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SUMMARY
Short-term memory enables incorporation of recent experience into subsequent decision-making. This pro-
cessing recruits both the prefrontal cortex and hippocampus, where neurons encode task cues, rules, and
outcomes. However, precisely which information is carried when, and by which neurons, remains unclear.
Using population decoding of activity in rat medial prefrontal cortex (mPFC) and dorsal hippocampal CA1,
we confirm that mPFC populations lead in maintaining sample information across delays of an operant
non-match to sample task, despite individual neurons firing only transiently. During sample encoding,
distinct mPFC subpopulations joined distributed CA1-mPFC cell assemblies hallmarked by 4–5 Hz rhythmic
modulation; CA1-mPFC assemblies re-emerged during choice episodes but were not 4–5 Hz modulated.
Delay-dependent errors arose when attenuated rhythmic assembly activity heralded collapse of sustained
mPFC encoding. Our results map component processes of memory-guided decisions onto heterogeneous
CA1-mPFC subpopulations and the dynamics of physiologically distinct, distributed cell assemblies.
INTRODUCTION

Decisions informed by memories of recent experiences are a

cornerstone of adaptive behavior and can be modeled experi-

mentally using delayed match or delayed non-match to sample

(DNMTS) paradigms. These paradigms require currently relevant

information (for example, the location of a transiently presented

sample lever) to be (1) loaded into a temporary maintenance

buffer, (2) maintained throughout a delay, and (3) integrated

with current task rules to inform a choice (e.g., press the oppo-

site lever, not the one presented during sample). Short-term

memory’s capacity to bridge sample information to context-

dependent choice is central to flexible cognition of this type,1

which is sub-served by interactions spanning executive and

mnemonic hub regions including the prefrontal cortex (PFC)

and hippocampus.2,3

At the cellular level, PFCprincipal neuron spike rates during de-

layed response tasks encode diverse features of sample identity
1220 Current Biology 33, 1220–1236, April 10, 2023 ª 2023 The Auth
This is an open access article under the CC BY license (http://creative
and task rules in both non-human primates4–8 and rodents.9–15 In

particular, sustained PFC principal neuron firing during task delay

phases offers an intuitive neural correlate of short-term memory

maintenance, bridging sample presentation to choice.16–32

However, extending from individual neurons to simultaneously

recorded populations has unveiled other informative features of

PFC ensemble dynamics.33–35 For example, sequentially active

neurons can ‘‘tile’’ the progression from sample to choice,24,36–39

and recent models invoke dynamic changes to the information

coded by neurons across sample, delay, and response

epochs.20,37,40–47 Such dynamic coding means that the task fea-

tures encoded by individual neurons can vary across sample,

delay, and choice epochs35,48; hence neurons not classically

selective for individual task features may transiently contribute

to short-term memory encoding and maintenance.49–52 These

observations highlight a coding regime that extends beyond

straightforward mapping between behavior and the task-selec-

tive firing of individual units in PFC.
ors. Published by Elsevier Inc.
commons.org/licenses/by/4.0/).
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Figure 1. Differential contributions of dCA1 and mPFC neurons and populations to performance in the DNMTS short-term memory task.

(A) Schematic of the DNMTS task (top) and contingencies (bottom). Incorrect choices led to a time-out before the subsequent trial.

(B) Simultaneous hippocampal-prefrontal recording configuration.

(legend continued on next page)
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PFC dynamics during delay-dependent short-term memory

may hinge, in part, on hippocampal-cortical interactions. Hippo-

campal CA1/CA3 single unit activity during DNMTS-related

tasks in both macaque53 and rat11,54,55 shows dissociable sam-

ple, delay, and choice correlates. These related patterns of hip-

pocampal and cortical activity are consistent with distributed

hippocampal-prefrontal information processing observed in hu-

man imaging and electrophysiological studies.56–62 Indeed,

simultaneous recordings from rodent PFC and hippocampus

during maze-based non-matching tasks reveal co-varying

network activity associated with 5–10 Hz ‘‘theta’’ frequency

coherence across the two regions during memory-dependent

choice63–66 and object memory retrieval.67 Projection-selective

optogenetic silencing confirmed that ventral CA1 input to mouse

PFCwas critical during the sample phase of a T-maze alternation

task,68 while mediodorsal thalamic input to PFC supported the

maintenance of information during the delay phase.24 However,

the network dynamics of these interactions that support and

distinguish sample, delay, and choice phases remain equivocal.

We set out to disentangle the dynamic contributions of hip-

pocampal and PFC neural assemblies to information encoding

during a DNMTS task proven to rely on PFC integrity.69 We test

the hypotheses that (1) correlated groups of neurons distrib-

uted across hippocampus and PFC collectively contribute to

the optimal representation of cue information during sample

encoding and recall, (2) dissociable subsets of PFC neurons

(less directly modulated by hippocampus) maintain cue infor-

mation during the short-term memory delay, and (3) at least

one of these population signatures should fail to encode, main-

tain, or transfer information during errors, culminating in an

incorrect choice.

RESULTS

Dissociable hippocampal and prefrontal population
dynamics reflect differential contributions to
information encoding, maintenance, and recall
We trained six rats on a DNMTS task over 21 days, until their per-

formance averaged 80% correct responses per session at each

training stage (Figures 1A, S1A, and S1B; see STARMethods for

task details). Following initial training, we chronically implanted

tetrodes (Figures 1B and S1C–S1F) to record simultaneous

spiking activity from dorsal CA1 and prelimbic medial prefrontal
(C) Performance of 6 rats (2 sessions from each) across delay lengths. Black dotte

chance. All rats performed above chance for 4–8 s delays, but only 3 out of 12 fo

(D) t scores between left/right sample trial firing rates; units aggregated across ses

insignificant cue location discrimination (p > 0.05, against bootstrapped 95% CI

(E) Fractions of units recorded in each session providing significant left/right deco

length. No significant differences were observed across delays for either area.

(F) Distributions of peak strength (left) and duration (right) of left/right encoding by

across sessions.

(G) Leave-one-out decoding of left/right-trial type from firing rates of single units.

trial and unit counts randomly sampled from available data. Gray shaded bars ab

shuffled data). Blue/red bars show periods of significantly stronger cue decoding

conditions N = 12 subject sessions).

(H) Performance of regularized linear decoder trained on correct trials and tested

recording sessions shown. Black bars indicate times of significant drops in cros

Bonferroni-corrected p < 0.05).

See also Figure S1.

1222 Current Biology 33, 1220–1236, April 10, 2023
cortex (mPFC); data are presented from the final two DNMTS

sessions after criterion had been achieved (STAR Methods). Af-

ter spike sorting and thresholding for mean firing rate >0.5 Hz

during the task, 31 ± 5mPFC and 30 ± 5 dCA1 (mean ± standard

error of the mean [SEM]) well-isolated putative principal neurons

were analyzed per session.

Ratsmade significantlymore errors on 16 s delay trials than tri-

als with shorter delays (Figure 1C, N = 12, 2 sessions from 6 rats,

ANOVA, F(2,36) = 42.4, p < 0.001, Tukey-Kramer post-hoc test

for delays p < 0.001): all rats performed significantly above

chance on 4 and 8 s delay trials (p < 0.05, binomial tests for

each rat’s performance), whereas only three rats achieved

above-chance performance at 16 s delay. Latencies between

cue, sample lever press, end-of-delay nosepoke and choice

lever press did not vary systematically with delay, or correct

vs. error trials (Figure S1B), meaning that inaccurate perfor-

mance was unlikely to stem from failure to engage with the task.

To quantify the time-varying encoding of left and right cue

location by single units, we used Student’s t test as a measure

of discrimination between left- vs. right-trial firing rates in 50ms

bins for each neuron’s trial-averaged activity in dCA1 and

mPFC (Figure 1D). For dCA1 units, left- vs. right-trial discrimina-

tion tended to peak around sample and/or choice lever presen-

tations. The activity of mPFC units was less bound to lever

presses, sequentially tiling the entire delay period (Figure 1D,

bottom right panel and Figures S1H–S1J). Approximately half

(dCA1: 48%, mPFC: 57%) of units were informative (provided

significant left vs. right information for >50 ms within ±4 s of

the sample or choice lever presses), with fractions of informative

units consistent across delays (Figure 1E, Kruskal-Wallis

ANOVA; dCA1: H(2) = 0.18, p = 0.91; mPFC: H(2) = 0.44, p =

0.80). However, while dCA1 units showed significantly stronger

peak cue location encoding than mPFC units during the sample

and choicepreparatory periods (Figure 1F left: peak t-score,

dCA1 vs. mPFC units; 3.49 ± 0.23 vs. 2.72 ± 0.08, t(463) =

3.52, p = 0.00048, t test, N = 223, 242 units from 12 sessions),

single units from the two areas were indistinguishable in the du-

rations over which they encoded cue location (Figure 1F, right:

duration of encoding, dCA1 vs. mPFC units; 2.24 ± 0.19 s vs.

