
MSc Łukasz Mikulski1

Department of Formal Languages and Concurrency

Faculty of Mathematics and Computer Science

Nicolaus Copernicus University

MSc Paweł Weichbroth

Department of Information-Technology Management

Faculty of Management and Economics

Gdańsk University of Technology

Discovering Patterns of Web Page Visits from the Association Rules

Viewpoint

Abstract

The popularity of the Internet results from the almost unlimited resources of

information stored in it. At the same time, Internet portals have become a

widespread source of information and note very large number of visits. The list of web

pages opened by users is stored in web servers’ log files. Extraction of knowledge on

the navigation paths of users has become carefully analyzed problem. Currently,

there are a number of algorithms that are used for this purpose. The formal

representation of knowledge discovered from databases are association rules. Their

extraction requires to find all the “frequent” sets. The contribution from the authors is

an extension of the Apriori algorithm by adding capacitance of generating

association rules during the search of “frequent” sets. Furthermore, the implication of

the obtained knowledge is a graphical representation, showing the patterns of users’

visits. To this purpose the method of mind mapping is used.

Keywords: knowledge extraction, association rules, patterns of users, data mining.

Introduction

The development of global computer networks, the spread of personal computers

and high availability led to an increase in the number of Internet users visiting

websites. The success of web services mainly lies in the information - its availability

and timelines.

The evolution of the process of generating content on websites from a static to a

dynamic approach, allow for easier updates. Information regarding the order in

which pages are opened, may be used to gain traffic and predict the behaviour of

the positioning of content. Data exploration and associated techniques are now the

subject of many studies [2-4].

In the literature of the data mining, analysis of web services is defined as the

exploration of Internet resources (Web Mining). Based on the data form, there can

be distinguished: an analysis of site content (Web Content Mining), an analysis of the

structure of the service (Web Structure Mining) and an analysis of how the service is

used by users (Web Usage Mining) [4]. Typically, each click on a link corresponds to

the visualization of the HTML document. In this context, session represents a

1
 The research supported by Ministry of Science and Higher Education of Poland, grant N N206 258035.

Postprint of: Mikulski, Łukasz, & Weichbroth, P. (2009). Discovering patterns of Web Page Visits from Associaton Rules Viewpoint.
POLISH JOURNAL OF ENVIRONMENTAL STUDIES, 18(No 3B [suplement]), Article No 3B [suplement].

sequence of clicks in a single service. The session history can be used for online

prediction of the sequence of opened pages.

The aim of the authors work is extraction the traffic patterns of onet.pl visitors.

Navigation paths of users’ activity has been presented in terms of association rules.

For this purpose the RuleMiner application, which operates on the basis of the Apriori

algorithm [1], was implemented. The algorithm has been extended to the

simultaneous generation of association rules. The study was carried out on a server

log file. This gave a basis for formulating proposals for the discovered patterns.

Article consists of three parts. The first is a description of the algorithm Apriori and the

program RuleMiner whereas the second is the characteristics of research

organizations; the results of the study are presented in the third part.

Definitions

Input to the problem is a sequence (Pi)i=1..M consisting subsets of a universe U. Sets Pi

correspond to individual user sessions, and elements of these collections, as well as

elements of the whole universe U, are single requests for specific subpage. We will be

interested only in such collections AU, which appear as subsets of Pi often enough.

Formally, we will describe the frequency using the value of the support supp(A)=|{i ;

APi}| / M, and the sets, whose support exceeds the arbitrarily fixed level minsupp,

we called frequent sets.

Apriori algorithm, used here, works recursively – a growing collections A are

generated using smaller collections, especially the subsets of A of cardinality |A|-1,

hereafter called hipersubsets. Formally, a set B is a hipersubset of a set A if and only if

aA A=B{a}.

These definitions allow us to make the first important, albeit simple, property of

frequent sets. It has been used for the justification of the correctness of the

application.

