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Understanding the non-Markovian mechanisms underlying the revivals of quantum entanglement in the
presence of classical environments is central in the theory of quantum information. Tentative interpretations
have been given by either the role of the environment as a control device or the concept of hidden entanglement.
We address this issue from an information-theoretic point of view. To this aim, we consider a paradigmatic
tripartite system, already realized in the laboratory, made of two independent qubits and a random classical field
locally interacting with one qubit alone. We study the dynamical relationship between the two-qubit entanglement
and the genuine tripartite correlations of the overall system, finding that collapse and revivals of entanglement
correspond, respectively, to the rise and fall of the overall tripartite correlations. Interestingly, entanglement
dark periods can enable plateaux of nonzero tripartite correlations. We then explain this behavior in terms of
information flows among the different parties of the system. Besides showcasing the phenomenon of the freezing
of overall correlations, our results provide insights on the origin of retrieval of entanglement within a hybrid
quantum-classical system.
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I. INTRODUCTION

Multipartite open quantum systems and the correlations
established among their constituent parts play a crucial role
in the quantum theory for both fundamental problems and
realistic quantum information processes [1–8]. The utilization
of quantum correlations, like entanglement, nonlocality, and
discord, is in fact jeopardized by the detrimental effects of
the environment surrounding the quantum system [6–12] so
that finding strategies to preserve them has become a main re-
quirement. Non-Markovian noise, originating from structured
environments or from strong couplings [4–6,13], has been
shown to enable dynamical revivals of quantum correlations
independently of the quantum [8,14–17] or classical [18–31]
nature of the environment, allowing an extension of their
exploitation time. It is therefore of basic interest to understand
the origin of these revival phenomenons.

Non-Markovian dynamics, being linked to memory effects
of the environment on the coherence of the quantum system,
is revealed as a necessary requirement for revivals to occur but
it does not provide their interpretation. In the case of local
quantum environments, revivals of two-qubit entanglement
have been explained by means of periodic entanglement
transfers between the qubits and their non-Markovian envi-
ronments because of the backaction of the environments on
the qubits themselves [14,32–35]. Differently, in the case of
classical environments, which do not backreact on the quantum
system and cannot store any quantum correlations, the origin
of entanglement revivals appears to be more subtle. Despite
this, two all-optical experiments have already confirmed that
quantum entanglement can either spontaneously revive [22]
or be recovered by local operations [31] in non-Markovian

classical environments. Few tentative explanations have been
provided so far: one relies on the role played by the classical
environment as a control mechanism which, thanks to the
memory effect, keeps a record for what operation has been
applied to the quantum system [21,22]; another one is based
on the concept of hidden entanglement, that is, the amount
of quantum correlations not revealed by the density matrix
description of the system state that can surface by means of
local operations [30,31,36].

However, a natural strategy to understand the mechanisms
underlying these entanglement revivals in the absence of
backaction is to perform an in-depth dynamical analysis of
the correlation distribution among the parts of such a hybrid
quantum-classical composite system, analogously to what is
done for quantum dissipative environments [33,35]. We ad-
dress this investigation by following an information-theoretic
point of view. In particular, we consider a paradigmatic
tripartite system, already simulated in the laboratory [22],
made of two independent qubits and a random classical
field locally interacting with one qubit alone. We look for
a dynamical relationship between the two-qubit entanglement
and the genuine tripartite correlations of the overall system.
We finally provide physical grounds of this relationship in
terms of information flows among the different parties of the
system.

The paper is structured as follows. In Sec. II we introduce
the system under consideration, describing its main features.
The study of the dynamics of entanglement and of genuine
tripartite correlations of the overall system is done in Sec. III. In
Sec. IV we then report the dynamical study of the information
flows within the system. We finally summarize our results and
discuss their implications in Sec. V.
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FIG. 1. (Color online) Scheme of the overall system. A random
external classical field acts on the qubit B, whereas qubit A is isolated.
The two qubits are initially quantum correlated. The action of the
random dephaser is either to shift of π with probability 1/2 the phase
(π/2) of the input field or to leave it unchanged with probability 1/2.

II. THE SYSTEM

Our system consists of two qubits, one of which (qubit A)
is isolated while the second one (qubit B) interacts with an
environment E and, as such, evolves under the action of
a nonunitary dynamical map. The two qubits are initially
prepared in a quantum correlated state ρAB(0). As depicted
in Fig. 1, the environment is a classical field whose phase ϕ is
random, being equal to ϕ± = ±π

2 with probability p± = 1
2 .

