authors of [1]. We

perform experiments on a real-life system from the banking

industry, hosted at Nordea Bank. We contribute to the body

of knowledge in the following ways:

" we perform statistical analysis of log files of a subset of

logs from a real-life system deployed at Nordea Bank,

" we formulate some general observations about the way

logs are typically created by developers,

Discovering interactions between applications with log analysis

Aukasz Korzeniowski
Nordea Bank Abp SA , Satamaradankatu 5, FI-00020

Helsinki, Finland

Email: lukasz.korzeniowski@protonmail.com

Krzysztof GoczyCa
GdaEsk University of Technology, Faculty of

Electronics, Telecommunication and Informatics,

Narutowicza 11/12, GdaEsk, Poland

Email: kris@eti.pg.edu.pl

Proceedings of the of the 17th Conference on Computer

Science and Intelligence Systems pp. 861–869

DOI: 10.15439/2022F172

ISSN 2300-5963 ACSIS, Vol. 30

IEEE Catalog Number: CFP2285N-ART ©2022, PTI 861

" based on the defined observations, we propose a new

method for log template extraction called SLT (Simple Log

Template),

" we propose a workflow for automated discovery of ap-

plication interactions from their logs,

" we verify our method with logs from a real-life system

deployed at Nordea Bank.

The remainder of this paper is organized as follows. Sec-

tion II discusses related work. In Section III, we present a

formal definition of the problem. In Section IV, we perform

a statistical analysis of application logs from a subset of ap-

plications deployed at Nordea Bank and we formulate obser-

vations related to how developers place their log statements

in enterprise systems. In Section V, we describe our ap-

proach for component dependency inference based on log

analysis, while in Section VI, we evaluate this method

against the real-life system deployed at Nordea Bank. Sec-

tion VII presents conclusions from our experiments and out-

lines the future work.

II. RELATED WORK

Component dependency inference using automated log

analysis is rather a niche topic, but some notable recent work

is worth mentioning. [2] analyzes web service interactions

and tries to correlate web service invocations using IP ad-

dresses and invocation statuses found in logs. The authors

identify two specific types of interactions: composition (one

service orchestrates a series of calls to other services) and

substitution (service is called as part of an error-handling

scenario after a failed call to another service). The authors

assume the availability of IP address information in service

logs, which (according to [1]) is true mostly for access logs

and network logs that may not be available for applications

other than web services. Additionally, basing the analysis on

IP address correlation may be very challenging in cloud-

hosted applications, where services are replicated, and IP ad-

dresses can change dynamically. In contrast, our method

puts minimum assumptions on log content and bases the

analysis on log messages. The authors of [3] perform a sta-

tistical analysis of web service logs to identify a correlation

between web services. The analysis includes time correla-

tion, call frequency correlation, and analysis of service re-

sponse times. The authors define three types of web service

interactions: dependency on the data source (multiple web

services try to access the same shared resource), hierarchical

dependency (one service is invoked by another), and serial

execution dependency (one service orchestrates a series of

invocations). Similarly, as in the previously mentioned

work, the focus is on web services and other types of appli-

cations are not considered. [4] describes a Bayesian Decision

Theory-based approach to the identification of component

dependencies. The authors describe each log message with a

key and a set of parameters which are determined by some

empirical knowledge and common string extraction. The au-

thors also identify some observations related to logging

practices that form the foundation for their algorithm: co-oc-

currence observation (logs of dependent services are time-

correlated) and correspondence observation (logs of depen-

dent services often contain some identical parameter). The

proposed method is validated using the Hadoop dataset. In

our work, we take these ideas further by removing any em-

pirical knowledge needed to extract parameters. We also em-

pirically confirm and further extend the authors9 observa-

tions regarding logging practices based on application logs

from a real-life system at Nordea Bank. Furthermore, we

validate our method using a dataset of logs from Nordea

Bank, which is expected to be less homogeneous than logs

of any shared service platform like Hadoop.

Workflow discovery is a similar research area that aims in

recovering whole processes from logs. Although it is not in

the scope of this paper, workflow discovery is part of our fu-

ture work and therefore notable work on this related topic is

worth mentioning. [8] uses a process mining approach to

discover recursive processes from event logs. The authors of

[9] propose a method for triaging production failures that

analyses service interactions to identify the failed work-

flows. The authors of [10] present a method for recovery of

Communicating Finite State Machine model that represents

service interactions. The proposed approach requires, how-

ever, users to input knowledge about the structure of a log

file for it to be able to be processed.

