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Abstract In thisworkweconsider the edge searchingprob-
lem for vertex-weighted graphswith arbitrarily fast and invis-
ible fugitive. The weight function ω provides for each vertex
v the minimum number of searchers required to guard v, i.e.,
the fugitive may not pass through v without being detected
only if at least ω(v) searchers are present at v. This problem
is a generalization of the classical edge searching problem,
in which one has ω ≡ 1. We assume that with a graph G to
be searched, there is associated a partition (V1, . . . , Vt ) of its
vertex set such that edges are allowed only within each Vi
and between two consecutive Vi ’s. We provide an algorithm
for distributed monotone connected edge searching of such
graphs,where the searchers are initially placedon an arbitrary
vertex of G and have no a priori knowledge on G, but they
have a sense of direction that lets them recognize whether
an edge incident to already explored vertex in Vi leads to a
vertex in one of Vi−1, Vi or Vi+1. Starting from any vertex
the algorithm uses at most 3·maxi=1,...,t ω(Vi )+1 searchers,
where ω(Vi ) = ∑

v∈Vi ω(v). We also prove that this algo-
rithm is best possible up to a small additive constant, that is,
each distributed searching algorithm in worst case must use
3 · maxi=1,...,t ω(Vi ) − 1 searchers for some graphs.
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1 Introduction

A team of mobile agents explores an unknown environment
modeled as a graph in order to accomplish a selected task.
The agents start from their initial configuration and may gain
some knowledge on the topology of the graph only as a
result of its path traversals. The task to be performed varies
and may include exploration [2,12,20,26], map construc-
tion [10,14,18], gathering [13,19,32,40] or leader election
[5,6,28]. In this work we focus on the task of capturing a
fast fugitive hiding in the graph. The fugitive may represent
a virus spreading in the network, a hostile agent that needs
to be caught, or a mobile entity that is lost and needs to be
found. Moreover, we are interested in guaranteed capture,
which from the point of view of the agents implies that their
movement must lead to capturing the fugitive regardless of
its actions. The optimization criterion mostly considered for
such problems is the minimum number of agents (called usu-
ally searchers in the graph searching terminology) required
to complete this task.

We assume that the searchers are initially located on an
arbitrarily selectedvertex called thehomebase. Ifwe imposed
no additional restrictions on the strategy that the searchers
have to form, then the searching problem could be solved
by first using any exploration algorithm that allows to deter-
mine the structure of the underlying graph (by one or more
searchers). Then, once the structure of the graph is known,
a search strategy could be computed (by any offline algo-
rithm) and finally the strategy could be implemented by
the searchers. In such a case the problem reduces to map
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construction. However, one may have some restrictions on
the search strategy that makes such an approach invalid. A
typical restriction is that the strategy needs to be monotone,
that is, each edge or vertex that has been cleared (i.e., is guar-
anteed to be free of the fugitive) must remain clear forever,
see e.g. [3,38]. In such a setting, the computation of the strat-
egy cannot be preceded by an exploration stage, and thus the
strategy is formed online.

It has been proved that if the searchers posses no additional
knowledge on the structure of the graph to be searched, then
for some graphs every online algorithm that the searchers
use, leads to arbitrarily bad strategies. In particular, even
if the graph is a tree on n vertices, then in the worst case
every online1 search strategy of such a type needs Θ(n)

searchers [31], while O(log n) searchers are enough in an
offline solution [35]. This negative result justifies an assump-
tion that the searchers have someadditional ability that allows
them to construct a strategy more efficiently. The selection
of additional conditions that realize such an assumption is
a separate and interesting problem (see e.g., the notion of
online/distributed computation with advice [21,27]). In this
work we assume that the vertex set of a graph is partitioned
into sets V1, . . . , Vt such that the neighborhood of a vertex in
Vi is contained in Vi−1∪Vi ∪Vi+1 (we take V0 = Vt+1 = ∅),
and each searcher has a sense of direction that allows it to
decide if an edge outgoing from a currently occupied ver-
tex in Vi leads to a vertex either in Vi−1, Vi or Vi+1. The
(V1, . . . , Vt ) is called the grid partition of G.

As an example that illustrates the applicability of our
model we refer to the seminal paper of Breisch [9]. Consider
the system of caves depicted in Fig. 1a. The searchers may
agree on a set of virtual parallel lines (called scanlines for
brevity) overlapping the environment. Then, let each inter-
section of a tunnel and a scanline be modeled as a graph
vertex, and two vertices being adjacent if they belong to two
consecutive scanlines or to the same scanline and are con-
nected by a direct tunnel. Hence, a set Vi may be used to
denote all vertices implied by i th scanline (see Fig. 1b). The
searchers have to agree on the placement of scanlines prior
to the beginning of exploration and this model is valid if
there are no tunnel intersections ‘between’ the scanlines—
one way of overcoming this issue is to take small distance
between consecutive scanlines (this may lead tomany degree
two vertices in the graph but such vertices introduce no diffi-
culty while constructing edge search strategies). The terrain
modeling that leads from an actual environment to a graph is
a separate and interesting problem that we do not consider in
this work. If the searchers are equipped with a compass and
are able to measure the distance traveled, then each of them
is able to translate an edge traversal in the graph into the cor-

1 In view of the terms used in the literature on the subject, the terms
online and distributed are used interchangeably in this work.