LEMMA 1. Each subset of the frequent set is a frequent set.

Proof:

Let A be an arbitrary frequent set and BA be a subset of A.

The set A is frequent, so supp(A)=|{i ; APi}| / M minsupp. Since B is a subset

of A, we have that APi BPi, so

 supp(B) = |{i ; BPi}| / M |{i ; APi}| / M minsupp,

and hence the set B is also a frequent set, which ends the proof.

In particular, from this lemma follows that each hipersubset of frequent set is a

frequent set.

By a confidence of the disjoint couple of sets (A, B), which can be read B under the

condition A, we understand the value of conf(A,B)=supp(AB)/supp(A). If the

confidence exceeds an arbitrarily chosen level of minconf, the pair (A,B) will be

called an association rule and denoted by AB; A will be called the predecessor of

the associative rule patterns of users B – the successor. It is worth to note that we are

interested only in relevant association rules, that are such rules AB that a set AB is

frequent.

The association rules have both probabilistic and logistic meaning, given by their

definition and decription. They also satisfy, fundamental for the algorithm, lemma:

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

LEMMA 2. If ABC is a relevant association rule (A, B, C – pairwise distinct), then

also AB, AC, ABC and ACB are relevant association rules.

Proof:

Let ABC be an arbitrary relevant association rule. Then

 minconf conf(A,BC) = supp(ABC)/supp(A).

Let us consider AB ABC; using lemma 1 we get

supp(A) supp(AB) supp(ABC). Therefore,

 conf(A,B) = supp(AB)/supp(A) supp(ABC)/supp(A) minconf

and the set AB is frequent, so AB is a relevant association rule.

On the other hand,

 conf(AB,C) = supp(ABC)/supp(AB) supp(ABC)/supp(A)

minconf,

and hence, because of a frequence of a set ABC, ABC is also a

relevant association rule.

Proofs for rules AC and ACB are similar.

In view of the decisive influence of the frequency of the collection AB on the

relevance of the association rule AB, we say that relevant association rule AB is

associated with a frequent set AB. It was used during designing of data structures

responsible for the storage of information on a single frequent set and in the process

of generating association rules during determining of frequent sets. This is an

important extension of the Apriori algorithm.

Extended Apriori Algorithm

There are many algorithms that can be used to find relevant association rules. A key

part of each of them is generating the frequent sets occurring in the studied data. In

RuleMiner we used a popular algorithm by R. Agrawal and R. Srikant [1]. Data for this

algorithm is a sequence of subsets (Pi) of some universe U; each of the subsets is

represented by a sequence of pairs consisting of a name of subset (subset ID) and

an element (element ID) of that subset. In addition, an important assumption is made

– data is sorted due to the first coordinate. The result is that couples describing a

subset of the input appear as a compact fragment.

The algorithm computes successively families Lk of frequent subsets of cardinality k,

i.e. the sets of cardinality k that are subsets of many collections appearing in the

input. Satisfactory level of frequence is given arbitrarily adopted factor minsupp. As a

result, only those subsets whose absolute frequency of occurrence in the output is at

least minsupp are generated. In the preparatory step of the algorithm, the family L1

consisting all frequent sets of cardinality 1 is determined. The next steps are made

until the new family of frequent set is not empty, consist of three phases.

In the first phase the algorithm calculates, using the already designated family of

frequent sets Lk, a new family of candidate sets Ck+1. The candidate set of cardinality

k+1 is a union of two frequent sets of cardinality k, which differs by only one element.

The algorithm does not specify how to designate new family of candidate sets, naive

method of quadratic complexity, due to the size of the family Lk, is to check all pairs

in that family of sets.