In what follows we use the general notation {|0〉,|1〉}
for the computational basis of each qubit. The resonant
interaction between the qubit B and a classical field E with
phase ϕ, in the rotating frame at the qubit-field frequency and
within the rotating wave approximation, is represented by the
Hamiltonian

H (ϕ) = i�(�/2)(σ+e−iϕ − σ−eiϕ), (1)

where the qubit-field coupling constant (Rabi frequency) �

is proportional to the field amplitude and σ+ = |1〉〈0| and
σ− = |0〉〈1| are the raising and lowering operators of the qubit.
The time evolution operator U (t) = e−iH (ϕ)t/� has the matrix
form [21,22]

Uϕ,�(t) =
(

cos(�t/2) e−iϕ sin(�t/2)

−eiϕ sin(�t/2) cos(�t/2)

)
. (2)

Considering the random phase of the field and being that the
qubit A is isolated, the state of the bipartite system AB evolves
in time according to the map

ρ�
AB(t) = 1

2

∑
ϕ=ϕ±

(1A ⊗ Uϕ,�(t))ρAB(0)(1A ⊗ U
†
ϕ,�(t)), (3)

where 1A is the identity matrix in the Hilbert space of the
qubit A. We recall that such a map is a complete positive
trace preserving one of the class of random unitaries [2,37]. A
nice feature of this dynamical map is that, if the initial state
of the the open system AB at t = 0 belongs to the class of
Bell-diagonal states, the evolved state will remain within such
a class for each t > 0. In realistic situations [22], the field may
suffer a noise source due to signal inhomogeneous broadening
whose effect is to induce a Gaussian distribution in the field
amplitude and thus in the Rabi oscillation frequency � of the
qubit evolution, that is,

G(�g) = 1

σ
√

π
e
− (�g−�)2

4σ2 , (4)

where � is the Rabi frequency in the absence of dissipation
(the central Rabi frequency) and σ is the Rabi frequency width
(standard deviation). The evolved state ρAB(t) in the presence
of this field Gaussian noise is obtained by tracing out the Rabi
frequency degrees of freedom from ρ�

AB(t) of Eq. (3), that is,

ρAB(t) =
∫ ∞

−∞
d�g G(�g) ρ

�g

AB(t), (5)

with
∫ ∞
−∞ d�g G(�g) = 1. The effect of noise on the random

field is therefore transferred to the intrinsic evolution of the
quantum system. In the case when the field amplitude is fixed
(no Gaussian distribution), the system dynamics is cyclic with
no decoherence [21,22].

An advantage of this model is that it can be globally
described as a tripartite quantum-classical state, the quantum
part played by the two qubits and the classical one played
by the environment. In particular, including the environmental
degrees of freedom of both field phase and field amplitude
(that is, Rabi frequency), the classical environment can be
represented by means of a state of the form

ρE = 1

2

∑
ϕ=ϕ±

|ϕ〉〈ϕ| ⊗
∫ ∞

−∞
d�g G(�g) |�g〉〈�g|, (6)

which is a classical mixture of the two orthonormal states
{|ϕ+〉,|ϕ−〉}, where |ϕ+〉 (|ϕ−〉) corresponds to the state of
the field with phase ϕ = π

2 (ϕ = −π
2 ), and of the continuous

Gaussian variable states |�g〉, with 〈�′
g|�g〉 = δ(�′

g − �g)
and δ(x) being a Dirac delta function. Let us now define a
unitary evolution UBE(t) on the bipartition (BE) as

UBE(t) =
∑
ϕ=ϕ±

∫ ∞

−∞
d�g Uϕ,�(t) ⊗ |�g〉〈�g| ⊗ |ϕ〉〈ϕ|, (7)

where Uϕ,�(t) is given in Eq. (2). When there is no Gaussian
distribution in the Rabi frequency (periodic dynamics), i.e.,
G(�g) = δ(�g − �), the environment state and the BE

unitary above reduce, respectively, to ρE = 1
2

∑
ϕ=ϕ± |ϕ〉〈ϕ|

and UBE(t) = ∑
ϕ=ϕ± Uϕ,�(t) ⊗ |ϕ〉〈ϕ|. For a global initial

state ρABE(0) = ρAB(0) ⊗ ρE , the overall evolved state of the
tripartite system is then given by

ρABE(t) = (1A ⊗ UBE(t))ρABE(0)(1A ⊗ U
†
BE(t)). (8)

We stress that for a fixed Rabi frequency (deltalike distribution
with σ → 0) the global system can be considered closed and
the overall dynamics is periodic. Differently, for a Gaussian
distribution (σ 	= 0) in the Rabi frequency, that is in the field
amplitude, this is to be considered as a further noise source
whose continuous degrees of freedom have to be traced out of
the overall evolved state above: in this case the global system
is open and decays with a decoherence time proportional
to σ−1. Hereafter, the continuous variable part associated to
�g is thus, unlike in Eq. (6), excluded from the environment E.