V1

V2 V3

V4

(a)

(b)

Fig. 1 A system of caves with scanlines and the corresponding graph
that models the environment

responding movement in the terrain and vice versa. Hence,
the online graph searching algorithm presented in this work
can be directly used to obtain a search strategy for the system
of tunnels.

1.1 Graph searching problem

In this section we discuss the edge searching problem intro-
duced by Parsons in [39]. In fact, we recall a little bit more
general definition of the problem, using a simple, undirected,
weighted graph G = (V, E, ω) with the vertex set V , edge
set E and theweight functionω : V → N that assigns to every
vertex v in V a positive integer called its weight. For a set
U ⊆ V wewriteω(U ) to denote the sum of the weights of all
vertices in U , i.e., ω(U ) = ∑

v∈U ω(v). The goal is to cap-
ture an omniscient, invisible and fast fugitive in a weighted
graph. The fact that the fugitive is omniscient implies that it
will avoid the capture as long as possible, or in other words,
it knows in advance the strategy used by the searchers and
therefore it will always choose the most advantageous posi-
tion for itself. The consequence of the invisibility is that the
searchers do not know the location of the fugitive and can
only compute its possible locations using the history of their
moves. The weight of a vertex v is the number of searchers
required to guard v against the fugitive. In other words, the
fugitive cannot pass without being detected through a vertex
v holding at least ω(v) searchers. The fact that the fugitive
is fast implies that at any moment it can traverse a path of an
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arbitrary length provided that no vertex of the path is guarded.
In this work we assume that the graphs we consider are con-
nected, i.e., for every two vertices u, v of the graph there
exists a path between u and v. This does not lead to a loss
of generality. Indeed, in general, an input graph for the edge
searching problem does not have to be connected; having a
clearing procedure for connected graphs we are able to clear
every graph applying the procedure to each connected com-
ponent independently. However, in such case it is required
that each connected component has its own homebase with
sufficient number of searchers initially placed on it.

1.2 Search strategies

An edge search strategy S (or search strategy for short) for
a graph G is a sequence of moves S1, . . . ,Sl such that for
each i ∈ {1, . . . , l} the move Si is one of the following:

(m1) placing any number of searchers on a vertex of G,
(m2) removing any number of searchers from a vertex of G,
(m3) sliding any number of searchers that occupy a vertex

u along an edge {u, v} from u to v.

We say that an edge is clear at the end of a particular move of
S if it is guaranteed to be free of the fugitive. Otherwise, an
edge is said to be contaminated. A contaminated edge {u, v}
becomes clear in a move Si if the following conditions hold:

(a) at the beginning of Si at least ω(u) searchers occupy u,
(b) at least one searcher slides along {u, v} from u to v in

Si (hence Si must be of type (m3)),
(c) if at least two edges incident to u (respectively v) are

contaminated at the beginning of Si , then at least ω(u)

(ω(v), respectively) searchers are at u (v, respectively)
at the end of Si .

For convenience, we use the terms clear and contaminated
when referring to vertices as well. A vertex v is clear if it is
guarded or all edges incident to v are clear. This may occur
as a result of a move of type (m1) or (m3). Thus, a guarded
vertex is clear.

A vertex or an edge becomes recontaminated in a move
Si , i ∈ {2, . . . , l}, if it is clear at the end of move Si−1 but
may hold the fugitive at the end of move Si . We say that
a search strategy S is monotone if no move of S results in
recontamination.

A search strategy S is connected if the subgraph of G
consisting of all currently clear vertices and edges, called the
cleared subgraph, is connected at the end of each move of S.
Note that the ‘classical’ edge searching and connected edge
searching problems for unweighted graphs are equivalent to
our problem with the weight of each vertex equal to 1. Given
a search strategy S = (S1, . . . ,Sl), if |Si | is the number of
searchers present in a graph G in the move Si , then

s(S) = max
{|Si |

∣
∣ i ∈ {1, . . . , l}}

is the least number of searchers required by S. Define
cs(G) = min

{
s(S)

∣
∣ S is a connected

search strategy of G
}

called the connected search number of G.
In thisworkwe are interested in computingmonotone con-

nected search strategies. The monotonicity is required since
we consider the online version of the searching problem: if a
search strategy needs not to be monotone, then one searcher
can explore the graph G (causing recontaminations in the
process) and once it learns the structure of G, the searchers
may compute a search strategy (in an offline manner) and use
the strategy on G; in such a case the problem reduces to its
offline version.

