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Abstract 

The popularity of the Internet results from the almost unlimited resources of 

information stored in it. At the same time, Internet portals have become a 

widespread source of information and note very large number of visits. The list of web 

pages opened by users is stored in web servers’ log files. Extraction of knowledge on 

the navigation paths of users has become carefully analyzed problem. Currently, 

there are a number of algorithms that are used for this purpose. The formal 

representation of knowledge discovered from databases are association rules. Their 

extraction requires to find all the “frequent” sets. The contribution from the authors is 

an extension of the Apriori algorithm by adding capacitance of generating 

association rules during the search of “frequent” sets. Furthermore, the implication of 

the obtained knowledge is a graphical representation, showing the patterns of users’ 

visits. To this purpose  the method of mind mapping is used. 

Keywords: knowledge extraction, association rules, patterns of users, data mining. 

Introduction 

The development of global computer networks, the spread of personal computers 

and high availability led to an increase in the number of Internet users visiting 

websites. The success of web services mainly lies in the information - its availability 

and timelines. 

The evolution of the process of generating content on websites from a static to a 

dynamic approach, allow for easier updates. Information regarding the order in 

which pages are opened, may be used to gain traffic and predict the behaviour of 

the positioning of content. Data exploration and associated techniques are now the 

subject of many studies [2-4]. 

In the literature of the data mining, analysis of web services is defined as the 

exploration of Internet resources (Web Mining). Based on the data form, there can 

be distinguished: an analysis of site content (Web Content Mining), an analysis of the 

structure of the service (Web Structure Mining) and an analysis of how the service is 

used by users (Web Usage Mining) [4]. Typically, each click on a link corresponds to 

the visualization of the HTML document. In this context, session represents a 
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sequence of clicks in a single service. The session history can be used for online 

prediction of the sequence of opened pages. 

The aim of the authors work is extraction the traffic patterns of onet.pl visitors. 

Navigation paths of users’ activity has been presented in terms of association rules. 

For this purpose the RuleMiner application, which operates on the basis of the Apriori 

algorithm [1], was implemented. The algorithm has been extended to the 

simultaneous generation of association rules. The study was carried out on a server 

log file. This gave a basis for formulating proposals for the discovered patterns. 

Article consists of three parts. The first is a description of the algorithm Apriori and the 

program RuleMiner whereas the second is the characteristics of research 

organizations; the results of the study are presented in the third part. 

 

Definitions 

Input to the problem is a sequence (Pi)i=1..M consisting subsets of a universe U. Sets Pi 

correspond to individual user sessions, and elements of these collections, as well as 

elements of the whole universe U, are single requests for specific subpage. We will be 

interested only in such collections AU, which appear as subsets of Pi often enough. 

Formally, we will describe the frequency using the value of the support supp(A)=|{i ; 

APi}| / M, and the sets, whose support exceeds the arbitrarily fixed level minsupp, 

we called frequent sets.  

Apriori algorithm, used here, works recursively – a growing collections A are 

generated using smaller collections, especially the subsets of A of cardinality |A|-1, 

hereafter called hipersubsets. Formally, a set B is a hipersubset of a set A if and only if 

aA A=B{a}. 

These definitions allow us to make the first important, albeit simple, property of 

frequent sets. It has been used for the justification of the correctness of the 

application. 

 

LEMMA 1. Each subset of the frequent set is a frequent set. 

Proof: 

Let A be an arbitrary frequent set and BA be a subset of A. 

The set A is frequent, so supp(A)=|{i ; APi}| / M  minsupp. Since B is a subset 

of A, we have that APi  BPi, so 

 supp(B) = |{i ; BPi}| / M  |{i ; APi}| / M  minsupp,  

and hence the set B is also a frequent set, which ends the proof.  

  

In particular, from this lemma follows that each hipersubset of frequent set is a 

frequent set. 

By a confidence of the disjoint couple of sets (A, B), which can be read B under the 

condition A, we understand the value of conf(A,B)=supp(AB)/supp(A). If the 

confidence exceeds an arbitrarily chosen level of minconf, the pair (A,B) will be 

called an association rule and denoted by AB; A will be called the predecessor of 

the associative rule patterns of users B – the successor. It is worth to note that we are 

interested only in relevant association rules, that are such rules AB that a set AB is 

frequent. 

The association rules have both probabilistic and logistic meaning, given by their 

definition and decription. They also satisfy, fundamental for the algorithm, lemma: 
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LEMMA 2. If ABC is a relevant association rule (A, B, C – pairwise distinct), then 

also AB, AC, ABC and ACB are relevant association rules. 