By performing the suitable partial traces in ρABE(t), it is
straightforward to obtain the evolved reduced density matrices
of all the components (single or bipartite) of the global system.
For instance, the two-qubit evolved state ρAB(t) of Eq. (5)
is retrieved by tracing out the environmental (discrete and
continuous) degrees of freedom. It is also possible to show that,
at each time during the dynamics, the state of the environment
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is unaffected by the evolution of the system and, indeed, it
does not evolve in time [21,22]. This signals the absence of
backaction from the environment to the system. Despite this,
the dynamics of the open system is non-Markovian. As a matter
of fact, any known measure of non-Markovianity such as, for
example, the ones given in Refs. [38,39] coincide and witness
non-Markovian dynamics when applied to this system [22,40].
Moreover, revivals of entanglement after dark periods occur
during the dynamics [21,22]. The introduction of the unitary
evolution UBE(t) of Eq. (7) allows a possible interpretation
of these revivals by the role of the classical environment as
a “controller” for which unitary operation is acting on the
system. The presence of non-Markovianity (memory effects)
in the qubit evolution enables the environment to keep a
classical record of what unitary operation has been applied to
the qubit B. This observation then implies that it is the lack of
this classical information that makes entanglement disappear
at a given time and it is the recovery of this information that
makes quantum correlations then revive. The information the
environment holds about a quantum system is therefore due
to what action E performs on the system itself, as already
discussed within an all-optical experiment for the case without
Gaussian frequency distribution [22] and within the context of
the so-called hidden entanglement [30,31].

The considered model of Fig. 1 can be described by the
standard decoherence paradigm of a quantum system (qubit A)
quantum correlated with a measurement apparatus (qubit B)
which in turn interacts with an environment (E) [41] and
looking for the flows of information between the system A

and the environment E [42,43]. Here we are interested in
comprehending the mechanisms which give rise to the revivals
of two-qubit entanglement by approaching the problem from
an information-theoretic point of view. In particular, we shall
investigate how the initial two-qubit quantum correlations are
distributed among all the parts of the global system as time
goes by, searching for a possible relation between the two-qubit
entanglement and the genuine total correlations present in the
system. The relevant flows of information present in the overall
system shall be then studied.

III. TRIPARTITE CORRELATIONS AND
ENTANGLEMENT

In this section, we shall study the dynamics of two-qubit
entanglement and the tripartite correlations present in our
global hybrid system, focusing on how these correlations are
shared among the three constituents of the system, namely, the
two qubits and the classical environment. To this end, we shall
use a recently introduced measure of genuine tripartite total
correlations [44,45].

Given any tripartite system {a,b,c}, genuine tripartite
correlations are, following Ref. [46], those which cannot
be described as bipartite correlations inside any subsystem
{i,j} of {a,b,c}. The measure τ (ρabc) of genuine tripartite
correlations reads [44,45]

τ (ρabc) = min
{
I (ρab,c),I (ρac,b),I (ρbc,a)

}
. (9)

It satisfies, on the one hand, the general properties required for
such a measure [46] and has, on the other hand, a very simple

expression in terms of bipartite mutual information:

I (ρij,k) = S(ρij ) + S(ρk) − S(ρijk), (10)

across any possible bipartition ij -k of a tripartite system
{a,b,c}. In Eq. (10), S(ρ) = −Trρ ln ρ is the von Neumann
entropy of the quantum state ρ. The measure τ of Eq. (9) takes
into account both classical and quantum correlations of our
hybrid quantum-classical system. However, two constituents
of this system are quantum objects (the qubits) which can
share quantum correlations. Since we are interested in finding
a dynamical relation between two-qubit entanglement and
tripartite correlations, we quantify the entanglement by the
concurrence ν(ρAB) of the two-qubit reduced state, which is
known to be monotonically related to the entanglement of
formation for systems of two qubits [3].