Hence, in view of those assumptions, we can ensure a
simpler structure of every strategy S we consider. Namely,
we assume that in every strategyS, exactlys(S) searchers are
initially placed on a single vertex h called the homebase and
everymove ofS is of type (m3). Therefore, for simplicity, we
omit the move of type (m1) that initially places all searchers
on h. For any h ∈ V , define

mcs(G, h) = min{s(S)
∣
∣ S is a monotone connected

search strategy of G with homebase h},
and

mcs(G) = min
{
mcs(G, h)

∣
∣ h ∈ V

}
.

The latter graph parameter is called the monotone connected
search number of G.

1.3 The distributed/online graph searching model

In Sect. 1.1 and 1.2 one might assume that the graph to be
searchedwas known to the searchers in advance. The purpose
of this section is to formally describe our distributed model,
whosemainprinciple is that the searchers donot knowapriori
the structure of the graph, and need to learn it by performing
the search moves.

For each vertex v and each edge {u, v} there exists a pos-
itive integer denoted by ρ(v, u) and called the port num-
ber of {u, v} at v. Moreover, it is assumed that the set
P(v) = {ρ(v, u)

∣
∣ {u, v} ∈ E}, consisting of the port num-

bers at v, equals {1, . . . , deg(v)}. Hence, any two edges
incident to the same vertex v have different port numbers
at v. Consequently, any searcher occupying v can use the
port numbers to distinguish between the incident edges. If a
searcher occupying a vertex v decides to slide along an edge
{u, v}, then we say that the searcher leaves v via port ρ(v, u)

and enters u via port ρ(u, v).
We now define the sense of direction, informally intro-

duced in Sect. 1, that lets the searchers distinguish the three
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directions left, right and straight so that any port number at
the currently occupied vertex v can be uniquely classified as
a port that leads to a vertex that is either to the left, to the
right or in front of v. The sense of direction is realized as
an oracle function φ that assigns a number in {−1, 0, 1} to
each pair (v, p), where v is a vertex and p ∈ P(v). Hence,
v and p are mapped to one of the three numbers that corre-
spond to the left, straight and right direction, respectively. In
other words, when a searcher leaves a vertex v via its port p,
thenφ(v, p) determines the direction of searcher’smove. It is
worth noting, that the above notion of sense of direction does
not require usage of an external source of knowledge repre-
sentedby anoracle. Instead, onemight aswell assume that the
directions are given at vertices together with port numbers.

In order for the ‘relative positioning’ to be consistent, we
need to impose some additional restrictions that φ needs to
satisfy. More formally, we require that there exists a grid
partition (V1, . . . , Vt ) of G such that for each {u, v} ∈ E it
holds:

(1) u ∈ Vi and v ∈ Vj , i, j ∈ {1, . . . , t}, implies |i− j | ≤ 1,
(2) u, v ∈ Vi , i ∈ {1, . . . , t} if and only ifφ(v, ρ(v, u)) = 0

and φ(u, ρ(u, v)) = 0; in such a case we say that u is
in front of v and vice versa,

(3) u ∈ Vi and v ∈ Vi+1, i ∈ {1, . . . , t − 1} if and only
if φ(u, ρ(u, v)) = 1 and φ(v, ρ(v, u)) = −1; in such
case we say that u is to the left of v and v is to the right
of u.

Consequently, whenever a searcher that occupies a vertex
v ∈ Vi leaves v via port p, then it reaches some vertex u in
Vi+φ(v,p). The vertex u is called the goal of the move from v

via port p and it is denoted by g(v, p).
Recall that searchers have no a priori knowledge on the

unexplored vertices of G. If a searcher occupies a vertex v,
then it learns all port numbers at v (or equivalently, the degree
of v) and for each p ∈ P(v) the searcher learns φ(v, p).
An important assumption is that given two explored vertices
v1, v2 ∈ Vi such that φ(v1, p1) = φ(v2, p2) for some port
numbers p1, p2 the searchers donot know in advancewhether
g(v1, p1) = g(v2, p2), i.e., the goal remains unknown as
long as the appropriate moves are performed.

We assume that the searchers have unique identifiers but
the nodes are anonymous. Our algorithm is described as if
there existed a global process that at each point knows the
locations of all searchers and knows the structure of the graph
explored to date. This process makes a decision regarding the
next move that is then performed by the searchers. However,
the algorithm is described in such a way only to simplify
its pseudocode, and it can be easily turned into an algorithm
in which the searchers communicate locally and learn the
structure of the explored part of the graph by exchanging
messages during meetings. This can be achieved as follows:

after each clearing move any free searcher is responsible for
computing the next clearing move and ‘coordinating’ its exe-
cution (thanks to unique identifiers the searchers can select
the free searcher with minimum identifier for this task). This
searcher first learns the cleared subgraph of G (e.g., by tra-
versing all clear edges; see e.g. [11] for some methods for
exploring a port-labeled network by a single searcher) and
then computes the next move (in an offline fashion). Once the
move is computed, the searcher informs all other searchers
(by visiting each of them and assigning tasks according to
their identifiers) what is the next move to be done. Then, the
next clearing move follows.