Our work also aims to identify real-life logging practices

applied by software developers. Similar efforts were pre-

sented in [5] where different categories of logging state-

ments used by developers are defined. The authors take the

source-code perspective analyzing logging practices from

the point of view of a single application. [6] presents a statis-

tical analysis of logging practices in open-source projects

and [7] repeats this study for java-based open-source

projects. The authors analyze factors such as log density,

how meaningful log extracts are for bug-fixing, what are the

typical changes to logging code, and how often they occur.

In our work, we use logs from a real-life system at Nordea

Bank to identify higher-level observations regarding logging

statements that represent the intent to specifically track inter-

actions between different applications and thus are useful for

analyzing application dependencies.

Log template generation is another area of research, re-

lated strictly to log analysis, which aims in discovering tem-

plates that describe individual lines in log files. Being able to

identify static and variable parts of log entries allows for bet-

ter reasoning about the log content and is considered the ba-

sis of any log analysis task. [14] performs a comparative

analysis of various log template generation algorithms. Log-

Cluster [11] and DRAIN [12] are two of these algorithms

that, according to [14], present respectively the lowest accu-

racy span and the top accuracy levels over the sample data

sets. We picked these algorithms as a benchmark for the

method proposed by us.

862 PROCEEDINGS OF THE FEDCSIS. SOFIA, BULGARIA, 2022

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

III. PROBLEM STATEMENT

We aim at inferring knowledge about enterprise systems

from application logs. The goal is to provide enterprise ar-

chitects with a good enough representation of the system that

reflects the reality of the production environment. The de-

rived model of the enterprise system needs to support archi-

tects9 activities related to reasoning about the architecture.

An example of such activities is data governance which con-

centrates on aspects like usage of proper data sources by ap-

plications, understanding the semantic relationships between

data stored and exchanged between applications, or ensuring

assumed data flow. Apart from data governance, common

enterprise architects9 activities concentrate also on ensuring

that processes implemented inside the system fulfill both in-

ternal and external regulations. These may include measur-

ing process performance or ensuring certain regulatory con-

straints are obeyed.

We can assume that the set of applications in the enter-

prise system is known with a high level of confidence. On

the other hand, knowledge of application inter-connections

(interactions between applications) from the enterprise per-

spective is where the confidence decreases. Having hundreds

of applications deployed in a bank, this confidence is only as

good as the diligence of teams in updating a common archi-

tecture repository. Furthermore, basing decisions related to

the architecture of an enterprise on human declarations,

rather than facts, can lead to false conclusions and not-opti-

mal choices. We consider the problem of increasing the con-

fidence of knowledge about the actual application interac-

tions as the core problem in architecture reverse-engineer-

ing.

Let G (S)=(A ,C) be an undirected graph representing a

real system S, where A is a set of applications constituting S

and C is a set of edges representing interactions between the

applications. We say that applications A1 and A2 are interact-

ing with each other if some data exchange takes place be-

tween them. Let L(S)={l
1
, l

2
, ... ,ln} be a log of activities

collected within system S consisting of n messages. We de-

scribe each line of the log by a tuple (t , a ,m) where t de-

notes the date and time of log message creation, a represents

the application that created the message, m is the actual log

message text.

We define the problem of application interaction discov-

ery from logs as finding an approximate graph

G' (S)=(A ,C ') , where C' is an approximation of C, based

on the system9s log L(S). G' (S) is a graph representing an

approximation of system S.

The presented problem definition is extendable and allows

inference of other architecture properties on top of the appli-

cations9 interaction graph. For any property of enterprise

system P (S) , the problem of architecture property discov-

ery from logs can be defined as finding a function F, such

that P ' (S)=F (G'(S), L(S)) approximates P (S) . In this pa-

per, we do not cover solutions to the extensions of the core

problems, leaving this for further work.

IV. NORDEA BANK DATA SET

Our work presents an experience of applying log analysis

to one of the systems at Nordea Bank, which we will further

refer to as NDEASYS. For our experiment and proposed

method to be as generally applicable as possible, we picked

an application with a relatively big integration part, such that

logs created by interacting applications are the most repre-

sentative. We applied the following criteria:

" team diversity 3 applications built by teams of different

sizes, experiences, locations,

" application diversity 3 we included both dedicated busi-

ness applications and shared service platforms (e.g., storage

or communication services),

" time diversity 3 applications built in different periods,

" integration diversity 3 applications communicating us-

ing different interfaces and exchange formats.

Nordea Bank does not enforce any strict, centralized rules

on how applications should create their logs (for non-regula-

tory logging), which additionally removes any accidental

correlation between logs because of applications being cre-

ated in the same company.

The NDEASYS1 dataset consists of logs of six applica-

tions whose properties are summarized in Table I. The logs

were collected over 12 hours of operation on a random busi-

ness day in an integrated test environment.

