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Abstract
The high-strength low-alloy S460ML and S460N steels were chosen for underwater wet welding of dissimilar T-joints using
covered electrodes. For improving the quality of joints, the temper bead welding (TBW) method was used. The application of
TBW in pad welding conditions has been investigated earlier but the possibility of usage of this technique in welded joints was
not analyzed. The main aim of the study was to check the influence of TBW on the hardness and structures of the heat-affected
zone (HAZ) of dissimilar T-joints made in the underwater conditions. The experiments conducted showed that the technique used
can reduce the susceptibility to cold cracking by decreasing the hardness in HAZ, which is a result of changes in its structure. The
TBW technique reduced the hardness in the HAZ of the S460N steel by 40–50 HV10 and in S460ML by 80–100 HV10. It was
also found that the changes in S460ML and S460N were much different, and therefore, the investigated technique can provide
better results in the steel characterized by lower carbon equivalent CeIIW.
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1 Introduction

The number of offshore steel constructions is increasing every
year. One of the reasons is the oil and gas sources present
under the sea, which are being explored more and more. The
constructions working in the water environment can be cate-
gorized as ships, bridges, wind turbines, terminals, pipelines,
and harbor structures such as quay or marginal wharf [1]. In
the offshore constructions, damages due to different factors
including corrosion, fatigue, and vessel impact, design faults,
mechanical damages, and imperfections in welded joints
could be found [2–5]. It is very important to predict the loca-
tion of the damages in the constructions. Most of the methods
used for the detection of the damages are based on the numer-
ical and computational approaches and are focused on the
localized monitoring of strain [6, 7]. However, new methods
of localization are still developing, for example, a method
based on changes in the frequency spectrum [8]. During de-
sign processes, offshore structures get their design life, which
could often be passed. For example, more than 50% of

operational offshore platforms in the Norwegian Continental
Shelf and the UK Continental Shelf have exceeded their de-
sign life [9]. Engineering is trying to make exploitation time
longer, which can reduce the cost of the potential repairs or
enable changing the constructions to new ones. This could be
done in the stage of design, production, or repair.

A lot of investigations are being carried out on the strength-
ening, modification, and repair techniques used in offshore
constructions. These techniques are classified into five groups:
welding, improvement of the weld, clamping, grout filling, and
others [10]. Some of them are implemented during the produc-
tion of the construction as shot peening for treating the multi-
pass welding-inducted residual stresses in offshore wind tur-
bine monopiles [11]. The other welding method used to extend
the life of the offshore constructions is welding with the spe-
cific sequence [12]. Due to extreme environmental conditions
and loading induced upon an offshore construction, the normal-
ized and the thermomechanically treated steels with high yield
point are widely used [13]. They allow reducing the weight and
size of constructions while maintaining appropriate mechanical
properties [14]. The weldability of steels in the air environment
is widely investigated. It has been shown that it depends on
chemical composition, manufacturing method, and technolog-
ical, metallurgical, and construction factors, and above all the
welding technology [15–17]. Much less frequently mentioned
is the subject of steels with yield strength higher than 420 MPa
welded directly in the water.
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The repair technique most often used for offshore construc-
tions is underwater welding, which can improve the quality of
joints or repair the gaps in the surfaces. This process is of three
main types. The first one is dry welding, in which the welding
area and welder are isolated from the environment. This meth-
od requires building a special chamber to avoid the surround-
ing water from contacting the welding zone, which adds to the
cost of the process. The pressure inside the chamber could be
the same as in the air (isobaric dry welding) or can be due to
the depth (hyperbaric dry welding). This method also in-
creases the cost but the quality of the joints could be similar
to the joints made in the air [18, 19]. The second method of
underwater welding is welding with a local dry chamber. In
this method, the welder is in the water, but the areas of
welding and joint are isolated from the environment by a small
chamber, in which the welding gas removes the water outside.
This phenomenon produces conditions similar to the hyper-
baric dry welding but does not require building any expensive
chamber [20, 21]. The last is the most popular and the
cheapest method of underwater welding which is known as
wet welding. This method also does not require building of
any special chambers. During wet welding, the welder and the
welding area are in direct contact with the surrounding envi-
ronment throughout the process. The most popular wet
welding processes are flux-cored arc welding (FCAW)
[22–26] and welding with the use of covered electrodes
(MMA) [27–29].