We finish this section with a few remarks considering our
model choice.Wemention several possible extensions of our
model to point out that our algorithmcan be turned into a fully
distributed one. However, we do not encode those extensions
directly into our pseudocode in order to present the combi-
natorial structure of our method in a more transparent way.

As to the communication model, our centralized algo-
rithm can be turned into a distributed one in which searchers
can communicate directly when occupying the same ver-
tex, or searchers can communicate through whiteboards.
Indeed, this is straightforwardwhen the unique searchermen-
tioned above is responsible for computing the next move.We
assume that several searchers move along an edge simulta-
neously to avoid immediate recontamination, which occurs
whenever the number of searchers reaching a newly explored
vertex is less than its weight. However, if searchers travel
with different speeds at any moment (the speed is chosen
by an adversary) our algorithm produces a search strat-
egy that clears the graph causing only ‘local’ recontamina-
tions (recontamination of one edge only). Indeed, if several
searchers slide from a vertex u to a contaminated vertex v

which clears the edge in the synchronous model, then in the
asynchronous one the edge is guaranteed to be cleared when
the last searcher reaches v. An additional technical issue that
needs to be resolved in the asynchronous model is the one of
determining whether a move is completed, i.e., whether all
searchers that started traversing an edge have finished it. This
can be done thanks to the unique identifiers of the searchers.

Finally, we note that the algorithm we propose requires
that the size of memory used by searchers is polynomial
in the size of the graph to be searched. It is an interesting
research direction to develop algorithms for searchers with
stronger restrictions on the memory size, e.g., independent
of the size of the graph to be explored.

1.4 Our results

The width w(G) of a weighted graph G = (V, E, ω) with a
grid partition (V1, . . . , Vt ) is defined as

w(G) = max
i∈{1,...,t} ω(Vi ).
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Our main result is the following theorem:

Theorem 1 Let G = (V, E, ω) be a weighted graph with a
fixed grid partition and let φ be an oracle function defined
on V (G). For every homebase vertex h of G there exists
a distributed algorithm that has no a priori knowledge on
G and guarantees that whenever 3w(G) + 1 searchers are
initially present at h, then the execution of the algorithm by
the searchers results in amonotone connected search strategy
for G with homebase h.

This theorem in particular implies that there exists a
monotone connected searching strategy that uses at most
3w(G) + 1 searchers for G, which gives the following.

Corollary 1 If G is a weighted graph with a grid partition,
then

mcs(G) ≤ 3w(G) + 1.

We also prove that the algorithm from Theorem 1 is best
possible up to an additive constant of 2, i.e., there exists an
infinite class of graphs with grid partitions such that each
graph G in the class has a vertex h such that any monotone
connected search strategy with homebase h uses at least
3w(G) − 1 searchers.

In Sect. 2 we formulate our algorithm. In Sect. 3 we give
a formal analysis of the algorithm and a proof of Theorem 1.
Then, in Sect. 4 we prove the lower bound. We finish with
some conclusions in Sect. 5.

1.5 Related work

The problem of connected searching of a graph has been
first studied in [4]. One of the interesting topics regarding
this model of graph searching is the price of connectivity,
that is, the ratio of the connected search number and the
classical search number. For results and discussions on this
issue see, e.g., [3,4,7,17,37]. For surveys on connected graph
searching we refer the reader to [1,25].

In [17], it is proved that there exists an algorithm that
converts any (monotone) search strategy using k searchers
for a graph G into a (monotone) connected search strategy
using 2k + 3 searchers for G. This algorithm works on an
auxiliary graph constructed on the basis of G which shares
some properties with our weighted graphs with grid parti-
tions. This relationship allows the key algorithmic idea used
in the algorithm presented in this work to obtain results from
[17]. However, this is a one-way implication since the algo-
rithm in [17] is a strictly offline one.

In this work we discuss the generalization of the search-
ing problem, where the graph to be searched has weights
assigned to vertices. The version if the problem in which
weights are assigned both to vertices and edges has been
first studied in [4]. (In such case clearing an edge e requires

that at least ω(e) searchers simultaneously slide along e,
where ω(e) is the weight of e). As shortly discussed in [15],
if edge weights are present, then in case of trees a ‘reduc-
tion’ to node-weighted graphs that ‘preserves’ the problem
is possible for monotone connected searching. For algorith-
mic and complexity results on weighted graph searching see
[15,16,36].

An ‘intermediate’ setting between offline algorithms and
fully distributed solutions with no prior knowledge of the
graph is a setting in which the searchers know in advance the
structure of the graph, but they operate ‘locally’—see, e.g.,
[22–24,42].