Notice now that, by construction, the two-qubit system and
the classical environment are initially decoupled, such that no
correlation can be shared between them. The initial amount of
correlations present in the overall system therefore depends
on the initial state of the two qubits. In order to explore
the dynamics originating from different initial conditions, we
choose a two-qubit initial state depending on three parameters
x, y, and z as

ρ0
AB(x,y,z) = y|x+〉〈x+| + (1 − y)|z−〉〈z−|, (11)

where the state |χ±〉 (χ = x,z) is defined as

|χ±〉 = χ |2±〉 +
√

1 − χ2|1±〉, (12)

|1±〉 = (|01〉 ± |10〉)/√2 and |2±〉 = (|00〉 ± |11〉)/√2 being,
respectively, the Bell (maximally entangled) states in the
one-excitation subspace and in the zero- and two-excitation
subspace. Values of either x 	= 0,1 or z 	= 0,1 imply an initial
linear combination (quantum coherence) between Bell states
of different subspaces, while values of y 	= 0,1 establish an
initial statistical mixture of those states.

We first study the case when the two qubits are initial-
ized in a mixture of Bell states, a Bell-diagonal state, as
ρ1 = ρ0

AB(1,0.9,1) having a concurrence ν1 = 0.8. Notice
that this is the initial state considered in the experiment
performed in Ref. [22]. The corresponding dynamics of
ν(t) = ν[ρAB(t)] and of τ (t) = τ [ρABE(t)] are displayed in
Fig. 2 by, respectively, red solid and blue dashed lines.
Two cases are reported there: in the first one, panel (a), the
qubit-field coupling is taken as fixed (that is, zero Gaussian
standard deviation) so that the evolution of the state ρABE is
periodic; in the second one, panel (b), the Gaussian distribution
of the Rabi frequency (qubit-field coupling) of Eq. (4) is
considered. Throughout this paper, we have chosen σ = 0.1 �.
The periodic (nondecoherent) dynamics can be viewed as the
dynamics of the system when observed at times much shorter
than the (Gaussian-induced) decoherence time. As expected,
the two qubits are initially entangled and uncorrelated with
the field. The qubit-field coupling, then, reduces entanglement
in time while correlating the environment with the two-level
systems. However, correlations in the overall system do not
flow from the subsystem {A,B} (as entanglement) to the
subsystem {B,E} (as classical correlations), as one might
expect given the fact that only qubit B interacts with E. In
fact it is possible to show, by tracing out the qubit A from
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FIG. 2. (Color online) Total tripartite correlations τ in ρABE(t)
(blue dashed line) and concurrence ν of ρAB (t) (red solid line) vs �t

for initial conditions x = z = 1 and y = 0.9 in the case of (a) periodic
dynamics (σ → 0) and (b) decoherent dynamics (σ = 0.1 �).

the global evolved state of Eq. (8), that B and E always
remain uncorrelated during the dynamics. They rather turn
into genuine tripartite correlations, as clearly shown in Fig. 2.
As entanglement decreases, genuine tripartite correlations are
built in time: ν and τ show a striking “phase-opposition” time
behavior, such that the maxima of τ coincide with the minima
of ν and vice versa. Nevertheless, despite the periodic sudden
death and birth of entanglement (due to the initial mixedness
of ρAB), τ has a smooth time behavior.

This is no longer the case if initial coherence between
Bell states is introduced. In Fig. 3 the dynamics of ν(t)
and τ (t) is shown for the qubits initially in the state ρ2 =
ρ0

AB(0.6,0.8,0.3). The dynamical phase opposition between
two-qubit entanglement and tripartite correlations is main-
tained, while a new trait occurs: genuine tripartite correlations
freeze for finite time periods, showing a plateau in correspon-
dence of the plateau of zero entanglement [Fig. 3(a)].

The understanding of this freezing and whether it also
implies a freezing of other kinds of shared correlations within
the overall system will be addressed in the next section.