Water as a welding environment increases the susceptibil-
ity of steel to cold cracking [30, 31]. Cold cracks can occur in
the welds and in the heat-affected zone (HAZ) of the welded
joints even 48 h after welding [32, 33]. Welding in the water
increases the number of cold cracks due to high cooling rate,
which makes the HAZ brittle [22, 23, 27, 30]. This can also
generate higher residual stresses after welding. The third rea-
son for cold cracking, which cannot be avoided during wet
welding in the water, is the high diffusible hydrogen content
of deposited metal. The welding conditions have a high influ-
ence on the saturation of the metal structure with hydrogen in
each environment [34]. It was proved that water generates

much more diffusible hydrogen than during air welding
[35]. An additional factor increasing the risk of cracking is
the local stress concentration due to imperfections resulting
from the instability of the welding arc [36–40].

In the present research, the high-strength low-alloy
(HSLA) S460ML and S460N steels were selected as study
materials. Both of them are characterized by a high suscepti-
bility to cold cracking in wet welding conditions [27, 30]. The
cracks occur in the HAZ of these steels which could be the
reason for damage of the construction. The previous investi-
gations showed that the use of temper bead welding (TBW)
could reduce the susceptibility to cold cracking the S460ML
[30] and S460N steels [31]. However, they were carried out in
the bead-on-plate conditions, but not in the real welded joints.
In this paper, the influence of the application of the TBW
technique in the preparation of dissimilar T-joint fillet welds
made in the underwater conditions on the susceptibility to cold
cracking was investigated. Welding T-joint was chosen be-
cause this type of joint is widely used in thermomechanically
treated steels [41] and the fillet welds are most commonly
used for underwater welding.

2 Materials and methods

For welding, the S460ML and S460N (12 mm thick) steel
plates were chosen as base material (BM). The chemical com-
position of both BMs was analyzed by the emission spectrom-
etry method and is presented in Table 1. The investigated
steels have similar values of yield point (min. 460 MPa).
However, they are characterized by a different carbon equiv-
alent (the absolute difference in CeIIW values of about 0.08%).
The ISO 2560-A [42]: E 38 0 R 11 rutile electrodes with a
diameter of 4.0 mm were used as a filler material. These elec-
trodes provide good plasticity of the weld, which can mini-
mize the possibility of cold cracking. The chemical composi-
tion of filler material is presented in Table 2.

For test three T-joint specimens with fillet welds were pre-
pared. They were made at a depth of 0.2 m (distance from

Table 1 Chemical composition of the investigated steels, wt%

Material C Si Mn P Cr Mo Ni Al Cu V S CeIIW

S460ML 0.11 0.35 1.39 0.01 0.02 0.02 0.25 0.04 0.27 0.003 0.001 0.385

S460N 0.16 0.53 1.51 0.02 0.07 0.03 0.05 0.03 0.13 0.097 0.003 0.464

Table 2 Chemical composition
of the E 38 0 R 11 rutile electrode
deposit based on manufacturer’s
data, wt%

Material C Si Mn P Cr Cu S

E 38 0 R11 electrodes deposit 0.07 0.44 0.55 0.01 0.04 0.05 0.001
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water surface to the upper surface of S460N steel) at a tem-
perature of 20 °C. Plates from S460ML steel had a dimension
of 115 × 60 mm; dimension and plates from the S460N steel
had a dimension of 135 × 60 mm. The schema of T-joint is
presented in Fig. 1.

During manufacturing of joints, the basic assumption was
to simulate the technological and thermal conditions of repair
welding of ribs in a freshwater reservoir. The specimens were
tacked under water and were able to deform freely, especially
the web (S460ML plate, Fig. 1), simulating, among others, the
stiffening of structures, which are used in repairs in wet
welding conditions. The dimensions of the specimens were
smaller than the elements of structures operated under water,
which for this element thickness (12 mm) worsened the ther-
mal conditions compared to real ones.