The second phase is a two-stage verification of candidates. The first criterion allows

to reject a candidate set CCk+1 when there is at least one hipersubset of C which

does not belong to the family Lk. This is due to the fact that any subset of a frequent

set is frequent (lemma 1). The final verification of the family of candidate sets is

carried out by re-input data and calculation of real support for the sets.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Last, the third phase of the algorithm iteration, is switching the status of the revised

family of candidate sets Ck+1 to the status of the family of frequent sets Lk+1, with

simultaneous verification of non-emptiness of this family and preparing for the next

step.

In our solution we have added to the second phase of iterative step a generation of

the association rules associated with frequent sets found in this step. In the course of

the first stage of verifying a candidate set CCk+1, the association rules founded for

its hipersubsets are rewrote (if we associate with a set C\{x} the association rule AB

then with the set C we associate the rule AB{x}). These rules are completed by

rules of the form C\{x}{x}, where x is an arbitrary element of C, and form a set of

candidate rules associated with the set C. Lemma 2 shows that they are all rules

theoretically possible to associate with a set C. After second stage of verification,

that is the calculation of the actual support for a set C, checking the association

rules confidence takes place – those with too low confidence factor are rejected.

Pseudo code:

 Variables

 Ck – family of candicate subsets of cardinality k

 Lk – family of frequent subsets of cardinality k

 F – input data (file, database,…)

(1) make(L1,F)

(2) verifySupport(L1)

(3) k:=1

(4) while (Lk not empty) do

(5) begin

(6) k++;

(7) make(Ck,Lk-1)

(8) verifyAndMakeCandidateRules(Ck,Lk-1)

(9) verifySupport(Ck,F)

(10) verifyCandidateRules(Ck)

(11) Lk:=Ck

(12) end

Implementation of RuleMiner

The application RuleMiner was implemented in Java. It consists of two classes - the

class Main, which is responsible for managing the process of calculation, and the

Item class, which stores data of a single frequent set (also a candidate), and

association rules set for this set (including the candidate).

The class Item stores in its fields data of a single frequent set. These data are

members of the given set (TreeSet), the number of occurrences of this set in the

input, the family of hipersubsets represented by the complement (TreeSet), and the

list of association rules for this set, together with the support of predecessor of the rule

(TreeMap). The size of the two collections are equal to the cardinality of the

represented frequent set. The keys of the map appearing as one of the fields of the

class Item, are the subsets of the represented frequent set. It potentially causes a risk

of the exponential size growing, with respect to the number of elements. In empirical

testing the effect was not visible and was offset by the high level of minimal

confidence and, using the lemma 2, by saving only part of the structure of the

association rules – a representative part that guarantees the occurrence of other

rules.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

In addition, the class Item provides constructors and methods to manipulate

frequent collections. Constructors allows to create a new object that contains a

single element or is a combination of two existing objects. The methods can retrieve

the information needed in the generation and verification of the candidate sets and

association rules as well as save the partial results of the verification candidate sets

and associated with them rules.

The class Main implements the steps of described above Apriori algorithm. In the

course of action only one family of candidate sets and one family of frequent sets

are stored (in the TreeSet collection). After each verification of the family of

candidates, and changing the status to the status of the frequent sets family, the

current results are save to a text file. In this way, we do not need to store in memory

all the frequent sets.

Finally, it is worth noting that the algorithm is well suited for parallelization. Between

each of the steps occurring in pseudocode synchronization is needed, however,

steps (1), (2), (7), (8), (9) and (10) can be performed in parallel. In steps (1) and (9)

parallelization can be obtained by the method of the input decomposition (with

summing the results during the synchronization or synchronized objects in a common

memory). In steps (2) and (10) we can decompose the families of considered there

candidate or frequent sets – computations are performed for each of these

collections independently (a similar method can be used in step (9), but

decomposition of the input seems to be more appropriate). Other steps, (7) and (8),

operate with the family of candidate sets Ck from the current iteration and the family

of frequent sets Lk-1, generated in the previous iteration. Here, the only efficient way

of decomposition seems to be splitting the family Lk-1, with synchronized access to

objects stored as the family Ck.