Proof: 

Let ABC be an arbitrary relevant association rule. Then  

 minconf  conf(A,BC) = supp(ABC)/supp(A). 

Let us consider AB  ABC; using lemma 1 we get  

supp(A)  supp(AB)  supp(ABC). Therefore, 

 conf(A,B) = supp(AB)/supp(A)  supp(ABC)/supp(A)  minconf 

and the set AB is frequent, so AB is a relevant association rule. 

On the other hand, 

 conf(AB,C) = supp(ABC)/supp(AB)  supp(ABC)/supp(A)  

minconf, 

and hence, because of a frequence of a set ABC, ABC is also a 

relevant association rule. 

Proofs for rules AC and ACB are similar.  

 

In view of the decisive influence of the frequency of the collection AB on the 

relevance of the association rule AB, we say that relevant association rule AB is 

associated with a frequent set AB. It was used during designing of data structures 

responsible for the storage of information on a single frequent set and in the process 

of generating association rules during determining of frequent sets. This is an 

important extension of the Apriori algorithm. 

 

Extended Apriori Algorithm 

There are many algorithms that can be used to find relevant association rules. A key 

part of each of them is generating the frequent sets occurring in the studied data. In 

RuleMiner we used a popular algorithm by R. Agrawal and R. Srikant [1]. Data for this 

algorithm is a sequence of subsets (Pi) of some universe U; each of the subsets is 

represented by a sequence of pairs consisting of a name of subset (subset ID) and 

an element (element ID) of that subset. In addition, an important assumption is made 

– data is sorted due to the first coordinate. The result is that couples describing a 

subset of the input appear as a compact fragment. 

The algorithm computes successively families Lk of frequent subsets of cardinality k, 

i.e. the sets of cardinality k that are subsets of many collections appearing in the 

input. Satisfactory level of frequence is given arbitrarily adopted factor minsupp. As a 

result, only those subsets whose absolute frequency of occurrence in the output is at 

least minsupp are generated. In the preparatory step of the algorithm, the family L1 

consisting all frequent sets of cardinality 1 is determined. The next steps are made 

until the new family of frequent set is not empty, consist of three phases. 

In the first phase the algorithm calculates, using the already designated family of 

frequent sets Lk, a new family of candidate sets Ck+1. The candidate set of cardinality 

k+1 is a union of two frequent sets of cardinality k, which differs by only one element. 

The algorithm does not specify how to designate new family of candidate sets, naive 

method of quadratic complexity, due to the size of the family Lk, is to check all pairs 

in that family of sets. 

The second phase is a two-stage verification of candidates. The first criterion allows 

to reject a candidate set CCk+1 when there is at least one hipersubset of C which 

does not belong to the family Lk. This is due to the fact that any subset of a frequent 

set is frequent (lemma 1). The final verification of the family of candidate sets is 

carried out by re-input data and calculation of real support for the sets. 
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Last, the third phase of the algorithm iteration, is switching the status of the revised 

family of candidate sets Ck+1 to the status of the family of frequent sets Lk+1, with 

simultaneous verification of non-emptiness of this family and preparing for the next 

step. 

In our solution we have added to the second phase of iterative step a generation of 

the association rules associated with frequent sets found in this step. In the course of 

the first stage of verifying a candidate set CCk+1, the association rules founded for 

its hipersubsets are rewrote (if we associate with a set C\{x} the association rule AB 

then with the set C we associate the rule AB{x}). These rules are completed by 

rules of the form C\{x}{x}, where x is an arbitrary element of C, and form a set of 

candidate rules associated with the set C. Lemma 2 shows that they are all rules 

theoretically possible to associate with a set C. After second stage of verification, 

that is the calculation of the actual support for a set C, checking the association 

rules confidence takes place – those with too low confidence factor are rejected. 

 

Pseudo code: 

 Variables 

 Ck – family of candicate subsets of cardinality k 

 Lk – family of frequent subsets of cardinality k 

 F – input data (file, database,…) 

(1) make(L1,F) 

(2) verifySupport(L1) 

(3) k:=1 

(4) while (Lk not empty) do 

(5) begin 

(6) k++; 

(7) make(Ck,Lk-1) 

(8) verifyAndMakeCandidateRules(Ck,Lk-1) 

(9) verifySupport(Ck,F) 

(10) verifyCandidateRules(Ck) 

(11) Lk:=Ck 

(12) end  

 

Implementation of RuleMiner 

The application RuleMiner was implemented in Java. It consists of two classes - the 

class Main, which is responsible for managing the process of calculation, and the 

Item class, which stores data of a single frequent set (also a candidate), and 

association rules set for this set (including the candidate). 