1.99 ± 0.16 s; t(463) = 1.38, p = 0.17, t test, n = 223, 242 units

from 12 sessions). Very few mPFC units showed persistent

lever-selective delay firing (approximately 85% units showed

significant decoding for <6 s, Figure 1F, right). Taken together,
d/solid lines link trials from at/above-chance sessions; red dotted line indicates

r 16 s delay trials.

sions and sorted by times of peak discrimination. Gray regions mask periods of

s).

ding (bootstrapped Bonferroni-corrected p < 0.05) for >50 ms, sorted by delay

dCA1 and mPFC units. Shaded regions indicate mean ± SEM of distributions

Shaded curves indicate mean ± SEM decoding across animals with matched

ove indicate periods of cue decoding significantly different from chance (cue-

from mPFC/dCA1 units (p < 0.05, bootstrap permutation test between the two

on correct (solid) or error trials (transparent). Mean ± SEM performance across

s-validated decoding performance during errors (bootstrap permutation test,
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these observations corroborate evidence that short-term mem-

ory can be supported by populations of transiently activating

neurons.24,46,70,71

We next considered how joint activity of simultaneously re-

corded populations of single units within each area contributed

task-relevant information. To directly compare sample lever cod-

ing between the two populations, we employed a linear discrim-

inant classifier based on vector representations of single neuron

instantaneous firing rates in 50-ms bins (Figure 1G). We included

single units with individually significant cue location encoding

for >50 ms (as in Figure 1E) in this and subsequent analyses.

Each trial of the task was omitted in turn and a linear classifier

trained on the remaining trials (leave-one-out cross-validation,

LOOCV) to predict the class label (left vs. right sample lever) of

the withheld trial. To compare between animals, random subsets

of equalized unit numbers and trial counts were drawn between

conditions to rule out dimensionality confounds in classifier

performance.

dCA1 populations showed strong but transient readout of

sample position, which peaked around the lever presses and

dropped to chance decoding performance during the delay

period (Figure 1G, red traces). The discrimination around sample

and choice lever presentation was less pronounced in mPFC

populations, which insteadmaintained a stronger representation

of sample identity than dCA1 populations throughout the delay

and post-choice evaluation period during reward consumption

(Figure 1G, blue traces). These findings are in good agreement

with recent comparisons between task coding dynamics in hip-

pocampal and frontal cortical populations in primates.72,73

Which features of the dCA1 and mPFC population activity are

essential to the correct execution of the DNMTS task? Previous

studies have induced forced errors, by lesioning or inactivating

targeted parts of the hippocampal-frontal network,65,68 but

less is known about the system’s behavior during spontaneous,

unforced errors. Since 16 s delay trials challenged the short-term

memory limits of rats, we quantified which aspects of the

sequential contributions of dCA1 and mPFC populations failed

during incorrect choices.

Decoders trained on correct trials and tested on error trials

demonstrated that decoding of sample position from hippocam-

pal populations was intact (Figure 1H): the two conditions were

indistinguishable around the sample lever press but, on error

trials, dCA1 represented the wrong (opposite) position on

approach to the choice lever press. Thus, even as the rats revis-

ited the sample (wrong) location, hippocampal representations

remained faithful. In the mPFC, however, sample location repre-

sentation began to decay immediately after the sample lever

press on error trials, such that incorrect choices could be pre-

dicted approximately 2 s earlier in the delay period than from

dCA1 activity (black bars in Figure 1H indicate significantly er-

ror-predicting periods).

mPFC population dynamics support coding that spans
the DNMTS delay phase
To test which ensemble mechanisms might underlie stable cod-

ing by mPFC populations during the delay period, we assessed

trial-by-trial associations between mPFC population dynamics

and DNMTS accuracy (Figure 2). Since 4, 8, and 16 s delay trials

were presented to the rats in randomized order, we first sorted
trials by delay length to compare LOOCV decoding across de-

lays and correct vs. error outcomes. Subsets of the different trial

types were drawn at random to allow matching of trial numbers

across conditions (accounting for fewer available correct trials

on longer delays).

On 4 s and 8 s delay trials, delay period decoder results were

significantly better than chance (bootstraps with shuffled trial la-

bels) for the entire delay period duration in the majority of

recording sessions (indicated by gray shading in Figure 2A). On

average, rats performed at chance during 16 s delay trials, i.e.,

the equivalent of guessing randomly. This means ‘‘correct’’ re-

sponses may have arisen from lucky guesses, independent of

CA1-mPFC information processing. We therefore split recording

sessions by whether behavioral performance was at, or signifi-

cantly above, chance performance during that session (light

and solid blue curves in Figure 2A). Whereas correct outcome

16 s delay trials from above-chance sessions showed decoder

performance that was above chance for the majority of the delay

period (albeit stronger during the first 8 s and variable due to the

small subset of the above-chance sessions), mPFC population

decoding from correct trials from chance-performance behav-

ioral sessions fluctuated around chance levels from shortly after

sample lever press. Thus, even though all trials examined corre-

sponded to ‘‘correct’’ outcomes, faithful decoding of cue identity

frommPFC populations depended onwhether the rats were per-

forming the task better than chance as opposed to guessing,

implicating faithful cue representation by mPFC populations in

successful task performance.

What form does the delay-spanning coding scheme take in

mPFC? One possibility is that firing rates across neurons evolve

in fixed proportions relative to one another, such that a decoder

trained on population firing rates at the start of the delay suc-

cessfully predicts left vs. right sample lever identity using firing

rates from the end of the delay, and vice versa. Alternatively, a

dynamic code implemented by the mPFC population may

mean decoding results are only transiently valid around the

time of the training data. We compared evidence for these two

hypothetical schemes by constructing decoders using popula-

tion firing rate data from each 50 ms segment of the delay period

and systematically ‘‘sliding’’ the test data across the entire delay

period (Figure 2B, method reviewed in Meyers et al.74) These re-

sults form symmetrical cross-temporal decoders in which the di-

agonal (white arrows in Figure 2B) represents training and testing

performed at matching time points.

For 4 and 8 s delay trials, decoders trained and tested at any

time during the delay period were similarly valid, as indicated

by the extended region of significant off-diagonal decoding per-

formance throughout the delay (marked by white bounding

boxes in Figure 2B). During 16 s delay trials in sessions with

above-chance behavior, a window of significant cross-temporal

decoding (skewed rightwards in Figure 2B) revealed that the

mPFC population can reliably encode the location of the initial

cue during the whole delay period. This sustained representation

was not seen in dCA1 (Figure S2), or in decoding results from

sessions with at-chance behavioral performance (Figure 2C).

Instead, despite an initial early-delay period of transient decod-

ing comparable in strength to the above-chance sessions (as

in Figure 2B), cross-temporal decoding did not outlast approxi-

mately 2 s. These results implicate strength of readout of cue
Current Biology 33, 1220–1236, April 10, 2023 1223
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Figure 2. Maintenance of cue location by a stable

population code in mPFC underlies correct perfor-

mance in the DNMTS task.

(A) Time-resolved decoding of cue location frommPFC single-

unit populations on correct trials for sessions above (solid

blue) and below (light blue) chance performance (50%, dotted

line). Gray bars above curves show fraction of above-chance

performing sessions with significant decoding. Mean ± SEM

decoding performance from 12 sessions (all above-chance

performance for 4 and 8 s delays, nine at chance for 16 s delay

trials).

(B) Cross-temporal decoding during the delay period: cross-

validated regularized linear decoders trained and tested at

different time points during the delay period (±5 s). White lines

indicate bounding times of delay period. Green and black

markers indicate sample press and end-of-delay tone,

respectively. White arrow along diagonal indicates training

and testing at the same time point (using different withheld

trials for testing), recapitulating curves shown in (A). Bounded

regions show significant (p < 0.05) decoding relative to cue-

shuffled bootstrap distribution.

(C) Cross-temporal cue decoding performance of mPFC unit

population recordings on correct 16 s delay trials from at-

chance sessions (top) and on errors on above-chance (bot-

tom). Statistics as for (B). Right: subtraction of above-chance

session decoding from below-chance sessions (top) and

correct from error trials (bottom). Bounded regions indicate

significant differences between conditions (bootstrap per-

mutation test, p < 0.05).

See also Figure S2.
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identity from mPFC populations in supporting successful

DNMTS task performance. Consistent with this interpretation,

the sustained mPFC population code evident during correct 16

s trials failed during the at-chance and the error trials (Figure 2C,

lower panels).

A sparse subset of neurons form joint dCA1-mPFC cell
assemblies optimally encoding cue information during
the DNMTS task
Given the encoding of dissociable task-related information in

dCA1 and mPFC populations, when and how is information

shared between the two regions? Correct activation of the

dCA1-mPFC pathway is essential for performance of spatial

short-term memory tasks68,75,76 and presumably must induce

systematically covariant inter-regional activity at some point(s)

during delayed responding.

We developed a cross-validated factor analysis method

(FA77,78) to detect coordinated activity among units from

mPFC, dCA1, or jointly from mPFC and dCA1 (Figures 3 and

S3; STAR Methods). FA is a model-based statistical tool that

explicitly captures correlations between variables through a set

of independent factors (and assuming independent noise sour-

ces). FA has been shown to outperform principal-component

analysis (PCA) for the purposes of dimension reduction, neural

manifold reconstruction, and cell assembly detection78,79 and

has recently been used to probe neural population activities un-

derlying decision-making in rodent frontal cortex.80

dCA1 and mPFC units were assigned to the same cell assem-

bly when they significantly loaded on the same latent factor

(Figures 3B and 3C), where latent factors captured correlated

firing rate activities within the population of neurons (Figure 3D).

We detected significant inter-area cell assemblies in four of six

rats. FA-detected assemblies were in good agreement with

those detected with a previously established PCA-independent

component analysis (ICA) method81 (Figure S3A). Inter-regional

assemblies were more numerous (Figure S3B) and larger (Fig-

ure S3C) than within-region assemblies but comprised a sparse

minority of total recorded units (Figure S3D). Cell assemblies

were largely non-overlapping (Figure S3E) and not biased by

the mean firing rates of their constituent neurons (Figures S3F

and S3G). The time-varying factor scores derived from the FA

model (Figure 3B) can be taken as a measure of assembly acti-

vation strength, as exemplified by significant event-locked acti-

vation of inter-area assemblies linking dCA1 and mPFC units

during the DNMTS task (Figures 3D, S3H, and S3I).