The presented algorithm was used to find all the frequent sets, stored in a server log

file. It has no application in taxonomy and does not operate with "moving windows".

In its implementation may occur two problems.

The first concerns the nature of resources in the process of transformation of data,

which takes place during each pass through the log file. The program was launched

in Eclipse environment (Java virtual machine version 1.6.0) on IBM PC class computer

with an Intel Core2 Quad processor (2.40 GHz) and 2 GB of memory. Figure 1 shows

the execution times of RuleMiner in relation to the number of found frequent sets for

five different levels of support.

Fig. 1: The effectiveness of the program RuleMiner

0

15

30

45

60

0,01 0,02 0,03 0,04 0,05

Working time (min)
Number of sets

support

minutes / sets

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

source: own study

 The second problem concerns of the generating candidate sets and the

calculation of support for these collections. Both processes are of fundamental

importance for the algorithm efficiency. In RuleMiner both issues have been solved.

Survey Organization

Only a preliminary test was carrued out. We used observation as the method, since

events were registered without interference of the researcher. In this paper, the

hypothesis about existence patterns of the users' behaviors of the portal onet.pl was

verified. Investigations were divided in three stages: (1) the choice of variables and

cleaning the data, (2) finding frequent item with specified minimum support for

service and (3) extraction of association rules based on found frequent items.

A WWW server's log file contains full history of requested access to files, kept on

server. The majority of WWW servers record activity in log files using Common Log

Format schema defined by CERN and NCSA as part of http protocol. According to

this standard, a log entry contains: client IP address, user identifier, access time,

request method, URL page accessed, the protocol used for data transmission, an

error code and the number of bytes transmitted.

Primitive data, received from the onet.pl portal, include fields respectively: (1) session

time, (2) session identifier, (3) user identifier, (4) service name, (5) the address of html

file path in frame of service. The first step of extraction of knowledge process is data

preparation which include cleaning, transformation and selection variables. The

number of numeric variables in the processed log file was reduced from six to two:

(2) session identifier and (5) the address of html file path. We call this process data

cleaning.

Knowledge Extraction

After the data cleaning, the file log was analyzed in RuleMiner program. The goal of

the second stage in experiment, was finding frequent items. Support was defined

arbitrarily on five different levels. The required level of support is every time defined

by researcher. In context of experiment, the element of item represents exactly

defined html document. Data analysis shows which items have the highest support

suitably:

 {[www]} 80,36%,

 {[email]/cnp/login.html.php3} 27,53%

 {[email]/np/dynamic/folder.html} 26,29%

 {[email]/np/dynamic/folder.html/open.html} 15,43%

 {[sport]/wc_volleyball/news.html} 13,17%

 {[info]/world/item.html} 12,70%

 {[info]/country/item.html} 12,68%

 {[email]/np/dynamic/folder.html/delete.html} 11,96%

 {[sport]/ski_jumps/ski_jumps/news.html} 10,01%.

Items are dependent one to another – they occurr together with different elements

or very seldom separately.

For support on level 1%, based on found frequent items, RuleMiner generated five

types of association rules. The number of rules depends on cardinality of sets. For two

items program generated 87 rules, for three 308, for four 581 for five 411 and for six

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

119 association rules. We used mind mapping methods for graphic representation of

them.

Discovered Users’ Patterns

An association rule, being logical statement, is written in form "if-then". The number of

variables describes the level of discovered knowledge of users' navigation paths

(table 1). For assumed minimum support and confidence, it was found that the

number of accessed pages in one session did not exceed six. This fact implies kinds of

generated association rules. The number of variables used to build a rule is in range

<2;6>. This thesis has been confirmed in different sources [6].