There exists a distributed algorithm (in which no prior
knowledge of the graph is assumed) that finds a connected
search strategy (using the minimum number of searchers) of
any graph and arbitrary homebase; however, the algorithm
is not monotone and its cost (the number of moves) is expo-
nential in the size of the graph [8]. If one requires a distrib-
uted search strategy to be monotone, then it is known that
the competitive ratio (the ratio of the number of searchers
it uses in the worst case and the optimal offline number
of searchers needed) of such a strategy is ω(n/ log n) [31].
The above worst case can occur even when the graph to be
searched is a tree: an online strategy may useΘ(n) searchers
while O(log n) searchers are enough [35]. Those results sug-
gest a natural question about additional information pro-
vided to the searchers that would allow them to operate
more efficiently either in terms of time (i.e., cost) or team
size. Authors in [38] determine the (asymptotically) min-
imum number of bits of advice that needs to be provided
when one requires a distributed searching algorithm to use
theminimum number of searchers and operate in amonotone
fashion.

Finally, we refer the reader interested in more practical
aspects of connected graph searching (including distributed
computations) to works on algorithms and applications in the
field of robotics [29,30,33,34,41].

2 The algorithm

In this sectionwe formally describe our distributed algorithm
that the searchers use to obtain a monotone connected search
strategy. This algorithm is divided into several subroutines;
for each of them we give its pseudocode and an intuitive
description. The section is finished with an example of the
execution of the algorithm.

We start by introducing some additional notions. For a
subgraph H of G and d ∈ {−1, 0, 1} representing one of the
three possible directions, let Γd(H, v) be defined as follows

Γd(H, v) = {(v, p)
∣
∣ p ∈ P(v),

{v, g(v, p)} /∈ E(H) and φ(v, p) = d}.
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Informally speaking, if H is the currently explored subgraph
of G at some point of a search strategy, then Γd(H, v) pro-
vides the set of unexplored ports at vertex v for which an ora-
cle ‘detects’ that they lead in direction d. For a set U ⊆ V ,
we also define

Γd(H,U ) =
⋃

v∈U
Γd(H, v).

Note that any vertex v such that Γd(H, v) = ∅ for all d ∈
{−1, 0, 1} is clear and does not have to be guarded.

Our search strategy highly depends on careful mainte-
nance of a border B, that is, the set of all vertices that have
to be guarded in order to prevent recontamination. More for-
mally, for the currently explored subgraph H of G, the bor-
der B of H is defined as the set of all vertices v ∈ V (H)

for which
⋃

d∈{−1,0,1} Γd(H, v) 	= ∅. For precise control of
border’s extent we use its extremities that are closely related
to a grid partition (V1, . . . , Vt ) of a graph. Namely, for a
nonempty subset U ⊆ V ,

l(U ) = min{i ∣
∣ Vi ∩U 	= ∅, i ∈ {1, . . . , t}}

and

r(U ) = max{i ∣
∣ Vi ∩U 	= ∅, i ∈ {1, . . . , t}}

are called the left extremity and the right extremity of U ,
respectively. We also denote r(∅) = 0 and l(∅) = t + 1.

When searching a graph, the algorithm works in a
sequence of stages. Within each stage one can distinguish
the two phases: an expansion phase and border maintenance
phase. In the first phase the algorithm explores new vertices
and edges of the graph. Then in the second phase it classifies
vertices of the current border and all newly explored vertices
as those that have to be guarded (either remain or must be
added to the border) and those that have just became clear,
and as we prove later, by monotonicity of the strategy, will
always remain clear.

Now, we describe several short procedures that are the
building blocks of the algorithm. Although, we do not
describe these procedures from the perspective of a searcher,
they can be used by each searcher to decide its individual
actions. All variables used by the procedures are assumed to
be global.

For the description of procedures of the expansion phase
recall that in Sect. 1.3 we assumed a global communication
model for the searchers. Consequently, at any moment each
searcher knows the currently explored subgraph and the pro-
cedure is able to determine the state of each searcher to be
either free or guarding. Those states are determined as fol-
lows: if x searchers are present on a vertex v that belongs to
the current border, then the searchers choose arbitrarilyω(v)

of them to be guarding (the selection can be made using
their unique identifiers), while x−ω(v) remaining searchers

at v, if any, are free. As we prove later, our search strat-
egy guarantees that at any moment we have x ≥ ω(v) for
any guarded vertex v. Naturally, any searcher that is present
at a vertex that does not have to be guarded, i.e., a vertex
whose all incident edges are clear, is free. In contrast to the
guarding searchers that cannot move until they become free,
a searcher that is free can move to an arbitrarily selected ver-
tex of the currently explored graph. We use this property to
clear subsequent edges. Namely, before our algorithm per-
forms a clearing move, all free searchers are gathered at an
appropriate vertex and then the move is performed by all
free searchers. In what follows, for simplicity, we skip the
processing of states of the searchers in the pseudocodes of
our procedures.