The class Item stores in its fields data of a single frequent set. These data are 

members of the given set (TreeSet), the number of occurrences of this set in the 

input, the family of hipersubsets represented by the complement (TreeSet), and the 

list of association rules for this set, together with the support of predecessor of the rule 

(TreeMap). The size of the two collections are equal to the cardinality of the 

represented frequent set. The keys of the map appearing as one of the fields of the 

class Item, are the subsets of the represented frequent set. It potentially causes a risk 

of the exponential size growing, with respect to the number of elements. In empirical 

testing the effect was not visible and was offset by the high level of minimal 

confidence and, using the lemma 2, by saving only part of the structure of the 

association rules – a representative part that guarantees the occurrence of other 

rules. 
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In addition, the class Item provides constructors and methods to manipulate 

frequent collections. Constructors allows to create a new object that contains a 

single element or is a combination of two existing objects. The methods can retrieve 

the information needed in the generation and verification of the candidate sets and 

association rules as well as save the partial results of the verification candidate sets 

and associated with them rules. 

The class Main implements the steps of described above Apriori algorithm. In the 

course of action only one family of candidate sets and one family of frequent sets 

are stored (in the TreeSet collection). After each verification of the family of 

candidates, and changing the status to the status of the frequent sets family, the 

current results are save to a text file. In this way, we do not need to store in memory 

all the frequent sets. 

Finally, it is worth noting that the algorithm is well suited for parallelization. Between 

each of the steps occurring in pseudocode synchronization is needed, however, 

steps (1), (2), (7), (8), (9) and (10) can be performed in parallel. In steps (1) and (9) 

parallelization can be obtained by the method of the input decomposition (with 

summing the results during the synchronization or synchronized objects in a common 

memory). In steps (2) and (10) we can decompose the families of considered there 

candidate or frequent sets – computations are performed for each of these 

collections independently (a similar method can be used in step (9), but 

decomposition of the input seems to be more appropriate). Other steps, (7) and (8), 

operate with the family of candidate sets Ck from the current iteration and the family 

of frequent sets Lk-1, generated in the previous iteration. Here, the only efficient way 

of decomposition seems to be splitting the family Lk-1, with synchronized access to 

objects stored as the family Ck. 

The presented algorithm was used to find all the frequent sets, stored in a server log 

file. It has no application in taxonomy and does not operate with "moving windows". 

In its implementation may occur two problems. 

The first concerns the nature of resources in the process of transformation of data, 

which takes place during each pass through the log file. The program was launched 

in Eclipse environment (Java virtual machine version 1.6.0) on IBM PC class computer 

with an Intel Core2 Quad processor (2.40 GHz) and 2 GB of memory. Figure 1 shows 

the execution times of RuleMiner in relation to the number of found frequent sets for 

five different levels of support. 

 

 

 

Fig. 1: The effectiveness of the program RuleMiner 
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source: own study 

 

 The second problem concerns of the generating candidate sets and the 

calculation of support for these collections. Both processes are of fundamental 

importance for the algorithm efficiency. In RuleMiner both issues have been solved. 

 

Survey Organization  

Only a preliminary test was carrued out. We used observation as the method, since 

events were registered without interference of the researcher. In this paper, the 

hypothesis about existence patterns of the users' behaviors of the portal onet.pl was 

verified. Investigations were divided in three stages: (1) the choice of variables and 

cleaning the data, (2) finding frequent item with specified minimum support for 

service and (3) extraction of association rules based on found frequent items. 

A WWW server's log file contains full history of requested access to files, kept on 

server. The majority of WWW servers record activity in log files using Common Log 

Format schema defined by CERN and NCSA as part of http protocol. According to 

this standard, a log entry contains: client IP address, user identifier, access time, 

request method, URL page accessed, the protocol used for data transmission, an 

error code and the number of bytes transmitted. 

Primitive data, received from the onet.pl portal, include fields respectively: (1) session 

time, (2) session identifier, (3) user identifier, (4) service name, (5) the address of html 

file path in frame of service. The first step of extraction of knowledge process is data 

preparation which include cleaning, transformation and selection variables. The 

number of numeric variables in the processed log file was reduced from six to two: 

(2) session identifier and (5) the address of html file path. We call this process data 

cleaning. 