We distinguish between three types of applications that

output logs in our data set:

" dedicated 3 application implementing logic specific to a

single business domain,

" technical 3 application with a minimum amount of

business logic, usually providing a support function, e.g.,

data or interface adaptation,

" shared service 3 application deployed on a shared plat-

form, following a typical workflow for the platform.

We characterized team diversity by the number of devel-

opers and number of locations, they were working from.

Time diversity was represented by the development period

and the duration of application development. The diversity

of integration was characterized by the integration styles

used by each application (messaging or remote procedure in-

vocation) and message formats used to exchange data with

other applications.

We performed an initial analysis of the NDEASYS1

dataset. Fig. 1 presents a histogram of tokens that are present

in the logs of each application. The histogram was created

using 1000 bins representing the frequency of token occur-

rence in a log. We made the following observations with re-

gards to all log files:

" in all the logs there is a clear split between a few very

common tokens and a lot of very rare tokens (the histogram

is right-skewed, see Fig. 1),

" at integration points, application input is commonly

logged,

" shared services tend to log only inputs while dedicated

and technical applications 3 both inputs and outputs.

ŁUKASZ KORZENIOWSKI, KRZYSZTOF GOCZYŁA: DISCOVERING INTERACTIONS BETWEEN APPLICATIONS WITH LOG ANALYSIS 863

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

We interpret these observations from the point of view of

the primary reason for logging, which is failure diagnosis. In

the case of application integration, a popular practice is to

log identifiers of data exchanged between applications.

These identifiers are (to large extent) unique values, which

explains the big number of very rare tokens appearing in the

log as compared to the few frequent tokens that represent the

static part of log messages.

V. PROPOSED METHOD

Taking the observations presented in Section IV, we pro-

pose a method for detecting application interactions from

logs leveraging the concept of rare and frequent tokens ap-

pearing in log files. Fig. 2. describes the proposed workflow

and subsequent sections describe its steps in detail.

A. Log preprocessing

For log files from each application, we perform a minimal

level of log preprocessing, which ensures a common view of

each log. We introduce minimal assumptions for the content

of log files. Each line should contain a timestamp and mes-

sage attributes. Additionally, the source (the application that

created a given line in the log) is determined based on which

application the log file belongs to. The process of extraction

of the minimum set of information from logs is called log

formatting and an example of its output is shown in Fig. 3.

In the case of some logs, we also unify data encoding to en-

sure that logs are comparable between applications. In this

step, we perform preprocessing of the message attribute by

splitting it into individual tokens using a regular expression

[:.A-Za-z0-9_-]+. Apart from log formatting, we do not ap-

ply any application-specific logic requiring expert knowl-

edge. As a result of the log preprocessing step, each log line

is described by attributes: source, timestamp, and set of to-

kens. Example tokens are shown in Table II.

TABLE I.

CHARACTERISTICS OF THE NDEASYS1 DATASET

App Log

size

[MB]

Application diversity Team diversity Time diversity Integration diversity

Type Size No

locations

Dev. period Dev. duration

[months]

Integration

style

Format

A 730 dedicated 3 2 2020-2022 24 Messaging,

RPI

Swift

(ISO15022,

ISO 20022),

JSON

B 40 technical 1 2 2020 1 Messaging Swift

(ISO15022)

C 100 shared service 2 2 2016-2020 48 RPI JSON

D 0.2 technical 1 2 2020 6 Messaging Swift

(ISO15022)

E 1600 shared service 3 2 2016-2022 72 RPI JSON

F 3 shared service 3 2 2016-2022 72 RPI JSON

Fig 1. The histogram of token distribution. The horizontal axis repre-

sents 1000 bins showing the frequency of token occurrence in each log.

The vertical axis is presented on a logarithmic scale and its values de-

scribe the number of tokens in each bin.

Fig 2. The workflow of log analysis for identification of application in-

teractions.

Log
preprocessing

Template
generation

Identification
of application
interactions

Log unification

864 PROCEEDINGS OF THE FEDCSIS. SOFIA, BULGARIA, 2022

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

B. Template generation

Template generation is the process of determining some

sort of pattern for each log line, which distinguishes the

static part of the message from the variable parts. Tradition-

ally, this process aims at providing as precise template as

possible, which describes the position of each variable ele-

ment in a log message. We found such an approach not nec-

essary and giving worse results than the relaxed approach

proposed in this paper. A more detailed comparison with

commonly used template generation methods is provided in

Section V.C.