IV. MONOGAMY OF CORRELATIONS: A PHYSICAL
PICTURE OF THE FREEZING

Monogamy is a well-known property that is very desired as
far as a quantitative description of correlations in composite
systems is concerned. Applied originally for information
security-type problems, it helps to investigate correlated
physical systems in general. While it is known that, in full
generality, monogamy of quantum correlations is only possible
for (some) faithtful entanglement measures (see [47]), in some
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0 1 2 3
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(b)

Ωt

FIG. 3. (Color online) Total tripartite correlations τ in ρABE(t)
(blue dashed line) and concurrence ν of ρAB (t) (red solid line) vs
�t for initial conditions x = 0.6,y = 0.8, and z = 0.3 in the case of
(a) periodic dynamics (σ → 0) and (b) decoherent dynamics (σ =
0.1 �).

restricted versions it has been shown to exist for other types of
correlations as well. In particular, it has been recently proven
[48] that quantum mutual information I is monogamous for
any pure state and for some mixed states, provided that the
tripartite correlations, defined as

τ = I − Iloc − μ2, (13)

are large enough. Here

μ2 = max
two-party

{I (ρi,j )} (14)

is the maximal mutual information obtained over any possible
two-party reduced states ρij ,

I = I(ρabc) = ln d − S(ρabc) (15)

is the so-called state information of the total tripartite state
ρabc living in a Hilbert space of dimension d, and

Iloc = I(ρa) + I(ρb) + I(ρc) (16)

is the total state information stored locally in each party. Notice
that, Eq. (15) being valid for a generic system of state ρ, one
has I(ρi) = ln di − S(ρi) (i = a,b,c). Equation (13) can also
be interpreted as follows: the total information stored in a
three-party state is the sum of the information stored locally in
each party, of the maximal bipartite information in the system
and of its genuine tripartite correlations. Local information
and bipartite and tripartite correlations thus constitute three
boxes where the system can store its total information.
Quite remarkably the state information exploited in Eqs. (15)
and (16), called sometimes negentropy has an immediate
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FIG. 4. (Color online) Genuine tripartite correlations τ (dashed
blue line), total state information I (dotted black line), maximal
bipartite correlations μ2 (green dashed line), and local state infor-
mation Iloc (red solid line) vs �t for initial conditions x = 1,y =
0.9, and z = 1 in the case of (a) periodic dynamics (σ → 0) and
(b) decoherent dynamics (σ = 0.1 �). In this last case, the dot-dashed
purple line represents the time-dependent total state information
I(t) = τ + Iloc + μ2 while the dotted black line is the initial-state
information I ≡ I(0).

interpretation as a physical work that can be extracted from
the quantum system [49,50].

In Fig. 4 we show the dynamics of all the quantities involved
in Eq. (13) for our tripartite system, when the two qubits are
initially in the state ρ1 defined in the previous section. We point
out that, while in the case of periodic dynamics (closed system)
I ≡ I(0) is constant, in the decoherent (Gaussian-induced)
dynamics the total state information I(t) = τ + Iloc + μ2

decays, as shown in panel (b) of Fig. 4. A particular feature
of the dynamics in this case is that the local state information
Iloc is constantly zero. The information about the total state
is always stored in bipartite and/or tripartite correlations. In
particular, the information is periodically transferred back and
forth between bipartite and tripartite correlations.

We now examine the case when the qubits are initially in the
state ρ2 (see Sec. III). The corresponding dynamics of Eq. (13)
is shown in Fig. 5. The presence of initial coherence between
Bell states produces three more interesting features. First, the
local information is now nonzero and oscillates periodically
in time. Second, and more importantly, μ2(t) can now exceed
μ2(0) during the evolution. Finally, the freezing of tripartite
correlations occurs exactly at times tk such that τ (tk) =
μ2(0), i.e., when all the initial information stored in bipartite
correlations has been transferred to genuine tripartite ones.

I

ILOC

µ2

ILOC µ2+ +

(a)

(b)
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0.8

0

0.2

0.4

0.6

0.8
0 1 2 3Ωt

FIG. 5. (Color online) Genuine tripartite correlations τ (dashed
blue line), total state informationI (dotted black line), maximal bipar-
tite correlations μ2 (green dashed line), and local state information
Iloc (red solid line) vs �t for initial conditions x = 0.6,y = 0.8,
and z = 0.3 in the case of (a) periodic dynamics (σ → 0) and
(b) decoherent dynamics (σ = 0.1 �). In this last case, the dot-dashed
purple line represents the time-dependent total state information
I(t) = τ + Iloc + μ2 while the dotted black line is the initial-state
information I ≡ I(0).