 

Knowledge Extraction 

After the data cleaning, the file log was analyzed in RuleMiner program. The goal of 

the second stage in experiment, was finding frequent items. Support was defined 

arbitrarily on five different levels. The required level of support is every time defined 

by researcher. In context of experiment, the element of item represents exactly 

defined html document. Data analysis shows which items have the highest support 

suitably: 

 {[www]} 80,36%, 

 {[email]/cnp/login.html.php3} 27,53% 

 {[email]/np/dynamic/folder.html} 26,29% 

 {[email]/np/dynamic/folder.html/open.html} 15,43% 

 {[sport]/wc_volleyball/news.html} 13,17% 

 {[info]/world/item.html} 12,70% 

 {[info]/country/item.html} 12,68% 

 {[email]/np/dynamic/folder.html/delete.html} 11,96% 

 {[sport]/ski_jumps/ski_jumps/news.html} 10,01%. 

 

Items are dependent one to another – they occurr together with different elements 

or very seldom separately. 

For support on level 1%, based on found frequent items, RuleMiner generated five 

types of association rules. The number of rules depends on cardinality of sets. For two 

items program generated 87 rules, for three 308, for four 581 for five 411 and for six 
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119 association rules. We used mind mapping methods for graphic representation of 

them. 

 

Discovered Users’ Patterns 

An association rule, being logical statement, is written in form "if-then". The number of 

variables describes the level of discovered knowledge of users' navigation paths 

(table 1). For assumed minimum support and confidence, it was found that the 

number of accessed pages in one session did not exceed six. This fact implies kinds of 

generated association rules. The number of variables used to build a rule is in range 

<2;6>. This thesis has been confirmed in different sources [6]. 

 

Table 1: Two-element association rules chosen for the {[www]} item  

No. Association rule Support Confidence 

1 [[email]/login] → [[www]/] 0,275 0,823 

2 [[info]/world/] → [[www]/] 0,127 0,978 

3 [[sport]/ski_jumping] → [[www]/] 0,1 0,964 

4 [dating] → [[www]/] 0,038 0,936 

5 [tv] → [[www]/] 0,013 0,883 

source: own study 

It was observed that 95% rules with highest support, concerned exclusively three 

services: [www], [email] and [dating]. Rules with the highest support concern [www] 

item. 

The method of logical interpretation of rules is identical. For example, rule number 5 

shows that, if the [tv] page was accessed, in 88% of sessions, the [www] was 

accessed too. We can suppose that remaining 12% is the direct access to [tv] item, 

which took place from omission the [www] item, which is the main page of the 

portal. It takes place when user sends the URL address (http://onet.pl/tv/) of the web 

page to the other user or open the page directly, for example using the Favorites 

option available in every web browser. Support (fraction) shows that 1,3% of sessions 

contain requests of two items: [www] and [tv]. Taking into consideration the size of 

this paper, interpretation of acquired results was limited to formulating general 

conclusions. 

Conducted survey revealed two essential users' patterns (fig. 3). First pattern applies 

to users, interested in sport. This pattern is represented by the rule: {[sport]/football/, 

[sport]/ski_jumping/} → {[www]} with support 2,8% and confidence of 94,8%. Second 

pattern consists of three services: [business], [info] and [www]. We can say for sure 

that the group of users seeking current information about stock market and news 

from the world has been identified. 

Similar to work [3], association rules can be graphically presented as a tree pattern.  

Extracted association rules also pointed out on internal dependences in perspective 

of one service. For example, for email service or dating service, we can notice paths 

between folders in the service, discovered by the actions taken by users like: open, 

send, delete, new, log in or log out. 
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Summary 

Presented in the paper extension of the Apriori algorithm enables to extract essential 

association rules during the process of finding frequent items. We used the idea of 

Apriori algorithm which assumes that to find objects with specific size it is enough to 

find objects one element smaller. Apriori itself finds only frequent items but 

implemented algorithm in program RuleMiner also extract association rules. 

This approach to the given problem enables to limit the number of keeping items 

and association rules in operating memory each time. After each verification, partial 

results are saved to file. It results that the busy memory becomes free. In addition, the 

number of keeping  

association rules simultaneously is indispensable restricted to minimum. It is achieved 

by defining high confidence as well as getting rid of the rules which cannot be 

extracted on basis others. Presented solution and properties of frequent items was 

formally defined and well-founded. 

In carried out survey, for every given support, we managed to achieve satisfied 

results. Support and confidence were two parameters on which we decided what 

knowledge presented as association rule is valuable enough. Only 5% of them was 

classified valuable. The survey had experimental character and set a base for 

developing functionality of the program as well as strengthen the cooperation with 

the onet.pl portal. 
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