One specimen was welded using the traditional technique
(one weld). In two others, TBW technique was used. TBW
relies on laying the second bead to the bead welded earlier to
providing the local heat treatment of weld and HAZ structures
occurred during the first welding. Between two welds, 120 s
time was passed. Previous experiments with the investigated
steels in the bead-on-plate conditions [30, 31] showed that
TBW can be an effective method to improve the weldability

of steel in the water, but only in the best range of the overlap
values between the subsequent beads. This range was estimat-
ed as 75–100% for S460ML and 66–100% for S460N [30,
31]. In accordance with this information, the welds in the two
specimens were welded using the TBW technique with a dif-
ferent pitch (percentages of overlap of the second weld bead
onto the first weld) to check the influence of TBW on the
properties of the T-joint fillet welds.

The welding parameters were chosen in accordance with
the previous investigations [30, 31] and are presented in
Table 3. Heat input values were calculated without taking into
account the thermal efficiency coefficient “k” in accordance
with the requirements of EN 1011-1 standard. The coefficient
“k” was omitted because its value is unknown in water
environment.

All welded joints were tested by visual testing (VT) and
penetrant testing (PT). The aim of VT and PT, besides the
assessment of the quality of the prepared joints, was to select
appropriate places for cutting. Following VT and PT, the se-
lected cross-sections were tested by macroscopic and micro-
scopic testing. During macroscopic testing, the pitch (percent-
age overlapping of tempering bead on previously laid bead)
was calculated from the prepared photos of cross-sections

Table 3 Welding parameters
Specimen Weld Bead Welding

current

I [A]

Arc
voltage

U [V]

Welding
time

t [s]

Welding
speed

Vsp [mm/s]

Heat input ql
[kJ/mm]

1 1 1 172 30.0 21.4 4.8 1.07

2 1 180 27.5 20.2 5.1 0.97

2 1 1 180 26.8 20.8 5.1 0.96

2 196 26.8 18.3 5.7 0.92

2 1 176 28.8 17.8 5.9 0.86

2 192 31.3 20.2 5.2 1.12

3 1 1 180 27.0 23.5 4.6 1.06

2 200 28.0 15.6 6.9 0.81

2 1 176 28.5 20.9 5.2 0.97

2 192 30.8 19.5 5.5 1.07

Fig. 1 Schematic view of T-joints
with fillet welds
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using the graph. In microscopic testing, the structures in HAZ
and weld were observed. After these examinations, hardness
(HV10) was measured. The investigated BMs were classified

into materials of group 2.2. (S460ML) and 1.3. (S460N) in
accordance with the EN ISO 15614-1:2017 [43] standard. For
both groups, the maximum hardness of HAZ should not

Fig. 3 Results of the macroscopic
testing. a Weld 1 specimen 1—
without TBW, b weld 2 specimen
1—without TBW, c weld 1
specimen 2—pitch 0%, d weld 2
specimen 2—pitch 79%, e weld 2
specimen 3—pitch 91%, and f
weld 1 specimen 3—pitch 100%

Fig. 2 Exemplary results of the non-destructive tests. aVT, weld 1 from specimen 1; bVT, weld 1 from specimen 3; c PT, weld 2 from specimen 1; and
d PT, weld 2 from specimen 2
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Fig. 4 Results of the microscopic tests. a Structure of S460ML HAZ—
without TBW, b structure of S460N HAZ—without TBW, c cracks in
S460N HAZ—without TBW, d cracks in weld material—without TBW,
e cracks in S460N HAZ—pitch 0%, f tempered S460N HAZ—pitch 0%,

g S460MLweldmaterial tempered by heat from second bead, h tempered
S460N HAZ that was affected by heat from second bead, and i cracks in
S460N HAZ—pitch 91%
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exceed 380 HV10. Hardness measurements together with me-
tallographic tests are a good indicators describing the tenden-
cy to cracking.