Assemblies inherited the cue encoding properties of their

member units. In the case of inter-regional assemblies, cue de-

coding analysis revealed combinations of each area’s encoding

features such as the strong encoding around lever presses of

dCA1 members, and pre-choice encoding of mPFC members

(Figures 4A and S4A). Assemblies detected within dCA1 pro-

vided better peak cue encoding than mPFC assemblies, on

average, as was observed with single unit encoding (Figure 1F).

However, encoding strengths of inter-regional assemblies were

indistinguishable from individual area local assemblies, consis-

tent with a mixing of cue encoding features from both areas (Fig-

ure 4B). Thus, FA-detected cell assemblies were typically small

and sparse but provided better cue encoding than their member

units (Figure 4C). Overall, more dCA1 and inter-area cell
assemblies were informative for >50ms during the task than their

member units, with a similar trend observed for mPFC assem-

blies (Figure 4D).

We next probed the optimality of units’ arrangement into

cell assemblies. Intuitively, the correlated firing of similarly-

tuned neurons spanning dCA1 and mPFC networks could pro-

vide increased robustness to trial-to-trial firing rate variability

of individual neurons.82 Conversely, mixing of complementary

information from dCA1 and mPFC neurons providing cue en-

coding at staggered times could increase the duration over

which information readout is possible from the inter-area

assembly.

Grouping neurons by similarity of activity (Figure S4B) sug-

gests that cue encoding is improved by cell assembly formation

via boosting signal correlations between members. To test how

many units are required to support this coding enhancement, we

used established methods to create synthetic cell assemblies

with sizes matching FA-detected neurons49,83,84 and optimized

to include the best possible combinations of units aggregated

according to their ranked peak cue information (Figure 4E). We

compared the peak cue decoding of the assemblies detected

by FA against that of size-matched synthetic cell assemblies

drawn from all available units in that recording, matching the

real cell assemblies to the closest ranked synthetic assembly

(Figure 4F, expanded in Figure S4C). Peak cue decoding perfor-

mance rose rapidly with increasing assembly size and was near

optimal (approaching 100%, exceeding the best or second-best

unit combination of synthetic assemblies) with group sizes of <5

units, comparable to those observed in the FA-detected assem-

bly pool (Figure S3C). Inter-area assemblies were within the top

two best possible combinations of dCA1 andmPFC units and re-

flected better decoding than by mPFC units alone (Figure 4G).

Therefore, across all FA-detected assemblies, performance

was skewed toward optimally representing cue location; howev-

er, integration of correlated dCA1 and mPFC activity boosts the

cue representation over that in mPFC alone.

Together these results reveal that sparse groups of neurons

spanning the dCA1-mPFC network form cell assemblies which,

by averaging noisy firing rate fluctuations of single neurons and

boosting signal robustness, enhance the encoding of cue infor-

mation over that of single units alone and form near optimal rep-

resentations within small groups (<10 units).

Rhythmic firing hallmarks joint dCA1-mPFC cell
assembly dynamics and memory performance
We found that units that formed dCA1-mPFC assemblies

(Figures 3D and 5A) showed 4–5 Hz rhythmic modulation in their

spike train autocorrelations (Figure 5B). dCA1-mPFC unit pairs

drawn from assemblies showed coherent spike train modulation

at 4–5 Hz, which was weaker for pairs drawn from different cell

assemblies, and weaker again for pairs of units not detected

as cell assemblymembers (Figure 5C: average 3.5–5.5Hz coher-

ence across dCA1-mPFC cell pairs, F(2,27) = 50.0 p < 0.0001,

Tukey-Kramer post-hoc tests for assembly membership

p < 0.05, N = 2 sessions from 6 animals). Coherent 4–5 Hz spike

train modulation was also weaker for pairs drawn from within-

area cell assemblies in dCA1, and essentially absent between

pairs from mPFC. This indicates that, on average, ‘‘non-assem-

bly’’ units were physiologically distinct from their assembly
Current Biology 33, 1220–1236, April 10, 2023 1225
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Figure 3. A latent factor analysis model detects

correlated inter-regional dCA1-mPFC cell assem-

blies.

(A) Schematic of the FA-based cell assembly detection,

decomposing parallel recordings from N single units into

time-varying activation scores of p (p < N) factor scores.

(B) Model selection steps involved in FA-based cell as-

sembly detection.

(C) Inter-area cell assembly detected from dCA1-mPFC

recording. Example loading of single units to the five

detected latent factors (cell assemblies). Gray circles

indicate units with insignificant loading strengths

(shaded columns indicate p < 0.01 vs. shuffled bootstrap

distributions).

(D) Example spike rasters from units in (C) during four

successive trials of the DNMTS task. Color annotation on

spike trains indicates times of significant activation

(bootstrap p < 0.01, vs. factor model calculated from

shuffled spike rates) for each detected dCA1-mPFC

assembly.

See also Figure S3.
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Figure 4. A sparse subset of neurons form joint dCA1-mPFC cell assemblies optimally encoding cue information during the DNMTS task.

(A) Trial-averaged dCA1-mPFC assembly activity (green) and spike rates of dCA1 and mPFC member units (red and blue, respectively) on correct left and right

trials. Same example as Assembly 1 in Figures 3C and 3D (red annotation). Times of significant cue location encoding (bootstrap Bonferroni-corrected p < 0.05)

indicated by black bars.

(B) Distribution of peak cue decoding strength from each class of cell assembly (Kruskal-Wallis test: X2(2,81) = 10.59, p = 0.005). Asterisk: Tukey-Kramer post-hoc

test, p < 0.05.

(C) Distributions of cue location decoding of dCA1-mPFC cell assemblies (green) vs. constituent single units (broken lines). Kruskal-Wallis test was used:

X2(2,213) = 23.98, p < 0.01. Asterisks indicate Tukey-Kramer post-hoc tests with comparisons (p < 0.05).

(D) Fractions of cell assemblies (solid bars) and constituent single unit members (broken bars) providing significant cue location decoding forR 50 ms. Asterisks

indicate significant differences between assemblies and units for each assembly type (Mann-Whitney U test: p = 0.0127/p = 0.316/p = 0.033 for CA1/mPFC/

dCA1-mPFC, respectively).

(E) Testing left/right sample decoding capacity from synthetic cell assemblies. (1) Single units are ranked from best to worst by individual peak strength of sample

location decoding. (2) Rank-ordered sequential draws of size 2–20 are chosen to provide groups of units (e.g., for the top two assembly draws of size of 3: take

units in rank position [1, 2, 3], [4, 5, 6], etc.). (3) Leave-one-out multivariate decoding of cue location from each combination of {assembly size, rank order} was

used for peak decoding performance preceding choice press measured.

(F) Cue location decoding performance of rank-ordered optimal synthetic groups (colored lines) vs. units forming FA-detected cell assemblies (black points).

Error-bars indicate SEM of peak decoding for assemblies of a given size. Dotted lines indicate decoding from FA-detected assemblies with shuffled cue location

labels. Black lines are best linear fits to peak decoding vs. assembly size for FA-detected cell assembly member decoding.

(G) Ranks of closest-performing synthetic cell assemblies for each FA-detected cell assembly grouping. Horizontal bars show mean ± SEM rank. Asterisk in-

dicates Kruskal-Wallis test between assembly type: X2(2,76) = 9.99, p = 0.0068.

See also Figure S4.
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counterparts. The 4–5 Hz assemblymotif was specific to the task

period and absent from spike trains recorded during 1 h rest pe-

riods flanking DNMTS sessions (Figure S5A).

We wondered whether the parsing of the two crucial ‘‘sam-

ple’’ and ‘‘choice’’ events of task context might be visible in

the patterned firing of the assembly member units. Rhythmic

dCA1-mPFC coactivity did indeed emerge between pairs of

cells in a task phase-dependent manner, with 4–5 Hz modula-

tion most prominent during the 4 s preceding sample lever

presses (Figures 5D and S5B). This rhythmic signature of

dCA1-mPFC assembly activity therefore timestamped the

DNMTS sample phase and is consistent with evidence that
optogenetic silencing of hippocampal-prefrontal interactions

is particularly disruptive during the sample phase of delayed re-

sponding on a T-maze.68

dCA1-mPFC assembly member pairs showed additional tem-

poral structure at slower timescales: cross-correlations preced-

ing choice lever presses were not 4–5 Hz modulated but tended

to reflect mPFC spiking leading dCA1 spiking (Figure 5D, bottom

right panel), indicating a shift in the direction of signal flow be-

tween hippocampus and frontal cortex on transition from sample

to choice. Such a context-dependent shift has been suggested

in previous analyses of decision-making.67,85,86 We further

explored this shift by examining when individual assemblies
Current Biology 33, 1220–1236, April 10, 2023 1227
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Figure 5. Distinct rhythmic firing signatures hallmark joint dCA1-mPFC cell assembly membership during the DNMTS task.

(A) Spike trains of units comprising assembly 1 (red annotation in Figures 3C and 3D) highlighted to show firing of dCA1 and mPFC (red and blue, respectively)

units during significant assembly activation times.

(legend continued on next page)
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were most active during sample or choice events. Figure 5E

summarizes the time-varying activities of within-area (gold) and

inter-area (purple) cell assembly activities during the task,

demonstrating comparable activation during sample presenta-

tion but diverging activation levels during delay and choice

events. Taking assemblies with factor scores showing significant

activity in the time preceding lever presses, we classified them

as either ‘‘sample-active’’ or ‘‘choice-active’’ based on the

time of their strongest average activation (Figures 5F and S5B).