We introduce the SLT (Simple Log Template) method of

template generation, which is a relaxed variant of the Log-

Cluster approach described in [11]. As compared to the orig-

inal method, we do not extract the exact pattern but rather

focus on splitting the message into a key (which represents

the static part) and identifiers (representing the variable part)

while entirely disregarding the position of tokens in the mes-

sage. Such an approach serves two purposes. Firstly, it mini-

mizes the number of templates. Secondly, it is better suited

for generating templates for log statements with a variable

number of repeated tokens. A typical example is logging of

service input/output values which are documents exchanged

between applications. Such documents, usually expressed in

the XML or JSON format, very often are built on top of data

schema with repeated occurrences of data items. Moreover,

XML or JSON documents cannot be treated as a regular text

because, depending on the schema, the order of appearance

of their elements can also be variable. In such cases, extrac-

tion of the exact pattern would result in a potentially big

number of complex patterns being generated, depending on

the data sample.

Our algorithm consists of two phases. In the first one, we

cluster log lines using the set of tokens. We 1-hot encode

[13] each token and then 1-hot encode each log line using

the encoding of the tokens it contains and then run the K-

means clustering algorithm. An example of token encoding

is presented in Table II. The encoding of the sample log line

from Fig. 3. is presented in Fig. 4. The optimal number of

clusters is determined by using the silhouette method. The

idea is, based on the observations in Section IV, that the

same 1-hot encoded log lines would differ from one another

only on a few positions, which should cause them to be as-

sembled to the same cluster. The clustering process is per-

formed separately for each source. This is to ensure that we

do not find by accident common templates across different

applications. Additionally, it reduces the clustering problem

significantly.

TABLE II.

EXAMPLE OF 1-HOT ENCODING OF THE IDENTIFIED TOKENS

Identified token Word index

in dictionary

1-hot encoding

logger 0 [1, 0, ..., 0]

c.n.t.i.r.q.querycallstats

observer

1 [0, 1, 0, &, 0]

operation 2 [0, 0, 1, 0, &, 0]

query_latest_in_group 38 [0, &, 0, 1, 0, &, 0]

clientid 4 [0, 0, 0, 0, 1, 0, &, 0]

x 39 [0, &, 0, 1, 0, &, 0]

clientlibrary 6 [0, 0, 0, 0, 0, 0, 1, 0, &, 0]

The outcome of the clustering phase is a set of clusters

containing specific log lines for each source. Each cluster

represents a separate logging statement (log template) and

the lines that belong to the cluster 3 instances of that tem-

plate. During the second phase, we process each cluster indi-

vidually and extract identifiers from the message attribute.

We count the frequency of each token appearance in the

cluster. We then apply a frequency threshold 3 tokens ap-

pearing less frequently than the threshold are considered the

identifiers. This is a direct utilization of the observation pre-

sented in Fig. 1. Both key and identifiers are represented as a

set of tokens 3 their order is not considered. An example of

such a template is presented in Fig. 4. Although this might

result in different templates receiving the same key, we

rarely found that to be a case in practice. Usually, logging

statements are significantly different from one another which

ensures the possibility of precisely locating such a logging

statement in the source code of the application during failure

diagnosis.

In the end, we combine the identifiers from all the clusters

into a single set. The outcome of the template generation

process is a mapping of log lines to clusters and a set of to-

kens that are considered identifiers in each application log.

Fig 3. The outcome of the log formatting phase. Colors denote the re-

spective fragments in the raw and the formatted log.

Raw log
timestamp=2022-03-15T08:50:50.030+0100 thread=grpc-
default-executor-441 level=INFO
logger=c.n.t.i.r.q.QueryCallStatsObserver,
operation=QUERY_LATEST_IN_GROUP,
clientId=X, clientLibrary=null, clientVersion=null,
hostName=a01.com, correlationId=4528e974-857c-4623-ab8b-
fe5e45742c41, action=query_start, ,
domain=Y/Z, requestCondition={""extracted.id"":
""0122318714085000""},
condition={""extracted.id"": ""0122318714085000""},
groupByFields=[Id], sortFields=[timestamp], limit=0,
payload=true

After formatting
1647330650034,E,"logger=c.n.t.i.r.q.QueryCallStatsObserver,
operation=QUERY_LATEST_IN_GROUP, clientId=X,
clientLibrary=null, clientVersion=null,
hostName=a01.com, correlationId=969a81d3-8ad8-4a5f-84e8-
0868bfd65ddb, action=query_start, , domain=Y/Z,
requestCondition={""extracted.id"": ""0122318714085000""},
condition={""extracted.id"": ""0122318714085000""},
groupByFields=[Id], sortFields=[timestamp], limit=0,
payload=true"

ŁUKASZ KORZENIOWSKI, KRZYSZTOF GOCZYŁA: DISCOVERING INTERACTIONS BETWEEN APPLICATIONS WITH LOG ANALYSIS 865

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

C. Log unification

The goal of this step is to provide a unified view of the

log across all applications. We merge all logs and order ac-

cording to timestamp. For each log line, we identify the clus-

ter it belongs to. The cluster identifier becomes a key of the

log line. From the message attribute, we select only these to-

kens that are considered identifiers for a given cluster. These

tokens form the set of identifiers for the log line.