In order to comprehend what happens at these points, let
us take a step back and reanalyze the setup of our system.
Despite being a three-party system, it is constituted by two
fundamentally different subsystems: the two qubits, quantum
objects, and the classical environment. It represents a hybrid
quantum-classical system. We further stress that the reduced
state of the classical environment is time invariant, always
being the maximally mixed state ρE = 1

2

∑
ϕ=ϕ± |ϕ〉〈ϕ| of

Eq. (6) after tracing out the Rabi frequency degrees of freedom
and thus giving zero local state information [I(ρE) = 0]: the
red line in Fig. 5 in fact describes the local information Iloc

due to the two qubits. Genuine tripartite correlations τ involve
by definition all the three parties of the system, so that they
represent the information shared among qubit A, qubit B,
and environment E. On the other hand, the maximal bipartite
correlations μ2 are a hybrid quantity since they may or may
not involve the subsystem E due to the maximization over any
possible two-party reduced states. From these considerations,
one is led to conclude that Iloc and τ are two different and
nonmixable forms of information stored in the system: since
Iloc is independent of E while τ always depends on it, they
cannot transform into each other and do not thus directly affect
their respective time behaviors. Nevertheless, Iloc can certainly
affect the dynamics of μ2 since local information on the state
of each qubit can evolve in time into bipartite qubit-qubit or
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qubit-field correlations, which enter the definition of μ2. At the
same time, bipartite correlations involving the environment,
such as I (ρAE), can affect the dynamics of τ by being turned
into genuine tripartite ones. To sum up,

Iloc � μ2 � τ, (17)

but

Iloc � τ. (18)

With this in mind, let us analyze Figs. 4 and 5.
In Fig. 4, where Iloc is absent, all the information is stored

in correlations which, periodically, change from bipartite to
tripartite form according to the second side of Eq. (17). In the
process of Fig. 5, both sides of Eq. (17) are simultaneously
active. In particular, at t = 0 information is stored locally in
the states of the two qubits and also shared in the form of
bipartite correlations between the qubits. As time goes by, two
effects arise at the same time: the initial bipartite correlations
are turned into genuine tripartite ones, and the initial local
information is turned into bipartite correlations: the initial
decrease of μ2 is the result of these two effects. When all the
initial bipartite correlations have flown into τ , the only active
mechanism is that producing the flux Iloc � μ2, which leaves
τ unaltered. During this second part of the dynamics (within
one period), τ thus stays constant, exhibiting the freezing
already witnessed in Sec. III; μ2 instead increases as there
is no “sink” where bipartite correlations can flow to and its
value can become larger than μ2(0), provided enough Iloc is
present.

To have a better quantitative understanding of this phe-
nomenon, we study the structure of the three quantities
dIloc
dt

, dτ
dt

, and dμ2

dt
. In particular, we write down their explicit

expressions for the (nondecoherent) case depicted in Fig. 5(a)
during the two time intervals T (1) = [0,t∗] and T (2) = [t∗,tM ],
t∗ being the time instant when the freezing of τ starts and tM the
instant of the first maximum of μ2. It is here convenient to use
the notation q(k)(t) to indicate the evolution of the quantity q in
the interval T (k). Thus, for instance, τ (1)(t) is to be understood
as the time evolution of the genuine tripartite correlations
τ in the interval T (1). Seeing that d

dt
S(ρA) = d

dt
S(ρE) = 0

(qubit A is isolated and the state of E is time invariant) and
d
dt

S(ρABE) = d
dt

S(ρBE) = 0 (both systems are isolated), one
has

dI (1)
loc(t)

dt
= − d

dt
S(ρB),

dμ
(1)
2 (t)

dt
= d

dt
S(ρB ) − d

dt
S(ρAB),

dτ (1)(t)

dt
= d

dt
S(ρAB),

(19)

because τ (1) = I (ρAB,E) and μ
(1)
2 = I (ρAB). Equations (19)

clearly quantify the information fluxesIloc → μ2 and μ2 → τ ,
confirming the qualitative processes of Eqs. (17) and (18). At
the beginning of the system dynamics, {A,B} is decoupled
from E. As time goes by, the von Neumann entropy S(ρAB)
must increase due to the B-E interaction since the two qubits
leak information to the environment: bipartite correlations in
{A,B} turn into genuine tripartite ones. This process goes

on until t∗ is reached, when τ (t) = μ2(0). We now notice that,
being that {B,E} is noninteracting with A, the mutual informa-
tion I (ρBE,A) is constant in time. Moreover, at t = 0 ρ0