Both classes of sample and choice activity were approximately

equally represented in within-mPFC assemblies (9 sample-

active vs. 10 choice-active detected assemblies). Conversely,

a significant majority of within-dCA1 and dCA1-mPFC assem-

blies were sample active (dCA1: 13 sample-active vs. 5

choice-active; dCA1-mPFC: 20 sample-active vs. 6 choice-

active detected assemblies, one-sample t test vs. an even sam-

ple/choice split for within-animal averages; mPFC: T(6) = �2.61,

p = 0.08, dCA1: T(6) = � 2.53, p = 0.13, dCA1-mPFC: T(6) =

�6.72, p < 0.01, Figure 4F). This could not be explained by

skewed unit counts across areas in our recordings or over-rep-

resentation of one area’s contribution to the FA assembly

models (Figures S5C and S5D). Finally, restricting analysis of

rhythmic dCA1-mPFC cell pair interactions to assemblies most

active during the sample period amplified the 4–5 Hz rhythmic

coordination (Figure 5G). The coherent modulation of spike

trains by this fingerprint ‘‘sample’’ rhythm was attenuated be-

tween parallel but independent dCA1-mPFC assemblies and

was absent in the activities of sample assemblies during the

choice-preparatory period.

Our assembly analyses reveal sparse subsets of single

units that cohere task-dependently into assemblies spanning

dCA1 and mPFC and are hallmarked by a physiological

signature of 4–5 Hz coordination. As such, the inter-area

cell assemblies are uniquely positioned to orchestrate

dCA1-mPFC interactions and information transfer. However,

4–5 Hz rhythmic activity did not manifest in the local field po-

tential (LFP) oscillations. Unlike hippocampal theta (8–12 Hz)

oscillations, which were prominent in LFP spectrograms

from dCA1 tetrodes during the DNMTS task, no clear rhyth-

mic oscillations in the 4–5 Hz band were observed in either

brain area (Figure S5E). Similarly, clear dCA1-mPFC
(B) Left: rate-normalized spike-time autocorrelations (mean ± SEM across units

assemblies for each area. Right: modulation index of spike train autocorrelation

(C) Inter-area spike train coherence between dCA1-mPFC unit pairs within, ac

sessions shown). Gray shaded region indicates frequency range used for sta

ference).

(D) Pairwise dCA1-mPFC spike train cross-correlogram (top: 20 ms bins, bottom

choice (right) lever press events. Average across all pairs shown (mean ± SEM

pairs. Random sampling of spikes (100 draws per cell pair) was used to match

spike count.

(E) Standardized activation patterns (factor score activity) of different classes of c

choice lever press events. Assemblies were sorted by peak activity time and cat

respectively). Dashed lines show mean assembly activities for each class.

(F) Fractions of cell assembly categorized as sample- and choice- active for eac

semblies most strongly activated during the sample and choice phases respecti

toward more sample-active.

(G) Rhythmic 4–5 Hz dCA1-mPFC spike correlations (as in D) were specific to pai

pairs drawn from the same cell assembly.

See also Figure S5.
oscillatory LFP coherence was observed in theta but not in

the 4–5 Hz bands (Figure S5F).

Subsets of units from dCA1 and mPFC showed significant

spike phase-locking with respect to the within-area 4–5 Hz

LFP band (39% and 33%, of 198 and 207 units from seven re-

cordings, dCA1 and mPFC, respectively, p < 0.05, Rayleigh

test of circular uniformity). Of significantly modulated units

(solid lines and histograms, Figure S5G, left), modulation

strengths were weak and indistinguishable between brain

areas (z = 0.21, p = 0.22, Mann-Whitney U test). In contrast,

theta-tuned units were significantly stronger tuned in dCA1

than mPFC (Figure S5G, right, z = 9.12, p < 0.0001, Mann-

Whitney U test), such that individual dCA1 units, which

co-tuned for both 4–5 Hz and theta bands, showed on

average twice stronger tuning for theta than for 4–5 Hz. Units

from mPFC did not show this bias (Figure S5H: theta M.R.L. /

4–5 Hz M.R.L. ratio = 2.3 vs. 1.1 for dCA1 vs. mPFC, respec-

tively; z = 5.85, p < 0.001, Mann-Whitney U test). These find-

ings confirm the weak influence of the 4–5 Hz LFP modulation

on units’ spike times and that theta and 4–5 Hz rhythms are

distinct from one another.

We next sought tomap the activities of assembly neurons onto

component processes of short-termmemory underlying DNMTS

task performance. Examining times at which the three different

classes of assembly-participating units (intra-CA1, intra-mPFC,

and dCA1-mPFC) provided significant cue encoding during the

task did not show clear segregation at the single cell level

(Figures 6A and S6A). However, multivariate population decod-

ing from units belonging to these different assembly types

did demonstrate dynamic, fluctuating contributions of each

neuronal class during the DNMTS task (Figures 6B and S6B).

Shaded ticks above the dynamic curves in Figure 6B track qual-

itatively the time-evolving strongest ‘‘winner-take-all’’ decoding

of cue location from each sub-population of units, with the

constraint that each area must show significant decoding

when considered individually. For example, mPFC inter-area as-

sembly members (purple traces) showed strong sample repre-

sentation, while non-members better discriminated left vs. right

trials during the delay.

These analyses demonstrate a dynamic modulation in the rep-

resentation of cue information by cells forming assemblies that
) for non-assembly units, members of within-area and inter dCA1-mPFC cell

functions.

ross and outside cell assemblies (mean ± SEM of dCA1-mPFC pairs across

tistical comparison of rhythmic modulation (asterisks mark significant dif-

: 100 ms bins) for spikes fired by units in the 4 s preceding sample (left) and

across recording sessions) for within (purple) and across (white) assembly

firing rate offsets between cells. Cross-correlations are normalized by total

ell assembly (mean ± SEM averaged across sessions), aligned to sample and

egorized as either ‘‘sample-active’’ or ‘‘choice-active’’ (left and right columns,

h assembly type detected in the 12 recording sessions. 0 and 1 indicate as-

vely. Asterisk indicates that dCA1-mPFC assemblies were significantly biased

rs of units from sample-active assemblies and were strongest for inter-regional
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Figure 6. Assembly membership-dependent differences in the statistics of cue encoding during the DNMTS task are not visible at the single

neuron level but orchestrate dynamic contributions by neural populations.

(A) Discrimination of cue location by firing rates of individual dCA1 and mPFC single units, sorted by assembly membership type and time of peak discrimination.

Black bars indicate time of significant decoding (t test, Bonferroni-adjusted p < 0.05, bootstrapped confidence limit).

(B) Population-level discrimination of cue location by firing rates differs by class of assembly membership. Curves show cross-validatedmultivariate decoding for

units participating in different assembly types (mean ± SEM across recording sessions). Colored lines indicate 5%, 95% bootstrap CIs of decoding from shuffled

trial labels (mean across session shown). Below: gray shading indicates fraction of recording sessions with decoding exceeding 95% CI at each time point.

Above: best performing group provides significant decoding from >60% sessions, winner takes all.

See also Figure S6.
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cannot be detected in the activities of individual member neu-

rons. In particular, changes in the pattern of interaction across

brain areas hallmark parsing of the cognitive contexts of encod-

ing, maintenance, and recall lever presses during the task.

Incorrect choices are associated with impaired transfer
of dCA1 cue information to mPFC with collapse of intra-
mPFC dynamics
These distributed and dynamic mechanisms associated with

successful completion of the DNMTS task present multiple

potential vulnerabilities to disruption, culminating in erroneous

choices. Although we could not detect overt changes to

behavioral strategies during error trials (Figures S7A and

S7B), we did observe several features of coordinated popula-

tion activity that were altered on error trials (Figure 7). The

average activation profiles of within-dCA1 or sample-active

within-mPFC assemblies were unaffected on error trials (Fig-

ure 7A, top), whereas choice-active, within-mPFC assembly

activation was significantly weakened in the period leading

up to the choice lever press (gold vs. red traces Figure 7A,

third row). No differences were observed in average activation

strengths of inter-area dCA1-mPFC assemblies preceding the

incorrect choice lever presses, but activation was significantly

stronger immediately afterwards (purple vs. red traces in Fig-

ure 7A, bottom), suggesting coordinated inter-area firing in er-

ror feedback signaling, as has been reported for this pathway

in primates.72

We wondered whether the rhythmic firing before sample and

mPFC-driven correlations before choice times (Figures 5E–5G)

would be specifically affected on errors (gray boxes in Fig-

ure 7B). Indeed, we observed significantly weaker 4–5 Hz

correlated firing between inter-area pairs from the same as-

sembly during the sample-preparatory period (Figure 7C), and
1230 Current Biology 33, 1220–1236, April 10, 2023
a reverse in lag of peak correlation, such that dCA1 led mPFC

firing in the choice-preparatory period on error trials, instead

of mPFC leading dCA1 as in correct trials (Figure 7D, t(250) =

2.21, p = 0.0274, paired t test). These altered signatures of

CA1-mPFC interaction during unforced errors further implicate

rhythmic hippocampal-prefrontal network population coordi-

nation during short-term memory loading in later incorrect

choice-making.