D. Identification of application interactions

We identify interactions between applications by tracing

the same identifiers appearing in different sources. This

leverages the observation related to how developers log in-

puts and outputs to/from the applications they integrate with.

We seek reoccurring identifiers within time windows. The

size of the time window is expressed in the number of mil-

liseconds and is configurable. That allows searching for both

direct and indirect (distant) interactions between applica-

tions.

For a given time window size, we slide the window

through the unified log with a configurable increment.

Within a given time window, for each identifier, we record

the applications (sources), for which it appears in the log

line. In that way, we collect the sets of applications sharing

the same identifier. We consider these sets as probable appli-

cation interactions. This approach is continued while the

time window slides through the log. We collect the number

of occurrences of each interaction during that process.

In the end, we apply a threshold to filter out interactions

that are not very common in the log. Choosing a proper

threshold appears to be challenging as we both want to filter

out the accidental correlation of identifiers and do not want

to dispose of true but rare interactions. We noticed that usu-

ally the problem with the identification of accidental occur-

rences of identifiers is related to the common occurrence of

short tokens which are falsely classified as identifiers during

the template generation phase. An example of such a situa-

tion is when processing time is printed in a log as a numeric

value. These values tend to be small numbers with a high

probability of reoccurring in the log. As a countermeasure,

we apply the token length criterion to determine what can be

considered a valid identifier. We find this optimization sim-

ple but very effective in filtering out false-positively identi-

fied interactions.

We start the process of application interaction discovery

using short time windows. This is intended to identify short,

direct interactions in the first place. We then continually in-

crease the time window size to identify distant interactions

which can represent scenarios other than real-time process-

ing (e.g., batches of data delivery, followed by batches of

data processing).

VI. METHOD EVALUATION

We evaluated our method using a real system deployed at

Nordea Bank and a set of logs described as the NDEASYS1

dataset in Section IV. The subsequent sections describe in

more detail the test environment and our approach to method

evaluation.

A. Experiment setup

The system we used for evaluation consists of six applica-

tions, which were used to capture NDEASYS1 dataset. For

the sake of anonymization, in this paper the applications are

called with the letters A-F and this naming is consistent with

Table I. Fig. 5 presents the high-level architecture of the sys-

tem.

Applications B and D are responsible for data delivery.

Application A is the main application in the system, which

performs business logic and coordinates interactions be-

tween applications C, E, and F by fetching data from them.

Applications C, E, and F are common services in the bank,

exposed via a shared platform. Each of them exposes its do-

main data internally in Nordea Bank using standard inter-

faces.

The business processes of application A that are in the

scope of this paper can be divided into three categories:

Fig 5. Architecture of the system used for evaluation. Lines denote

pairs of applications interacting with one another, arrows denote the di-

rection of data flow.

A

D

C

E

FB

Fig 4. Example outcome of a log line encoding and the generated tem-

plate

1-hot encoding of a log line
[1,1,1,0,1,0,1,1,1,1,0,1,0,1,0,0,0,0,1,0,0,0,1,1,0,0,0,1,0,1,0,0,0,1,1,1,1,0,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,...]

Generated template
Key: 'logger', 'c.n.t.i.r.q.querycallstatsobserver', 'operation',
'query_latest_in_group', 'clientid', 'x', 'clientlibrary', 'null',
'clientversion', 'null', 'hostname', 'a01.com', 'correlationid', 'action', 'query_start',
'domain', 'y', 'z', 'requestcondition', 'extracted.id', ':', 'condition', 'extracted.id', ':',
'groupbyfields', 'y', 'id', 'sortfields',

'timestamp', 'limit', '0', 'payload', 'true'
Identifiers: '969a81d3-8ad8-4a5f-84e8-0868bfd65ddb', '0122318714085000'

866 PROCEEDINGS OF THE FEDCSIS. SOFIA, BULGARIA, 2022

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

" data loading 3 an asynchronous process of delivering

data to the system; once data is loaded, it is stored for further

processing,

" data processing 3 a scheduled synchronous process oc-

curring every 15 minutes that performs processing of previ-

ously delivered data,

" daily reporting 3 a scheduled synchronous process exe-

cuted once per day which aggregates the processed data and

delivers them to downstream applications.

Although this paper focuses on direct interactions be-

tween applications, awareness of the processes helps in con-

figuring our algorithm to find interactions that appear in logs

in distant lines.