3 Results and discussion

3.1 Non-destructive testing

At first, all six welds were visually tested in accordance with
the EN ISO 17637:2011 standard [44]. Then, all of them were
subjected to PT in accordance with EN ISO 3452-1:2013-08
standard [45]. Non-destructive tests were performed which
showed some imperfections in welds prepared using the
TBW technique. The most common imperfections were lack
of fusion and undercut (Fig. 2b and d). These imperfections
resulted from temper beads which were laid only for temper-
ing the previous beads. Because the undercuts are classified as
imperfect shape and dimension of weld, and do not affect the
changes in the structure and properties of joints, all specimens
were subjected to further tests. During testing, spatters was
found on the surface of the specimens. In all welds, there were
areas without any surface imperfection, which allowed the
specimens and preparing cross-sections for further examina-
tions. The exemplary results of the non-destructive tests are
presented in Fig. 2.

3.2 Metallographic testing

Macro- and microscopic investigations were performed in ac-
cordance with EN ISO 17639:2013 standard [46]. After cut-
ting, all the cross-sections were ground, polished, and etched
with Nital (4%). The main aim of the macroscopic testing was
to calculate the pitch in specimens 2 and 3. During macro-
scopic observations, the imperfection was seen as gas pores in
both welds from specimen 1, weld 1 from specimen 2, and
weld 2 from specimen 3. All these imperfections were located
near the point of contact between the BMs. The used TBW
technique did not affect their formation—the second weld did
not cover these places. The results of the macroscopic testing
are presented in Fig. 3.

After macroscopic tests, the microscopic investigations
were performed. The weld metal structures in specimen 1
were built of dendrites. In the specimen 1—welded without
TBW technique, brittle structure such as low-carbon mar-
tensite was found in the HAZ of both steels in each welded
joint. Near the fusion line the Widmannstätten structure
was observed (Fig. 4a and b). In addition, in the HAZ of
the S460N steel, cracks were found in weld 2, which was
welded with a lower heat input (Fig. 4c). These cracks
started in HAZ and propagated along approximately 80%
of the length of the fusion line in the S460N steel. Cracks
were also found in the weld material of the specimens in

which the TBW technique was not applied (Fig. 4d). In the
case of specimens made using TBW, there was no crack in
the weld materials. In weld 1 specimen 2, where the pitch
was 0%, the HAZ in S460N was not changed and still
presented brittle structures with cracks (Fig. 4e). The pitch
was 0%; however, the HAZ from tempering bead refined
and tempered the coarse-grained zone of the first bead in
the S460ML steel (Fig. 4f). In the specimens with the pitch
in the range of 79–100%, the tempering effect was ob-
served in the HAZ of both the investigated materials.
With an increase in the pitch, there was a decrease of grain
size, which was expected in accordance with previous
works [30, 31]. In the places where the HAZ of the second
bead tempering the weld from the first bead, there was a
partial disappearance of the structure of the dendritic base
bead and the formation of a ferritic fine-grained structure
(Fig. 4g). The structures in the area where the HAZ from
tempering bead overlapped the HAZ of the first bead in
both steels were characterized by the refined and tempered
coarse-grained zone (Fig. 4h). The cracks in the HAZ of
the BMs were found only in weld 2 in specimen 3 in the
S460N steel (Fig. 4i). In the previous investigations [27,
30], it was found that TBW could not repair the
microcracks that formed during the welding of the first
bead. However, TBW could help to avoid cold cracking
that might occur after welding [47, 49].

3.3 Hardness measurements

The hardness was measured in BM, in each HAZ, and in the
weld material for each investigated weld of a specimen. The
schema of distribution of hardness points is presented in
Fig. 5.