Procedure Expand realizes the most basic step of our
algorithm, i.e., it clears a single edge of a graph by sliding
all free searchers along that edge. The edge to be cleared is
determined based on the input parameters v and p, where v

is a vertex of the currently explored subgraph and p ∈ P(v).
The cleared edge is {v, g(v, p)}, i.e., the one ‘outgoing’ from
v via port p.

Procedure Expand(v, p)
gather all free searchers at v
slide all free searchers from v to g(v, p) via port p
V (H) ← V (H) ∪ {g(v, p)}
E(H) ← E(H) ∪ {{v, g(v, p)}}
XV ← XV ∪ {g(v, p)}

As we will see later, it is possible that g(v, p) is already
occupied by searchers. However, since in general the weight
of g(v, p) is unknown, all free searchers slide from v to
g(v, p) to clear the edge {v, g(v, p)}. The searchers behave
in such a way because if there were less than ω(g(v, p))
searchers on g(v, p) and there is a contaminated edge, dif-
ferent than {v, g(v, p)}, incident to g(v, p) at the end of the
sliding move, then {v, g(v, p)}, and possibly other edges,
would become recontaminated. In the sequel, we prove that
whenever 3w(G) + 1 searchers are available, then at least
ω(g(v, p)) searchers are present on g(v, p) at the end of
such move and hence no recontamination occurs. The pro-
cedure also updates the structure of the currently explored
graph H . The variable XV ‘collects’ vertices reached by the
searchers performing the clearing moves in actual expan-
sion phase, and it is also used by other procedures of our
algorithm.

Procedure Expand is extensively used by the two other
procedures of the expansion stage, i.e., procedures
ExpandLaterally and ExpandStraight. The first one selects a
set Vi and a direction d ∈ {−1, 1}, and then executes proce-
dure Expand for each vertex v ∈ Vi with an unexplored port
p leading to a vertex in Vi+d .When ExpandLaterally finishes
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its work, the set XV contains all vertices that were reached
during recent expansions. Then, procedure ExpandStraight
uses XV to perform searching moves entirely within Vi+d .
Now, let us describe both procedures in a more detailed
manner.

Procedure ExpandLaterally is strongly dependent on
the two vertex sets L and R called left and right borders. Intu-
itively, the procedure extends L (respectively, R) by adding
vertices in Vi reached for the first time by searchers coming
from Vi+1 (respectively, Vi−1). As we prove later, it always
holds that r(L) < l(R) (and thus L and R are disjoint) and
these sets form a partition of the border B of the currently
explored subgraph, i.e., B = L ∪ R. First, the procedure
computes a set U of pairs (v, p) such that v is a vertex of
the border and p ∈ P(v) is an unexplored port at v. Then,
procedure Expand(v, p) is called for each (v, p) ∈ U . Note
that the computation of the setU may require the knowledge
of Γd , for each d ∈ {−1, 1} which is computed based on
the currently explored subgraph and the values of φ(v, p)
provided to all ports p of each vertex v of the graph.

Procedure ExpandLaterally
if ω(L) ≥ ω(R) then

if Γ+1(H, Vr(L) ∩ L) = ∅ then
right ← false
U ← Γ−1(H, Vr(L) ∩ L)

else
right ← true
U ← Γ+1(H, Vr(L) ∩ L)

else
if Γ−1(H, Vl(R) ∩ R) = ∅ then

right ← true
U ← Γ+1(H, Vl(R) ∩ R)

else
right ← false
U ← Γ−1(H, Vl(R) ∩ R)

for all (v, p) in U do
Expand(v, p)

In order to simplify the description we shortly say that
procedure ExpandLaterally expands from i to i + d, where
d ∈ {−1, 1}, when for each (v, p) ∈ U it holds that v ∈ Vi
and g(v, p) ∈ Vi+d . Since the cases when ω(L) ≥ ω(R)

and ω(L) < ω(R) are symmetric, we describe here only the
former one. Namely, procedure ExpandLaterally first tries to
expand from r(L) to r(L) + 1, if this is possible, that is, if
there exists at least one pair (v, p) such that v ∈ Vr(L) ∩ L
and the port p at vertex v is unexplored and leads from v to
a vertex in Vr(L)+1. Otherwise, the procedure expands from
r(L) to r(L)−1. It follows fromour analysis that one of those
two actions is always possible. Depending on the direction
of expansion, the procedure sets the Boolean variable right
that is further used by procedure UpdateBorders described
later.

Procedure ExpandStraight is executed immediately
after ExpandLaterally, except for a single execution in the
initialization stage of the main procedure. Its main purpose
is to clear the edges that correspond to unexplored ports in
direction d = 0 at vertices in the set XV . Note that the set
XV is formed either by the recent execution of procedure
ExpandLaterally or it contains only the homebase h. Also
note that subsequent calls of Expand in the ‘while’ loop can
add new vertices to XV (recall that XV is a global variable)
and hence ExpandStraight clears all edges between the ver-
tices that are reached by the searchers (added to XV ) during
the actual expansion phase. Naturally, d = 0 implies that the
edges cleared by the procedure have both endvertices in the
same set Vi for some i ∈ {1, . . . , t}.