B. Evaluation method

We use this knowledge about the system to validate our

method. As a main measure of accuracy of our method we

chose the F1 score and use it to compare the set of edges

identified by our algorithm with the reference set of edges

presented in Fig. 5. We do not consider the direction of

edges.

C. Template generation algorithm performance

A part of our algorithm is a proposal of a new template

generation system, focusing specifically on the detection of

identifiers in log files. We evaluate our algorithm by com-

paring its efficiency to popular template generation algo-

rithms: LogCluster [11] and DRAIN [12]. Table III presents

the outcome of this comparison for different types of logs:

the time of algorithm execution for each data set, the number

of identified clusters, precision, recall and F1 score.

Since both LogCluster and DRAIN are more generic algo-

rithms than ours, we need to define objective comparison

criteria. For the sake of algorithm comparison, we decided to

consider the number of identified templates, the F1 score of

identifier detection and the speed of the algorithm. Both

LogCluster and DRAIN produce a set of templates as an out-

put. We unify these templates as regular expressions, where

variable parts of each template are transformed into captur-

ing groups. We then process each line of the log file with all

the regular expressions and extract the tokens that were cap-

tured. LogCluster and DRAIN are not very consistent in

what they consider as a token with our algorithm. To reme-

diate that, we post-process each captured group with the

same regular expression that is used in our algorithm for to-

ken identification. In the end, we apply the same length-

based criterion to decide if a token is a valid identifier. The

outcome of this post-processing is, for each log file and a set

of templates, a list of identifiers found in the file. The list of

identifiers is compared to the ground truth derived from the

log dataset using our domain knowledge.

Since all the algorithms can be tuned with hyper-parame-

ters, we measured a wide range of parameter values but for

the brevity of presentation, we mention only the best score

for each of the algorithms.

To extract the ground truth, for each log file, we collected

the list of all tokens and the number of their occurrences. We

then traversed the list of tokens from the most to the least

frequent applying our domain knowledge to remove all to-

kens which were not valid identifiers. Part of this process

was performed automatically. In this phase, we removed to-

kens based on their length or type (e.g., dates, IP addresses,

or cash amounts were not considered valid identifiers, but

are easy to filter out using regular expressions). In the sec-

ond phase, we performed manual filtering by removing to-

TABLE III.

COMPARISON OF TEMPLATE GENERATION METHODS

Algorithm Log Time [s] Clusters Precision Recall F1 Score

DRAIN A 95.0 31 0.96 1.0 0.98

B 10.0 335 0.99 0.94 0.96

C 39.0 6 0.99 1.0 0.99

D 1.0 82 n/a n/a n/a

E 342 97 1.0 0.86 0.92

F 1.0 13 0.97 0.99 0.98

LogCluster A 20.0 6 1.0 0.93 0.96

B 1.0 28 2.0 0.018 0.03

C 8.0 2 1.0 0.79 0.88

D 0.1 3 0.66 1.0 0.79

E 34.0 5 1.0 0.85 0.91

F 0.1 3 1.0 0.95 0.97

SLT A 185.0 17 0.95 1.0 0.97

B 1.0 2 0.71 0.99 0.83

C 46.0 19 0.94 0.99 0.97

D 0.1 3 0.6 1.0 0.75

E 380 19 1.0 1.0 1.0

F 2.0 2 0.76 1.0 0.86

ŁUKASZ KORZENIOWSKI, KRZYSZTOF GOCZYŁA: DISCOVERING INTERACTIONS BETWEEN APPLICATIONS WITH LOG ANALYSIS 867

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

kens that were valid domain-related words. This process was

performed for the most frequent tokens (with the number of

occurrences higher than 1).

LogCluster is the fastest algorithm among the three. It

outperforms the rest by an order of magnitude. It also notes

the lowest F1 score, especially for log B. It tends to keep the

precision very high with lower recall values. Further analysis

of false positives returned by this algorithm shows that it of-

ten includes frequent tokens, which are business terms ap-

pearing in the log. LogCluster returns fewer and more

generic clusters than others.

DRAIN shows the best overall results in terms of F1 score

with by far the highest number of clusters returned. The high

number of clusters is a result of two aspects: DRAIN not be-

ing designed for processing multi-line log entries (similar as

LogCluster) and not coping well with log entries of variable

length. While the first deficiency is easy to overcome, the

second poses a challenge for general use for enterprise-wide

log analysis. A typical case for log entries with variable con-

tent is logging system inputs, which often come in the form

of XML/JSON documents with repeated elements. In such

cases, DRAIN extracts each log entry with a given length to

a separate template. For long log entries, templates are often

very big and hard to process. This finding is in line with the

conclusions from the real-life DRAIN application presented

in [14].