The measurement showed that the S460N steel is charac-
terized by a higher Vickers HV10 hardness than S460ML, as
can be observed in the measurements obtained for each spec-
imen. In the specimens in which TBW technique was not
applied, the hardness in the HAZ of both the used steels was
the highest and exceeded the level of 380 HV10 assumed by

Fig. 5 Hardness point distribution for specimen welded without and with
TBW technique
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EN ISO 15614-1:2017 standard for used steels. It was also
observed that the hardness of S460N HAZ was higher than
that of S460ML HAZ. In the specimen with the 0% pitch, the
heat from the second bead, which was laid in S460N BM,
affected the hardness of both steels. Second, HAZ was over-
lapping first in S460ML, and the hardness in this area de-
creased by 80–100 HV10 in comparison with the specimens
welded without the TBW technique. In S460NHAZ, the hard-
ness decreased by 40–80 HV10. In the next specimens, it was
observed that if the pitch between two beads increased, the
hardness in HAZ and weld material decreased. The best re-
sults for the investigated BMs were observed in the specimens
with 100% pitch. The hardness measurements showed that the
TBW technique allowed to reduce the hardness HV10 values
of joints made in the water to the values lower than in speci-
mens welded in the air [27]. Similar results were observed for
welding of HSLA steel butt joints [49]. The reduction of hard-
ness limits one of the factors adding to the initiation of cold
cracks, which contributes to a reduction of cracking
susceptibility.

The values of hardness in each point are presented in
Table 4. The phrase “without TBW” means specimen welded
without additional (tempering) bead. The specimenwith “0%”
pitch was welded with tempering bead. However, in the area
of cutting specimen for metallographic testing, the second
bead did not lay on the first one (Fig. 3c), but the heat from
the second bead affects the previous laid stitch. The hardness
distributions for each specimens are presented in Fig. 6.

4 Conclusions

The results of the experiments conducted in the present study
showed that both materials, S460N and S460ML, were char-
acterized by high susceptibility to cold cracking in the HAZ,
as was found in the specimens made without the TBW tech-
nique. The use of this technique allowed reducing the number
of cracks and decreasing the hardness in the HAZ of both
steels. The results proved that the CeIIW values cannot be
considered as good weldability indicator for wet welding in
water environment. In previous researches [31, 32], TBWwas
used in pad welding conditions. Bead-on plate welding is a
relatively simple process which is carried out only with one
base material. During T-joint fillet welding, the thermal sever-
ity is more complicated, which can result in formation of dif-
ferent brittle structures. The experiments presented in this pa-
per confirmed the effectiveness of used TBW technique in the
conditions of preparing welded joints. It is also confirmed that
this technique can be used in preparing dissimilar joints. The
performed conclusions can be used during repairing of off-
shore constructions in the cases where usedmaterials are char-
acterized by susceptibility to cold cracking.

The conclusions drawn based on results of the conducted
experiments are:

1. The TBW technique was effective in improving the qual-
ity of the dissimilar T-joint fillet welds of the S460 class
steel made in the water by wet welding method.

2. The used technique reduced the number of cracks in the
HAZ of both steel; however, it was ineffective in repairing
the cracks that occurred while the first bead was welded.

3. TBW allowed changing the structures of dissimilar
welding of T-joints. The grain size was decreased and
the brittle structures were tempered, which improved the
weldability of steel (expressed by HAZ hardness decreas-
ing) and the quality of the prepared joints (expressed by
number of crack in HAZ). The changes were observed in
both of the welded steels.

4. The investigated technique reduced the hardness in the
HAZ of the S460N steel by 40–50 HV10 and in
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Fig. 6 Hardness HV10 distribution for each specimen

Table 4 Hardness measurement results

Specimen S460N S460N HAZ Weld S460ML HAZ S460ML

Without TBW 1 228 207 208 425 473 488 325 319 299 421 437 483 202 192 212

Without TBW2 221 233 219 498 503 446 306 297 309 390 405 429 182 181 195

0% 222 218 222 383 432 419 304 276 262 314 304 324 199 199 195

79% 216 210 228 390 417 483 276 272 281 314 309 302 195 193 199

91% 207 225 219 397 398 384 267 248 255 378 360 402 187 188 197

100% 233 218 215 395 370 382 266 270 276 314 341 349 207 197 191
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S460ML by 80–100 HV10. When the pitch between two
beads increased, the hardness decreased. The beneficial
effect of the application of the TBW technique was more
significant in steel with a lower CeIIW value (S460ML).
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