Table 1: Two-element association rules chosen for the {[www]} item

No. Association rule Support Confidence

1 [[email]/login] → [[www]/] 0,275 0,823

2 [[info]/world/] → [[www]/] 0,127 0,978

3 [[sport]/ski_jumping] → [[www]/] 0,1 0,964

4 [dating] → [[www]/] 0,038 0,936

5 [tv] → [[www]/] 0,013 0,883

source: own study

It was observed that 95% rules with highest support, concerned exclusively three

services: [www], [email] and [dating]. Rules with the highest support concern [www]

item.

The method of logical interpretation of rules is identical. For example, rule number 5

shows that, if the [tv] page was accessed, in 88% of sessions, the [www] was

accessed too. We can suppose that remaining 12% is the direct access to [tv] item,

which took place from omission the [www] item, which is the main page of the

portal. It takes place when user sends the URL address (http://onet.pl/tv/) of the web

page to the other user or open the page directly, for example using the Favorites

option available in every web browser. Support (fraction) shows that 1,3% of sessions

contain requests of two items: [www] and [tv]. Taking into consideration the size of

this paper, interpretation of acquired results was limited to formulating general

conclusions.

Conducted survey revealed two essential users' patterns (fig. 3). First pattern applies

to users, interested in sport. This pattern is represented by the rule: {[sport]/football/,

[sport]/ski_jumping/} → {[www]} with support 2,8% and confidence of 94,8%. Second

pattern consists of three services: [business], [info] and [www]. We can say for sure

that the group of users seeking current information about stock market and news

from the world has been identified.

Similar to work [3], association rules can be graphically presented as a tree pattern.

Extracted association rules also pointed out on internal dependences in perspective

of one service. For example, for email service or dating service, we can notice paths

between folders in the service, discovered by the actions taken by users like: open,

send, delete, new, log in or log out.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Summary

Presented in the paper extension of the Apriori algorithm enables to extract essential

association rules during the process of finding frequent items. We used the idea of

Apriori algorithm which assumes that to find objects with specific size it is enough to

find objects one element smaller. Apriori itself finds only frequent items but

implemented algorithm in program RuleMiner also extract association rules.

This approach to the given problem enables to limit the number of keeping items

and association rules in operating memory each time. After each verification, partial

results are saved to file. It results that the busy memory becomes free. In addition, the

number of keeping

association rules simultaneously is indispensable restricted to minimum. It is achieved

by defining high confidence as well as getting rid of the rules which cannot be

extracted on basis others. Presented solution and properties of frequent items was

formally defined and well-founded.

In carried out survey, for every given support, we managed to achieve satisfied

results. Support and confidence were two parameters on which we decided what

knowledge presented as association rule is valuable enough. Only 5% of them was

classified valuable. The survey had experimental character and set a base for

developing functionality of the program as well as strengthen the cooperation with

the onet.pl portal.

References

1. Agrawal R., Srikant, R., Fast algorithms for mining association rules, [in:]

Proceedings of the Twentieth International Conference on Very Large Data

Bases, pp. 487-499, Morgan Kaufmann, San Francisco 1994.

2. Hatonen K., Boulicaut J. F., Klemettinen M., Miettinen M., Mason C.,

Comprehensive Log Compression with frequent patterns, DaWaK 2003, LNCS

2737, pp. 360-370, Springer-Verlag Berlin, 2003.

3. Ivancsy R., Vajk I., Frequent pattern mining in web log data, Acta

Polytechnica Hungarica, Vol. 3, No. 1, pp. 77-90, 2006.

4. Kosala R., Blockel H., Web mining research: A survey, [in:] „Newsletter of the

Special Interest Group (SIG) on Knowledge Discovery and Data Mininig”

SIGKDD: GKDD Explorations, 2000, nr 1.

5. Weichbroth P., Korczak J., Data mining, [in:] Business informatics. Part One.

Propaedeutics of computer science. Information technologies, red. Jerzy

Korczak, Wrocław 2006 [in polish].

6. http://www.webuser.co.uk/news/81267.html?aff

View publication stats

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

https://www.researchgate.net/publication/229164074
http://mostwiedzy.pl