The SLT approach proposed by us is not far from DRAIN

in terms of F1 score, with similar timing performance but

outputting the number of clusters that is much more on par

with the reality. It copes well with log entries of variable

length. One deficiency, that results in lowered precision

rates, is falsely identifying rare numbers (e.g., cash amounts)

as identifiers. With the approach we have taken, they cannot

be distinguished from the true identifiers. This problem

needs to be handled in the subsequent processing steps that

utilize our algorithm. Overall, we think SLT is a reasonable

all-around approach for identifying identifiers in log files of

diverse format and content.

D. Results

We ran a series of experiments with our approach using

different time windows. For each run of the algorithm, we

collected the discovered application interactions, together

with the set of identifiers that are found in the logs of both

interacting applications within the time window. An exam-

ple of such output is presented in Table IV, and the respec-

tive approximate graph G'(S) is shown in Fig. 6. In Table IV,

falsely identified interactions are marked in red.

TABLE IV.

EXAMPLE OF DISCOVERED APPLICATION INTERACTIONS

Interaction Number of

occurrences

Example identifier

(E, A) 47828 5435ab2142314bsw

(C, A) 2156 43543612124

(F, A) 1314 2353518

(F, C) 874 200.0000

(D, A) 77 abhgswe0053

(D, E) 14 2022-01-21

(B, A) 7 basdewe2xyz

In some cases, it is hard to distinguish between an acci-

dental correlation of token values and actual but rare interac-

tions. For example, the (F, C) interaction has a higher num-

ber of occurrences than (D, A) but the discovered identifiers

actually denote the number of records per second processed

by services F and C. Such an accidental correlation of tokens

representing data of low variety (e.g. small numbers or

dates) is the main source of score deterioration in our

method.

We found that applying a proper identifier length criterion

allows for maximizing the F1 score of the result. Table V

shows the maximum scores achieved for each size of the

time window. The maximum overall F1 score of our algo-

rithm was 83%, reached for a time window of 20 minutes

which was long enough to detect the interaction between the

asynchronous data loading process and the scheduled data

processing process. Longer time windows allow us to iden-

tify distant correlations at the cost of the decrease in preci-

sion (the longer the time window, the higher chance of acci-

dental correlation occurring). At the current stage, our ap-

proach tends to discover short-time-distance interactions

with high precision. The confidence of interaction detection

decreases when searching for distant correlations. This is

one of the aspects that are subject to improvement in our fu-

ture work.

TABLE V.

RESULTS OF OUR METHOD FOR DIFFERENT WINDOW SIZES

Window

size [ms]

Number of

discovered

interactions

Precision Recall F1

Score

200 3 1 0.6 0.75

1000 3 1 0.6 0.75

Fig 6. An example of graph G´ output that represents the approximation

of the system, at a window size equal to 20 minutes. Edges marked

with red represent falsely discovered application interactions.

A

D

C

E

FB

868 PROCEEDINGS OF THE FEDCSIS. SOFIA, BULGARIA, 2022

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

5000 4 0.75 0.6 0.67

10000 4 0.75 0.6 0.67

60000 5 0.8 0.8 0.8

1200000 7 0.71 1 0.83

VII. CONCLUSIONS

In this paper, we presented an approach to discovering the

interactions between applications in enterprise systems. We

validated our approach with a real-life system deployed at

Nordea Bank. Our method could achieve the 83% F1 score

of the identified interactions and is a good base for further

extension. The biggest challenge is distinguishing rare, ac-

tual interactions from accidental data correlation, which we

will address in our further study.

As part of our approach, we proposed the SLT method for

discovering templates for log entries. We compared this

method with other common approaches and found that it

provides good-enough F1 score while being able to handle

variable log entries, which is one of the main deficiencies of

the other methods. We find SLT a good candidate for a tem-

plate generation method in a general use case when we do

not know the exact profile of the logs we are analyzing.

Working on a real-life system allowed us also to provide

statistics and conclusions about logs from various types of

applications. We found some common patterns of logging

activities performed by developers when working with inte-

grated systems which stem from the practical need of devel-

opers to be able to perform failure diagnosis. The main con-

clusion in this area is that logging data identifiers is a com-

mon practice in the industry. These observations allow intro-

duction of simplifying assumptions for the general problem

of discovering system properties from application logs and

help better focus our future work on the problem.