ABE =
ρAB ⊗ ρE and one has I (ρBE,A)(t) = I (ρ0

BE,A). Thus

I
(
ρ0

BE,A

) = S
(
ρ0

BE

) + S
(
ρ0

A

) − S
(
ρ0

ABE

)
= S

(
ρ0

B

) + S
(
ρ0

E

) + S
(
ρ0

A

) − S
(
ρ0

AB

) − S
(
ρ0

E

)
= I

(
ρ0

AB

) = μ2(0). (20)

This means that, if the condition τ (t) = μ2(0) is achieved,
tripartite correlations do not increase anymore over that value
since they cannot exceed the steady mutual information of the
bipartition {BE,A}. Thus, τ (t) either decreases [similar to the
dynamics of Fig. 4, where the condition τ (t) = μ2(0) is, how-
ever, not reached] or, if other information channels are avail-
able as in the dynamics of Fig. 5, freezes to the value μ2(0).

During the second time interval T (2) between t∗ and tM , we
have τ (2) = I (ρBE,A) and μ

(2)
2 = I (ρBC), so that

dI (2)
loc(t)

dt
= − d

dt
S(ρB),

dμ
(2)
2 (t)

dt
= d

dt
S(ρB) − d

dt
S(ρBE) = d

dt
S(ρB),

dτ (2)(t)

dt
= 0,

(21)

and the flow Iloc → μ2 continues. After tM , due to the
periodicity of the dynamics, all the information fluxes get
reversed and the system evolves towards the initial condition
by following the same information dynamics backwards.

V. CONCLUSION

In this paper we have addressed the problem of under-
standing the mechanisms underlying entanglement revivals in
a composite quantum system interacting with a local classical
environment by an information-theoretic approach, that is, by
analyzing the correlation distribution and information flows
within the overall system. To this aim, we have considered a
system made of two quantum objects (qubits) and a classical
environment (random external field) in an experimentally
realistic configuration. We have shown such a system to
offer a rich scenario thanks to the dynamical interplay of
two different kinds of correlations, namely, quantum and
total ones. In particular, we have found a clear dynamical
relationship between two-qubit entanglement and genuine
tripartite correlations shared among all the parts of the system.
In general, if entanglement is initially present in the two-qubit
state, it periodically turns into genuine tripartite correlations,
despite the third party being a purely classical object. This
general behavior highlights the mechanism of spontaneous
entanglement recovery during the system evolution.

We have moreover shown that, if the initial state of
the two qubits exhibits a coherence between Bell states
which is a typical quantum feature, a dynamical freezing
of tripartite correlations occurs in correspondence to dark
periods of entanglement. We remark that, while freezing
of purely quantum correlations is known to happen under
suitable conditions [10,51–57], the freezing phenomenon of
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total multipartite correlations appears here for the first time.
It may be of relevance for quantum information protocols
relying on overall correlations in a composite system in the
presence of a classical environment. We have then provided
a physical picture of the total correlation freezing, which we
argue to stem from the existence of nontrivial time behavior
of the information stored locally on the two-qubit state, in turn
due to the initial coherence between Bell states. In particular,
this freezing is a consequence of monogamy of correlations,
inducing a periodic redistribution of the total information
contained in the tripartite state into different possible forms,
namely, local state information, bipartite correlations, and
genuine tripartite correlations. We have indeed shown that
the system can redistribute in time its bipartite correlations
without altering the genuine tripartite ones, just by addressing
the local information stored in the state of each of its
parts. Notice that, from the thermodynamical perspective an
intepretation of the genuine tripartite correlations τ is possible,
since the difference of the global and total locally stored
information (i.e. the quantity I − ILOC) is a tripartite quantum
correlations indicator called “zero-way work deficit” (c.f. [50])
that describes the difference of the physical work extracted
by a single global heat engine and sum of works extracted

by local heat engines. This may suggest that the relation
between quantum correlations concepts and thermodynamical
properties of a multipartite quantum system is less natural than
expected. It also might be interesting to ask in future research
about how information flows are related to the evolution of
thermodynamical properties of a given composite especially
in context of rapidly developing quantum thermodynamics
field (see, e.g., [58]).

The results of this work give insights on the mechanisms
underlying the retrieval of entanglement within a hybrid
quantum-classical system. They also motivate further studies
on the manipulation of hybrid systems for quantum informa-
tion purposes [59], for instance, by looking for operational
interpretations of total tripartite correlations in order to exploit
their freezing here found or by designing suitable classical
fields capable of efficiently preserving quantum correlations.
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