DISCUSSION

Simultaneous electrophysiological recordings afford an inte-

grated view of dCA1-mPFC information coding and exchange

during delayed non-matching behavior. Alongside substantiat-

ing the differential hippocampal and prefrontal contributions to

DNMTS performance indicated by previous single-region re-

cordings and/or lesioning studies, our approach thereby un-

veiled three principal findings: (1) the existence of distributed,

dCA1-mPFC assemblies, recruited during sample encoding

and hallmarked by 4–5 Hz rhythmic co-modulation, (2) delay-

dependent maintenance of cue information by a separable sub-

set of mPFC neurons, not bound into dCA1-mPFC assemblies,

and (3) failure of dCA1-mPFC assemblies to load short-term

memory during unforced errors, with unstable mPFC delay cod-

ing culminating in incorrect choices.

Ensemble activity ‘‘within’’ rat dorsal hippocampus87 and pop-

ulation or cell-pair firing patterns ‘‘within’’ mPFC have previously

been associated with behavioral performance46,70 and hippo-

campal network oscillations64,88 during delayed response tasks.

However, most prior rodent recordings were made during

maze-based tasks, which offer less control over precisely

when animals encode information and blur mnemonic and deci-

sion-making processes in space and time. The temporal

http://mostwiedzy.pl


Figure 7. Incorrect choices are associated with intact sample encoding by dCA1 networks but reduced 4 Hz dCA1-mPFC assembly
synchrony, leading to a collapse of intra-mPFC dynamics and impaired dCA1-mPFC synchronization on recall.

(A) Average z-scored activity of different classes of within- and inter-area cell assemblies on correct (gold/purple) and error (red) trials. Mean ± SEM across all

pairs shown. Gray dashed lines indicate mean activity. Black bars mark times of significant changes on error trials (Bonferroni-corrected bootstrap p < 0.05,

permutation test). Gray boxes indicate regions used for spike train cross-correlations in (C) and (D).

(B) Inter-area correlation between dCA1-mPFC cell pairs is presented from the same assembly on correct (purple) and error (red) trials (details as Figure 4D,

average of 251 pairs from 10 sessions shown).

(C) Power spectrum of 20-ms-binned cross-correlations in 4 s preceding sample in (B) show frequencies with significant change in power between correct and

error trials (black bars; Bonferroni-corrected bootstrap p < 0.05, permutation test).

(D) Balance of dCA1- to mPFC-driven correlation in 100-ms-binned spike times from the 4 s preceding choice was significantly reversed on error trials.

See also Figure S7.
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structure of the operant DNMTS task, allowed us to deconstruct

dCA1 and mPFC contributions during sample, delay, and choice

stages: dCA1 populations provide earliest encoding of current

task-relevant sensory information at sample, while mPFC popu-

lations preferentially maintain task-relevant information during

delays46 and are re-engaged during decisions. These differential

dCA1 and mPFC coding patterns corroborate previous lesion

studies in rodents,89–91 population recordings in non-human pri-

mates,73 and human imaging studies highlighting hippocampal

activation during encoding of short-termmemory.56–59 However,

we also resolved a physiologically distinct subset of dCA1 and

mPFC neurons that proved critical during trial-specific loading

of short-termmemory (sample lever presses), coalescing into in-

ter-regional assemblies coactive on sub-50-ms timescales.

Assembly activity during sampling presumably reflects hippo-

campal-prefrontal interactions during loading of short-term

memory,68 with the tendency of dCA1 encoding to precede

mPFC encoding consistent with hippocampal-to-prefrontal

anatomy92–94 and functional connectivity (Figure 5D, see

also67). However, the mPFC subpopulations recruited into

dCA1-mPFC assemblies proved physiologically distinct from

the mPFC subpopulations engaged in cue encoding during the

subsequent DNMTS delay period. Delay-coding mPFC subpop-

ulations may partner with mediodorsal thalamus, since optoge-

netic disruption of mPFC activity95 or silencing mPFC input

from mediodorsal thalamus during the delay phase of short-
term memory tasks impairs maintenance of information.24

Some recent evidence suggests that individual mPFC pyramidal

neurons receive convergent input fromboth ventral CA1 andme-

diodorsal thalamus,96 potentially enabling dynamic configura-

tion of assemblies across task phases.

Our discovery of rhythmic modulation of dCA1-mPFC assem-

bly participants is reminiscent of a 4-Hz rhythm previously re-

ported to coordinate hippocampus, ventral tegmental area

(VTA) and PFC during short-term memory processing in rats97

and implicated in coordinating PFC-amygdala interactions dur-

ing fear learning.98 Although we do not dissect its source in the

present study, we pinpoint its emergence during the sample

phase, showing that it provides a distinct, second channel for

CA1-mPFC communication beyond 8–10 Hz theta. In contrast

to Fujisawa and Buzsaki,97 who report both significantly tuned

units and sustained 4-Hz LFP coherence during spatial naviga-

tion, we find only weak and transient 4–5 Hz LFP coherence

associated with the lever press events. This fleeting popula-

tion-level coherence in the DNMTS task is consistent with the

sparse subset of 4–5 Hz modulated units that formed inter-

regional cell assemblies.

4–5 Hz dCA1-mPFC assembly modulation was notably ab-

sent around DNMTS response lever presses (i.e., during

choice-evoked use of short-term memory, Figure 4D),

showing that hippocampal-prefrontal dynamics are reconfig-

ured from sample to choice, potentially reflecting mPFC-led
Current Biology 33, 1220–1236, April 10, 2023 1231
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control of memory retrieval.54 Hippocampus projects directly

to mPFC92–94 and units in both structures exhibit 5 Hz intrinsic

membrane resonance in vitro.99,100 Lower frequency, 4–5 Hz

oscillations may therefore act in concert with theta and

gamma rhythms in subserving limbic-cortical communication,

for instance, by tuning the resonant properties of selected

neurons.101

The intrinsic time constants of mPFC neurons also influence

the timescales over which they contribute to sustained informa-

tion coding during short-term memory. Wasmuht et al.102 show

that the ‘‘temporal stability’’ (based on the decay time constant

of an individual neuron’s autocorrelation function) of primate pre-

frontal cortical neurons co-varies with their timing and duration of

information coding during a short-term memory task.35,45,74

However, in our rat mPFC data, the cross-temporal coding

analyses in Figure 2 evidence sustained coding despite

transient and dynamic activities of individual mPFC neurons.

This delay coding was neither evident in dCA1, nor associated

with the sustained or systematic activation of dCA1 or mPFC

synchronous assemblies; it is most likely, therefore, to derive

from sequential activation of mPFC units and/or assemblies.46

Whatever its basis, sustained mPFC population coding during

the DNMTS delay phase collapsed during errors, and on 16 s

delay trials during sessions in which rats performed at overall

chance levels.

Our results suggest that, although on error trials the dCA1

population code faithfully represents cue location (Figure 1H)

and the assemblies that link dCA1 and mPFC are similarly active

(Figure 7A) during both sample and choice epochs, transient

rhythmic interactions that support transfer of this information

for maintenance by the mPFC population code during the delay

period are weaker (Figures 7B and 7C). This could lead to disor-

ganized re-activation of the dCA1-mPFC cell assemblies when

the rats are required to make a choice. Failures in the relay of

sample information between dCA1 and mPFC by rhythmic coor-

dination of assemblies during the sample encoding phase would

therefore lead to aberrant network dynamics in mPFC during the

delay (Figure 2C), preventing the formation of a stable population

code for short-term memory and culminating in an incorrect

choice. However, with the current dataset, we cannot dissect

this causal sequence of individual signatures of errors.

Disrupted connectivity between the PFC and the hippocam-

pus causes deficits in short-term memory65,68,75,76,89,103,104

and is implicated in the pathophysiology of schizophrenia.105,106

Our data show that the primary correlate of spontaneous errors

was blunting of 4–5 Hzmodulated dCA1-mPFC interactions dur-

ing the sample phase of the task, while lever position coding in

dCA1 remained intact. Rhythmic coordination across the

limbic-cortical axis therefore remains a viable target for transla-

tional research into cognitive impairments in neuropsychiatry.

In conclusion, our data reveal why both mPFC and dCA1—as

well as intact connectivity between them— have been ascribed

crucial roles in spatial short-term memory: early encoding of

trial-specific, sample information is strongest in dCA1 and inte-

grated into mPFC processing by virtue of joint dCA1-mPFC as-

semblies, bound by a common 4–5 Hz rhythmic modulation.

During the delays of up to 16 s used here, mPFC populations

maintain sample information potentially through sequential acti-

vation tiling the delay; on error trials this coding peters out,
1232 Current Biology 33, 1220–1236, April 10, 2023
despite accurate encoding in dCA1. Finally, dCA1 and mPFC

concurrently encode choice information, led by mPFC, but only

mPFC sustains this information beyond choice itself, potentially

enabling the integration of trial outcome and the tuning of future

responses. This temporally defined set of cognitive steps estab-

lishes a framework that can now be tested in combination with

circuit tracing and/or imaging strategies relating assembly con-

figurations to the connectivity of participating neurons and their

neuromodulation.
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d All original code has been deposited at github and is publicly available as of the date of publication from: https://github.com/

apfdomanski/Domanski_CurrentBiology_2023. DOIs are listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

All procedures were conducted in accordance with the UK Animals Scientific Procedures Act (1986) and with the approval of the

University of Bristol Ethics Committee. This study used a total of 8 adult (300–400g) male Long–Evans rats (Harlan UK).