Our future work will focus on two areas: 1) improvement

of the current method and 2) working on its extensions to ex-

tract other properties of enterprise systems. We see increas-

ing the precision of the identifier detection as the main im-

provement that would positively influence the F1 score of

the overall method. This requires the development of a better

way to check if an identifier is valid to decrease the level of

accidental correlation of non-identifier tokens. Another area

of focus is the performance of our method, improvement of

which would allow for the analysis of larger log samples

covering longer periods. That would open the possibility to

identify very distant interactions (e.g., related to monthly-re-

porting processes), or validate the method using a larger sys-

tem.

As for the method extensions, our goal is to discover the

fragments of UML diagrams describing the working system.

That requires providing means of discovering the system9s

properties such as:

" processes the system is running (control flow) 3 scenar-

ios of interactions between applications with their frequency

and timing,

" data flow 3 how data is passed across applications and

what are their origins,

" semantic relationships between data 3 the mapping of

data processed by different applications to find a common

data dictionary (or even the data model).

We believe that such an overview of the running system

would provide enterprise architects with the necessary tools

to centrally validate various properties of the system and

plan respective actions accordingly.

ACKNOWLEDGMENT

This paper was written in cooperation with the Nordea

Bank, which provided the log dataset and an overview of the

systems that were subject to this study.

REFERENCES

[1] L. Korzeniowski and K. Goczyla, <Landscape of Automated Log

Analysis: A Systematic Literature Review and Mapping Study,= IEEE

Access, vol. 10, pp. 21892321913, 2022.

[2] H. Labbaci, B. Medjahed, and Y. Aklouf, <Learning interactions from

web service logs,= Lect. Notes Comput. Sci. (including Subser. Lect.

Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 10439 LNCS, no.

August, pp. 2753289, 2017.

[3] E. U. Aktas, M. C. Calpur, U. U. Yildirim, and E. Y1ld1r1m, <Inferring

dependencies among web services with predictive and statistical

analysis of system logs,= CEUR Workshop Proc., vol. 2291, no.

December, pp. 2353244, 2018.

[4] J. G. Lou, Q. Fu, Y. Wang, and J. Li, <Mining dependency in

distributed systems through unstructured logs analysis,= Oper. Syst.

Rev., vol. 44, no. 1, pp. 91396, 2010.

[5] Q. Fu et al., <Where do developers log? an empirical study on logging

practices in industry,= 2014, pp. 24333.

[6] D. Yuan, S. Park and Y. Zhou, "Characterizing logging practices in

open-source software," 2012 34th International Conference on

Software Engineering (ICSE), 2012, pp. 102-112, doi:

10.1109/ICSE.2012.6227202.

[7] B. Chen and Z. M. (Jack) Jiang, <Characterizing logging practices in

Java-based open source software projects 3 a replication study in

Apache Software Foundation,= Empir. Softw. Eng., vol. 22, no. 1, pp.

3303374, Feb. 2017.

[8] M. Leemans, W. M. P. Van Der Aalst, and M. G. J. Van Den Brand,

<Recursion aware modeling and discovery for hierarchical software

event log analysis,= 25th IEEE Int. Conf. Softw. Anal. Evol.

Reengineering, SANER 2018 - Proc., vol. 2018-March, no. March, pp.

1853196, 2018.

[9] G. Qi, W. T. Tsai, W. Li, Z. Zhu, and Y. Luo, <A cloud-based triage

log analysis and recovery framework,= Simul. Model. Pract. Theory,

vol. 77, no. August 2020, pp. 2923316, 2017.

[10] I. Beschastnikh, Y. Brun, M. D. Ernst, and A. Krishnamurthy,

<Inferring models of concurrent systems from logs of their behavior

with CSight,= 2014, pp. 4683479.

[11] R. Vaarandi and M. Pihelgas, <LogCluster - A data clustering and

pattern mining algorithm for event logs,= Proc. 11th Int. Conf. Netw.

Serv. Manag. CNSM 2015, pp. 137, 2015.

[12] P. He, J. Zhu, Z. Zheng, and M. R. Lyu, <Drain: An Online Log

Parsing Approach with Fixed Depth Tree,= Proc. - 2017 IEEE 24th

Int. Conf. Web Serv. ICWS 2017, pp. 33340, 2017.

[13] J. T. Hancock and T. M. Khoshgoftaar, <Survey on categorical data

for neural networks,= J. Big Data, vol. 7, no. 1, 2020.

[14] J. Zhu et al., <Tools and Benchmarks for Automated Log Parsing,=

Proc. - 2019 IEEE/ACM 41st Int. Conf. Softw. Eng. Softw. Eng. Pract.

ICSE-SEIP 2019, pp. 1213130, 2019.

ŁUKASZ KORZENIOWSKI, KRZYSZTOF GOCZYŁA: DISCOVERING INTERACTIONS BETWEEN APPLICATIONS WITH LOG ANALYSIS 869

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