Procedure ExpandStraight
while Γ0(H, XV ) 	= ∅ do

select an arbitrary (v, p) from Γ0(H, XV )

Expand(v, p)

It is also worth pointing out that only those vertices in XV

that were explored in the current expansion phase may have
unexplored ports in direction 0. If ExpandLaterally added
to XV a vertex u that has already been explored (we have
already discussed this possibility in the description of proce-
dureExpand), then its ports in direction 0, if any, have already
been explored by an earlier execution of ExpandStraight;
the one that took place just after the first exploration of the
vertex u.

The border maintenance phase is realized by procedure
UpdateBorders.

Procedure UpdateBorders is used to update the con-
tents of variables L and R, that represent the left and the
right borders, respectively. Depending on the value of vari-
able right , which is set by ExpandLaterally, the procedure
starts by adding all vertices in XV either to the left or to
the right border. Note that XV may contain vertices whose
all incident edges have been cleared in the expansion phase.
Therefore, the ‘for’ loop aims at removing from L and R
all vertices that do not have to be guarded in the currently
explored subgraph.

Procedure UpdateBorders
if right = false then

L ← L ∪ XV
else

R ← R ∪ XV
for all v in L ∪ R do

if Γ−1(H, v) ∪ Γ+1(H, v) = ∅ then
L ← L \ {v}
R ← R \ {v}
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Finally, we give the details of our main procedure
ConnectedSearching.

Procedure ConnectedSearching (CS for short) is the
main procedure of our algorithm. The search strategy con-
structed by procedure CS can be partitioned into several
stages. For i ≥ 1 the i th stage consists of all steps that
took place during the i th iteration of the ‘while’ loop of
the procedure or equivalently, the steps necessary to real-
ize the expansion and border maintenance phase. Addition-
ally, we distinguish the 0th stage, called the initialization
stage, consisting of all steps performed before the ‘while’
loop. Their purpose is to properly initialize the variables,
e.g., a vertex h ∈ Vi , i ∈ {1, . . . , t}, being the home-
base of the search strategy to be computed is assigned to
the set XV . Since the homebase may have neither left nor
right ports, CS has to execute procedure ExpandStraight and
then properly set the current border using UpdateBorders.
Setting the flag right to be false results in adding the
vertices in XV to the left border L during the first execu-
tion of UpdateBorders. Also note that each stage starts with
an initialization of the set XV , and that the ‘while’ loop of
procedure CS executes as long as there exists at least one
unexplored port in left or right direction, which is equiva-
lent to the border of the currently explored subgraph being
nonempty.

Procedure ConnectedSearching – CS
Require: 3w(G) + 1 searchers are initially present on the homebase h
Ensure: A monotone connected search strategy for G
L ← ∅ and R ← ∅
XV ← {h}
ExpandStraight
right ← false
UpdateBorders
while Γ−1

(
H, V (H)

) ∪ Γ+1
(
H, V (H)

) 	= ∅ do
XV ← ∅
ExpandLaterally
ExpandStraight
UpdateBorders

In what follows we introduce some notation that is nec-
essary for the presentation of an example and the analysis of
the algorithm in Sect. 3.

The graph that is explored at the end of the kth stage is
denoted by Gk , k ≥ 0. To denote the left and right borders
obtained at the end of the kth stage we use Lk , Rk , respec-
tively, while Bk denotes the border of Gk . The kth stage,
k > 0, is called:

(i) an LL-expansion if ω(Lk−1) ≥ ω(Rk−1) and
Γ+1(Gk−1, Vr(Lk−1) ∩ Lk−1) = ∅,

(ii) an LR-expansion if ω(Lk−1) ≥ ω(Rk−1) and
Γ+1(Gk−1, Vr(Lk−1) ∩ Lk−1) 	= ∅,

(iii) an RR-expansion if ω(Lk−1) < ω(Rk−1) and
Γ−1(Gk−1, Vl(Rk−1) ∩ Rk−1) = ∅

(iv) an RL-expansion if ω(Lk−1) < ω(Rk−1) and
Γ−1(Gk−1, Vl(Rk−1) ∩ Rk−1) 	= ∅.

Note that all conditions in the above definition directly corre-
spond to those checked by ExpandLaterally, and that the first
letter in the name of an expansion says which border (left or
right) is tested for an existence of unexplored ports, while
the second letter reflects the direction of an expansion. For
example, an LL-expansion is a stage in which the searchers
made sliding moves from all vertices in Vr(Lk−1) ∩ Lk−1 via
ports leading to vertices in Vr(Lk−1)−1, with the latter ones
possibly added to the new left border Lk (as we prove later,
for an LL-expansion, r(Lk) < r(Lk−1)). On the other hand,
if the stage is an LR-expansion, then the searchers succes-
sively explore the ports at vertices in Vr(Lk−1) ∩ Lk−1 but
only those that lead to vertices in Vr(Lk−1)+1, and the goal
vertices that still have to be guarded in Gk are included
in the new right border Rk . Note that LL-expansion and
RR-expansion as well as LR-expansion and RL-expansion
are symmetric. Therefore, in most proofs in Sect. 3 it is
enough to focus on LL- and LR-expansions, and use the
symmetry to obtain a general assertion for all types of
expansions.