METHOD DETAILS

Electrode implantation
Seven adult male rats were implanted with 16 extracellular tetrode recording electrodes: 8 over right medial prefrontal cortex

(+3.2 mm, +0.6 mm from bregma) and 8 over the right dorsal hippocampus (�4.0 mm, +2.5 mm from bregma) under sodium pento-

barbital recovery anaesthesia. Data are presented from 6 of the 8 rats; one failed to learn the task, so was not implanted and one

implant failed shortly after surgery. During 7–12 days following surgery the independently moveable tetrodes were lowered into pre-

limbic cortex (�2–3mmventral) and the principal cell layer of the dCA1,107 guided by the characteristic burstmode of single-unit firing

and the presence of large-amplitude sharp-wave ripple events in the local field potential. Extracellular action potentials (sampled at

32 kHz and filtered between 0.6–6 kHz) together with local field potentials (sampled at 2 kHz and filtered between 0.1–475 Hz) were

recorded differentially (Digital Lynx, Neuralynx) using local references, which were targeted to superficial prefrontal cortex and the

white matter overlying the hippocampus. Two screws placed in the skull overlying the cerebellum were used as ground connections.

Final tetrode tip positions were verified histologically in 4/6 rats (Figure S1C) by identifying sites of electrolytic lesions in 50um stained

sections of formaldehyde-perfused brain; lesioning failed in 2/6 rats, but coordinates and results were consistent across animals.

Behavioral training
Subjects were food-restricted to no less than 85% of their free-feeding weight and trained in a DNMTS operant task (Figure 1). We

used an operant chamber (Med-Associates, Vermont, USA), which consisted of two retractable levers facing a food pellet dispenser

on the opposite wall, with a cue light above each component and a tone generator placed above the pellet dispenser. Every trial

began with a sample phase initiated by presentation of one lever on either the right or left side of the operant chamber wall, cued

with a light above the presented lever. Following sample press, the lever was automatically retracted and rats turned and waited

in front of a food pellet receptacle at the opposite wall until the end of a 4, 8 or 16 s delay (varying randomly from trial to trial to
Current Biology 33, 1220–1236.e1–e4, April 10, 2023 e1
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discourage mediating behavior), signalled by a 500ms tone. The choice phase was initiated by nose-poking inside the receptacle

after the tone; nose-poking triggered insertion of both levers into the chamber on the opposite wall. Correct choice was rewarded

according to a non-match rule.

Side and top walls of the chamber were transparent to enable view of distal spatial cues in the recording room. Metal components

of the chamber were grounded to the amplifier to electrically shield the recordings, which were carried to the data acquisition system

via tethers suspended through a hole in the centre of the box ceiling. The task was programmed and operated in K-Limbic software

(D. Fuller, Conclusive Marketing Ltd.) on a separate computer. Subjects were initially conditioned to press a lever to obtain pellet

reward before being trained in DNMTS task with pseudo-random delays (random combination of equal number of target left and right

lever trails at each delay arranged into shuffled blocks of 10 trials) of 4,8, 16s. Error andmissed trials were followed by all cue lights off

for an extra 10s of inter-trial interval. There were 150 trials in each session (50 x 3 delays). Sessions with less than 67% of trials

completed were excluded from further analysis.

Single unit clustering
Single units were isolated off-line using automated clustering software (KlustaKwik 1.7; K. Harris), followed by verification andmanual

refinement inMclust 3.5 (A.D. Redish); unit inclusion criteria were set to isolation distance >10.0 and L-ratio <0.35, with <2%of spikes

within 2ms inter-spike interval. Putative pyramidal cells were classified based on the spike width, waveform and mean firing rate. A

total of 156 (min. 115, max. 194) putative principal cells in dCA1 (mean of 34 units per subject) and 168 (min. 152, max. 201) putative

pyramidal cells in mPFC (mean of 33 units per subject) were isolated in each recording session.

QUANTIFICATION AND STATISTICAL ANALYSIS

Where appropriate following normality testing (Kolmogorov-Smirnov test, p>0.05), parametric statistical comparisons were per-

formed. Unless otherwise specified, results are quoted as Mean ± Standard Error of the Mean (SEM). To equalize statistical power

on multivariate statistical analyses, all comparisons across delay lengths and different recording sessions were calculated on

repeated jack-knife draws of random subsets of matched numbers of trials. Similarly, non-parametric bootstrapping was performed

through calculating statistics on distributions of shuffled data (e.g. for decoding analyses described below, by randomly permuting

trial labels 1000 times). Results were considered significant if the observed value exceeded the 95th percentile of the bootstrap dis-

tribution. Two bootstrap resampled distributions were considered significantly different if their <5% and >95% tails did not overlap.

Where two time series were compared (e.g. Figures 1G and 1H), bootstrapped p–values were adjusted using Bonferroni correction

for number of time bins.

Spike train analysis
Only units with an average firing rate of at least 0.5Hz were included in all subsequent analyses. All decoding analyses, to be

described further below, were performed on kernel density estimates of the instantaneous spiking rate. Separate kernel density es-

timates (KDE) for each unit I were obtained by convolving spike trains with Gaussian functions (‘kernels’), where the optimal kernel

width s2 was determined through unbiased cross-validation.108 For Gaussian kernels, closed-form expressions for the unbiased

cross-validation error (CVE) can be obtained, and numerical iteration of the CVE procedure is not necessary.108 Loosely, one may

think of the unbiased cross-validation procedure as leaving out each spike in turn, and evaluating the likelihood of its actual position

from the spike density estimate obtained based on all other spikes in the series. Thus, the optimal bandwidth estimated will depend

on predictable temporal structure in the spike trains, not just their rate (see also 109. KDEs provide a statistically more robust (less

variable) estimate of the true underlying spike density, compared to e.g. histograms or binarized spike series, but decoding results

did not crucially depend on this pre-processing step.

Single units were considered significantly sensitive to behavioural events if their normalized (z-scored) firing rate deflection in a

2 secondwindow after the event exceeded ±3x the standard deviation of the baseline firing rate (500mswindowpreceding the event).

Neural Decoding
For single unit decoding (e.g. Figure 1D), for each time binm and unit i single unit rates vim were collected into two sets according to

whether m˛C1 or m˛C2, the two sets of time bins associated with one (C1) or the other (C2) cue stimulus. The common t-statistic

(as also employed in Student’s two-sample t-test) is a measure of discrimination among these two sets, as it divides the difference in

means by the pooled standard deviation (c.f. 13). For the average number of trials collected here (�54), values of approximately

t > 1.67 would indicate significant discrimination at the p<0.05 level.

Leave-one-out cross-validation analysis (e.g. Figures 1G and 1H) was performed for the multivariate linear discriminant classifiers

used for decoding (e.g. 110), with regularized covariance matrix as specified below. This used, for each time bin t the two sets of pop-

ulation vectors associatedwith the two stimulus classes (see above), with one population vector (and thus trial) left out from the fitting.

Prediction performance was evaluated on the left-out trial, and this was repeated for each trial in turn, yielding the cross-validation

error (CVE) as the relative number of incorrectly classified (out-of-sample) prediction trials. For testing differences in CVE between

mPFC and dCA1 populations, for each data set the number ofmPFC and dCA1 units (variables) used for decodingwas exactly equal-

ized to rule out any potential confounds due to population size. This was done by fixing the number K of units used to the smaller of the

two populations, mPFC or dCA1, and then randomly drawing K units with replacement from the larger of the two populations 10 times
e2 Current Biology 33, 1220–1236.e1–e4, April 10, 2023
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and averaging the obtained CVE values. Differences in relative proportions of correct cue predictions, CP = 1-CVE ˛ [0, 1], between

mPFC and dCA1were statistically tested by averaging CP across all 12 data sets and using the beta distribution. Specifically, at each

time point t the smaller of the two values CPmPFC and CPdCA1 was used for the reference distribution, and it was checked whether the

larger of the two significantly (p<0.05) escaped this reference distribution given the average number of trials recorded.

To compare decoding performance on correct and error trials (e.g. Figure 1H), classifiers trained on correct trials were additionally

challenged to predict the cue identity of error trials in a similar manner as above.

To evaluate the stability of the population code for cue location during the delay period we used cross-temporal decodingmethods

inspired by.51,111 Briefly, we performed leave-one-out cross-validated decoding of cue location from multi- single unit firing rates as

described above using separate training and testing sets offset by sequential 50ms increments. The performance of the decoder at

each combination of [train,test] time points is thus the percentage of test trials in which the decoder could correctly identify the cue

location when trained using trials at a given time point.

To equalize size of training sets across combinations of delay lengths and recording sessions, cross-temporal decoding analysis

was performed on random draws of eight trials from each of left and right cue conditions, repeated 500 times. Thus the total cross-

validation size for each decoder was 5000 random resamples per [train,test] time combination. Mean performance across runs is

reported in the colormaps shown in (e.g.) Figure 2B. Significant decoding at each [train,test] point was calculated against distribu-

tions (p<0.05) from 1000 bootstrap draws created by shuffling labels. For visualization, a 250ms Gaussian smoothing kernel was

applied after significance testing across both training and testing dimensions.

To further corroborate the classification results, we also used a parametric test statistic (Figure S6B): Vectors vm=(v1I.vpm)
T of all

unit activities were collected into two sets corresponding to stimulus conditions as above, and contrasted by Hotelling’s T2 statistic, a

multivariate generalization of the univariate two-sample t-statistic which relates differences in cue specific mean vectors to the

pooled covariance matrix of the data.77 Hotelling’s T2, scaled by the appropriate degrees of freedom, is approximately

F-distributed which can be used to construct parametric confidence bands.

In the present case, the number of recorded units often reaches or even exceeds the number of trials, causing singularity and over-

fitting issues with the covariance matrix. One standard statistical remedy is regularization, where the covariance matrix S is moved

toward the identity,Sreg = S+ lI, with regularization parameter l(set to 0.05 here, without any attempt to optimise this parameter110).

FA model for cell assembly detection
Extraction of cell assemblies was based on Factor Analysis.78 This model-based statistical tool is designed to extract correlations

between variables. It assumes that observation vectors vi,t are given by a (linear) mixing of uncorrelated latent variables (factors)

zi,t, plus common mean mi and measurement noise εi,t,

Vi,t = mi + Gzi,t + ε, εi,t � N(0,J), zi,t� N(0,I), J = diag[ s1
2,., sN

2].

Parameters are commonly estimated through maximum-likelihood. Unlike principal component analysis (PCA) which detects vari-

ance-maximizing directions, FA attempts to capture all the correlations among the observed variables through the mixing of uncor-

related factors (e.g.77). It is thus more appropriate for assembly detection than PCA, as has been demonstrated before.79,112

Inputs to FA were the kernel density estimated instantaneous firing rate vectors cm=(cim) which collected spike rates cim for each

uIit i at timem binned at 50ms in columns, excised from time periods from cue presentation -5s to choice lever press +5s, combined

from all trials.

Each of the 12 recorded data sets was treated separately, with simultaneously recorded mPFC only, dCA1 only, or concatenated

mPFC and dCA1 units submitted for assembly analysis.

The likelihood-ratio statistic for FA models of increasing complexity (i.e. increasing number of factors) in conjunction with confi-

dence bands obtained from trial-shuffled data can be used to determine the number of putative assemblies (i.e. significant factors)

present (Figure 3B). While, in principle, likelihood-ratio based parametric F-scores could be used to determine whether adding

another factor to themodel still significantly improves the fit, here we relied on H0 distributions generated from trial permutation boot-

straps to account for the time series (and thus potentially dependent) nature of the data. Specifically, if ci
(k) = (ci1

(k). ciM
(k)) denotes

the set of firing rates for Init i on trial k, for each unit separately the assignments of these sets to trials kwere randomly shuffled. Thus,

all autocorrelations and the firing rate structure across a trial were preserved for each unit i in the bootstrap data, while cross-depen-

dencies between units were destroyed. These bootstrapped data sets (total of 500) were used both to determine the number of sig-

nificant factors, i.e. those for which the LLR ranged within the 1% upper confidence limit of the bootstrap data, as well as significant

factor loadings (the correlations of the units with the factors): Only units for which a factor loading exceeded 1% of the bootstrap

range were assigned to the respective assembly. For each factor, the factor score (the value zlm on factor l in time bin m) quantifies

the degree to which the respective assembly is activated. Local cell assemblies forming subsets of joint area assemblies were

assumed as part of the larger assembly.

Assembly detection by FA was confirmed using another method based on Independent Component Analysis.81 Assembly units

were determined using ICweight threshold of 2.5 S.D. for every spike train in the analysis. As done for the FA based analysis, neuronal

assemblies, defined as groups of three or more single units that consistently co-activated within a 50ms time window, were thus

detected in dCA1, mPFC, and across dCA1 and mPFC. Despite this quite different methodological approach, sets of assemblies

detected by ICA were highly similar to those detected by FA as quantified through the measure of overlap O=|AXB|/|AWB|˛ [0,1]

between pairs of sets as defined further above. For each assembly set detected by ICA, the corresponding assembly set with highest
Current Biology 33, 1220–1236.e1–e4, April 10, 2023 e3
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similarity to it as detected by FAwas first determined, and the average across O from all these ICA x FA pairs then calculated for each

data set. Overall, across all data sets, there was an 84% average agreement between FA and ICA assemblies (Figure S3A). We

considered whether to penalize by assembly size, or neuron pool sizes: As well as using bootstrapped assembly size detection,

in an alternative detection validation step (data not shown) we also tried Bayesian Information Criterion (BIC) as a metric to detect

significant assembly formation amongst neurons, penalizing for number of degrees of freedom in the latent factor model (i.e. no. neu-

rons involved in the assembly). Quantitatively similar results were observed.

Optimised synthetic cell assembly detection, benefits of noise coding
To investigate the optimality of cue encoding by FA-detected cell assemblies, we compared the multivariate leave-one-out CVE of

assemblymember units against that of sub-sampled groups of units drawn fromavailable single units. This procedurewas performed

independently for each of the 12 recording sessions, using both mPFC and dCA1 as well firing rate matrices concatenated across

areas. Curves in Figure 4E thus represent the mean performance of these draws across sessions. Single units were first ranked in

descending order based on their individual peak CVE in the time span ±5s surrounding the sample lever press and the 5s before

the choice lever press. Groups of size 2�20 single units were drawn from this ranked matrix of firing rates for the best, 2nd best,

3rd best, ., 10th best draw for each synthetic draw pool size, or until available unit pools were exceeded. CVE decoding was per-

formed using jack-knife trial subsamples as performed above, and the mean peak decoding performance (% correct decoding of

withheld trial cue label) was calculated in the same time window as for individual single units. Decoding performance of multivariate

decoder for each FA-detected cell assembly member units was thus compared to that of size-matched groups of single units. FA-

detected assembly performance was finally described as that of the closest-performing ranked synthetic assembly.

To estimate the contributions of within-trial ‘noise’ correlations in firing rates to cue location coding, decoding performance was

compared as a function of assembly size against the performance of decoding on the same drawn pool of units in which the cue

labels were maintained but where successive trial labels had been shuffled (average of 50 permutations), either within or between

areas. An alternative construction method of searching amongst all potential pairs, triplets, quads etc., to find optimal assemblies

produced qualitatively similar results (data not shown).

Coding distance
To compare the similarity of cue information carried by firing rates of single units, or activities of cell assemblies (factor scores), we

calculated the mean pairwise distance between their t-score profiles after matched trial count univariate decoding performed as

outlined above. Mean Euclidean coding distance was then calculated between pairs of units/assemblies following scaling by pooled

variance and removingmean offset. Alternative vector-based distancemetrics (Cosine distance, Correlation) produced quantitatively

similar results.
e4 Current Biology 33, 1220–1236.e1–e4, April 10, 2023
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Figure S1: Details of training, recordings and single unit 
physiology during DNMTS task (relating to Figure 1). 
 
A Left: Experimental timeline, Center: Behavioral performance of rats in DNMTS training is 
expressed as choice accuracy across subsequent sessions of the training and as average 
number of sessions required to reach criterion performance at different stages of training: early 
(Right). Arrows mark the two sessions used in the analysis of each stage (early, intermediate, 
trained). Data from the ”trained” days is analysed in this study. 
B Cue-Sample, Delay-Nosepoke, Nosepoke-Choice latencies averaged across animals and 
recording sessions for correct (black) and error (red) trials. Asterisks at upper right corner 
indicate significant difference between conditions (Kruskal-Wallis ANOVA: 
𝜒!(5,1751)=3.69/16.29/16.53, p>0.05/p<0.01/p<0.01, respectively). Bars/asterisks indicate 

significant differences between specific combinations of delay and outcome conditions 
(Tukey-Kramer post-hoc test, p<0.05). 
C Coronal sections show example locations of tetrode recording sites (red circles mark the 
site of electrolytic lesions) in the prelimbic cortex (mPFC) and in the pyramidal cell layer of the 
dCA1 subfield in dorsal hippocampus (dCA1), matched to a corresponding rat brain atlas 
schematic (from Paxinos 2008). The lower panels summarize lesion sites across all six rats. 
D Extracellular action potential spikes recorded across an entire session were clustered into 
separate single units (colored dots), plotted here as waveform energy recorded on two 
channels of one mPFC tetrode. The properties of the cluster in red circle are presented in E 
and F. 
E Mean waveforms recorded on color-coded channels of the tetrode (top left) show consistent 
relative peak amplitudes (top right). Distribution of inter-spike intervals (ISI) below show no 
spikes detected in the <2ms refractory period. 
F Spike peak amplitudes of the same unit recorded on the color-coded four tetrode channels 
remain stable across the recording session. 
G Multi-trial firing raster from one example mPFC (top) and dCA1 (bottom) single units. Spike 
rasters with continuous firing rates aligned to the Sample and Choice lever presses +/-5s, with 
a variable portion of the delay period excised depending on delay length. Trials are sorted by 
correct and error outcomes (black and grey ticks) as well as left and right trial type, and finally 
by nose-poke latency. Solid areas indicate mean +/-SEM firing rates on correct trials, dotted 
lines show mean firing rate on error trials. Black bars above epochs show significant 
separation of Left/Right trial responses, from the trial-averaged firing rates (t-score, in 50ms 
non-overlapping increments, Bonferroni-corrected). 
H Mean firing rates of mPFC units (preferred cue direction, correct trials, all units across 
sessions combined) during the delay period sorted by time of peak firing on 4s delay trials, 
sort order maintained for 8,16s delay trials. Colored stripes on Left indicate assembly 
membership class (See Figures 3,4). 
I Firing rate correlation matrices (Ia: peak correlation and Ib: time-lag at peak) for data shown 
in H. Heat-map shows mean correlation across trials, note strong non-zero lagged 
correlations. 
J Sequential contributions of individual mPFC single units to maintaining population-level 
encoding of cue location during maintenance delay. Single recording session shown. Units 
are shown sorted by center-of-mass of significant decoding (bootstrapped Bonferroni p<0.05) 
on 4s delay trials. Sort times maintained across longer delay lengths. Colourmap as for Figure 
1D. 
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Figure S2: Transient cue encoding in dCA1 population lacks a stable code, further details of delay 
coding in dCA1 and mPFC (relating to Figure 2). 
 
A-B: Encoding of cue information during the delay. Legends as for Figure 2 but decoding 
from populations of dCA1 single units. 
C: Delay-dependent performance of dCA1 and mPFC populations for each session, 
regardless of whether the rat was performing above or at chance for that delay length (each 
line represents on session). Black boxes indicate the 0.5s windows used to calculate the 
average decoding performance per dCA1/mPFC population around 4s and 8s during the delay 
(shown in D and E, respectively). 
D: No trial-dependent differences in average decoding between 3.5-4s during the delay were 
detected in either brain area. Linked symbols are recording sessions, linked by delay length. 
Error bars indicate mean±SEM (Friedman’s test: dCA1: C2(2,22)=0.67, p=0.717; mPFC: 

C2(2,22)=0.17, p=0.920). 

E: No trial-dependent differences in average decoding between 7.5-8s during the delay were 
detected in either brain area. Linked symbols are recording sessions, linked by delay length. 
Error bars indicate mean±SEM. Paired Wilcoxon dCA1: T= 25, z = -1.10, p=0.301, 
mPFC: T = 32, z = -0.550,P=0.380. 
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Figure S3: Further details of detected local and inter-regional 
dCA1-mPFC cell assemblies (relating to Figure 3). 
 
A Validation of assemblies detected with the FA against PCA-ICA based methods. 
Total number of assemblies detected (black bars – the first for FA, second for ICA), proportion 
of units that participated in assemblies detected by both FA and ICA relative to all units 
recorded (grey), and proportion of unit overlap between matched FA and ICA assembly pairs 
(red) are summarized for the two sessions of each rat. A measure of overlap between a pair 
of assembly sets A and B was formally defined as O=|AÇB|/|AČB|Î [0,1], i.e. the cardinality 

of the intersection divided by the cardinality of the union. On average there was 84% overlap 
between units detected by the FA and ICA methods, with similar numbers for total counts and 
unit proportions involved. 
B Detection rates for local and inter-regional classes of cell assemblies. Symbols are 
individual sessions (1.2±0.5/1.3±0.7 dCA1/mPFC vs. 3.5±0.9 joint dCA1-mPFC Kruskal- 
Wallis test: C2(2,33)=6.69 p=0.035 with Bonferroni-correct post-hoc test). 

C Size of detected cell assemblies, for dCA1/mPFC/inter-area classes, ANOVA 
F(2,16)=6,2,N=71 p=0.01). 
D Breakdown of units by assembly membership class A significant minority of units 
participated in cell assemblies (ANOVA for member vs, non-member, F(5,66)=32.3, p<0.01, 
local membership: 6±3%/5±3%; dCA1/mPFC vs inter-area membership 26±3%/22±5% of 
dCA1/mPFC neurons). Assembly membership was similarly sparse in both dCA1 and mPFC 
area: Fraction of members vs. non-members dCA1 vs mPFC: C2(1)=0.33, p=0.94. 

E The majority of neurons forming cell assemblies did so with little overlap between 
membership: 73%/67% of dCA1/mPFC units were detected as members of only a single assembly, with no 
differences in membership orthogonality observed between the two areas 
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(Figure 3F, KS test for node degree of mPFC vs. dCA1 neurons, D=0.045, p=0.87, N=295;317, 
dC1;mPFC). 
F Mean firing rates of units calculated across the duration of the task were not affected by 
membership degree (Figure 3G, red curves: Linear fit vs. no relationship, dCA1: F(270)=1.09, 
p=0.30, adjusted R2=3x10-4; F(287)=1.11, p=0.29, adjusted R2=4x10-4). Not shown: Firign rate 
did not depend on global assembly membership (Mann-Whitney U-test for mean firing rate of 
members vs non-members: p=0.6,p=0.63 for dCA1,mPFC neurons, respectively, N=295,317 
neurons). 
G Classifying neurons as non-members, local members or inter-area cell assembly members 
did not significantly partition mean firing rate distributions (Figure 3H, Kruskal Wallis test: dCA1: 
C2(2,292)=0.29, p=087; mPFC: C2(2,314)=0.33, p=0.86). Similar results were obtained from 

surrogate measure of optimal firing rate smoothing kernel (data not shown). 
H Activities of co-occurring inter dCA1-mPFC cell assemblies from example recording shown 
in Figure 3C-D. Legend as for Figure 3D: units from each area are shown concatenated. 
I Normalized trial-averaged activity of assemblies in H during sample and choice lever events, 
for Left and Right cue trials. Mean±SEM activity across trials shown. 
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Figure S4: Cell assemblies link units carrying similar information (relating to Figure 4). 
 
A Cue location decoding profiles of an example dCA1-mPFC assembly and its constituent 
member units aligned to Sample and Choice lever presses. 
B Distributions of pairwise Euclidean distances between cue-decoding profiles of pairs of 
units/assemblies, sorted by assembly membership comparison type. In all cases, distances 
are closer (temporal evolution is more similar) for within- than between-assembly comparisons 
(Mean±SEM across sessions shown, asterisks indicates Kruskal-Wallis test, p<0.05). 
C Expanded x range of Figure 4F, showing relationship between cell assembly size and peak 
cue-decoding. 
D Contributions of within-trial (‘noise’) firing rate correlations to performance of optimally 
aggregated cell assemblies shown in Figure 4F. Mean±SEM peak performance change of best 
performing synthetic cell assemblies after shuffling trial labels, keeping cue location labels 
intact (Negative: reduced decoding performance after removing within-trial correlations). 
Colored p-values indicate one-sample t-test results: Within-area: dCA1 non-members: t(7)=- 
1.21, p=0.13; members: t(8)=0.42, p=0.68; mPFC non-members: t(11)=-0.29, p=0.77; 
members: t(11)=-1.63, p=0.26. Inter-area: within-dCA1: t(7) =-2.75, p=0.04; within-mPFC: t(7) 
= -2.63, p = 0.04; cross-dCA1-mPFC: t(9) = -0.54, p=0.60. Right: contributions of within-trial 
firing rate correlations of inter-area assembly performance were significantly different within 
and across areas (ANOVA: F(2,23)=4.02, p=0.032); cue decoding after ablation within mPFC 
pool caused significantly greater impairment than across dCA1-mPFC correlations 
(Asterisk:Tukey-Kramer post-hoc test, p<0.05). 
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Figure S5: Physiological details of dCA1-mPFC cell assemblies (relating to Figure 5). 
 
A Power spectral densities of spike time autocorrelations for units of each area sorted by 
assembly membership category. Curves show mean±SEM spectra, Spikes are drawn from 
either the task period (red), or 1h pre- and post-task rest periods (grey, teal). For both dCA1 
and mPFC units, the 4-5Hz oscillation was specific to the task period and, in mPFC, to crossregional 
assembly members. 
B Left: Z-scored spike time autocorrelation (black) and cross-correlation (purple) functions of 
dCA1 and mPFC units restricted to task events. Lines show mean±SEM. 
C Units from both regions are equally represented in our recordings: Histogram across 

sessions of ratios between single unit counts in multi-area recordings [(#𝑢𝑛𝑖𝑡𝑠"#$% − 

#𝑢𝑛𝑖𝑡𝑠&%'()/(#𝑢𝑛𝑖𝑡𝑠"#$% + #𝑢𝑛𝑖𝑡𝑠&%'()]. Ratio distribution was not significantly different from 

a normal distribution (Kolmogorov-Smirnoff test). Blue symbols indicate median ± inter-quartile 
range. 
D Inter-area cell assemblies are equally contributed by dCA1 and mPFC single units. Ratio 
distribution was not significantly different from a normal distribution with mean=0.5. 
(Kolmogorov-Smirnoff test). Blue symbols indicate median ± inter-quartile range. 
E Mean wavelet spectrograms of dCA1 (left) and mPFC (right) LFP, aligned to the sample 
and choice lever press events in the task. Average of one tetrode per session for each area. 
F As for E, but showing wavelet coherogram between dCA1 an mPFC LFP signals. 
G Single unit phase locking to 4-5Hz (left) and 8-12Hz (“theta”, right) LFP oscillations during 
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the DNMTS task. Cumulative histograms show distributions of phase locking strengths (mean 
resultant length of phase vectors) for units with insignificant (dotted) and significant (solid) 
phase locking (Rayleigh’s test p<0.05). Insets show distributions of peak phase preferences 
for units. 
H Relationship between strengths of phase locking to 4-5Hz and theta LFP oscillations for 
single units which showed significant phase preference for both rhythms. 
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Figure S6: Assembly membership influences population but not 
single cell properties (relating to Figure 6). 
 
A Classifying dCA1 (left) and mPFC (right) single units as non-members, local members or 
inter-area cell assembly members did not significantly affect cumulative distributions of peak 
strength (top) or duration (bottom) of significant cue encoding in the DNMTS task (Kruskal- 
Wallis ANOVA, Bonferroni-corrected p>0.05). 
B Evolution of cue discrimination during the DNMTS task by populations of dCA1 and mPFC 
units is determined by cell assembly membership participation. Time-aligned multivariate cue 
discrimination (regularised F-scores) of populations of each type of units for each event in the 
DNMTS task. Shaded regions indicate mean±SEM F-scores for units of each membership 
classification, from the 12 recording sessions (see methods for details). 
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Figure S7: Details of behavior during errors (relating to Figure 7). 
 
A Average spatial trajectories surrounding (±4s) sample and choice lever press events for one 
example rat on correct and error trials 
B Cumulative dwell time (spatial occupancy) of example rat during delays in the DNMTS 
task on correct and error trials. 
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