We finish this section with an example that demonstrates
the execution of our algorithm.

Example 1 Figure 2 shows the explored subgraph together
with unexplored edges outgoing from the guarded vertices
at the end of each stage of a search strategy computed by
procedure CS. All vertices are assumed to have the same
weight equal to 1. Figure 2a depicts the explored subgraph
at the end of the initialization stage. Note that at that point
it holds that ω(L0) = 2, R0 = ∅ and hence in the 1-st stage
ExpandLaterally will test the left border for the existence
of unexplored ports. Since there is a vertex in L0 with an
unexplored port leading to the right (see Fig. 2a), the first
stage is an LR-expansion that results in ω(R1) = 1 (see
Fig. 2b). Also, observe that in the 1-st stage no ports are
explored by ExpandStraight. Clearly, sinceω(L1) ≥ ω(R1),
in the 2-nd stage ports at vertices in L1 are tested and
the two ports leading to the left are explored. This results
in an LL-expansion depicted in Fig. 2c. Now, in the 3-rd
stage, being an LL-expansion, a single port that leads to the
left is explored, and then ExpandStraight reveals the sec-
ond vertex. Finally observe that the 4th stage is an LR-
expansion, while the two last stages are RR-expansions.
Concerning the number of searchers, note that w(G) = 3
and hence 10 searchers are initially placed on h; one can
check that 5 searchers are sufficient for this particular search
strategy.
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(g) h

(a)
h

(b)
h

(c)
h

(e) h(d) h

(f) h

Fig. 2 a–gThe explored subgraph at the end of stages 0–6; dark circles
denote vertices in L , dark squares denote vertices in R and empty circles
denote clear unguarded vertices

3 Analysis of the algorithm

In this section we prove an upper bound on the number of
searchers required by our algorithm, and that the algorithm
produces a monotone connected search strategy. We intro-
duce the concept of a successful move. A move performed
by searchers is called successful if it does not lead to reconta-
mination. We will also say that a stage of the search strategy
computed by procedure CS is successful if each move in this
stage is successful.

Lemma 1 If each move of the searchers is successful, then
procedure CS produces a monotone connected search strat-
egy for a graph G.

Proof We first prove that the execution of procedure CS
always stops. This in particular proves that the number of
moves in the strategy produced by procedure CS is finite.

The execution of procedure ExpandStraight always stops
because if (v, p) ∈ Γ0(G, XV ), then {v, g(v, p)} is a conta-
minated edge. By assumption, this edge is cleared by pro-
cedure Expand(v, p) and no recontamination occurs, and
hence the execution of the loop in procedure ExpandStraight
finishes. By similar arguments, the execution of procedure
ExpandLaterally always stops.

It remains to argue that procedure CS clears G. To that
end we prove that if G is not entirely cleared at the end of
the kth stage, then at least one edge becomes clear in the
(k + 1)-st stage. Note that this is sufficient, since no edge
becomes recontaminated and, by assumption, each move is
successful. The former follows from the fact that each vertex
that belongs to a border is guarded (see procedures Expand

and UpdateBorders). Therefore, after finite number of stages
all edges of G are clear.

Due to the execution of procedure UpdateBorders at the
end of kth stage, we have that if u ∈ Bk , then there exists
at least one contaminated edge incident to u. Note that the
cases when ω(Lk) ≥ ω(Rk) and ω(Lk) < ω(Rk) are anal-
ogous and hence we consider only the former one. Since
G is connected, Bk 	= ∅ and hence Lk 	= ∅. Therefore,
there exists at least one contaminated edge {u, v} such that
one of its endvertices, say u, belongs to Vr(Lk ) ∩ Lk . Let
d = φ(u, ρ(u, v)). Note that d 	= 0 because otherwise
{u, v} would be cleared during the execution of procedure
ExpandStraight in the same iteration in which u has been
reached by searchers. Moreover, (u, ρ(u, v)) ∈ Γd(Gk, u)

and hence Γd(Gk, Vr(Lk ) ∩ Lk) is nonempty. Since d ∈
{−1, 1}, we obtain
Γ−1(Gk, Vr(Lk ) ∩ Lk) ∪ Γ1(Gk, Vr(Lk ) ∩ Lk) 	= ∅,

which implies that U 	= ∅. Thus, there exists a contami-
nated edge {u′, v′} such that u′ ∈ Bk and (u′, ρ(u′, v′)) ∈ U .
Therefore, by assumption and by the formulation of pro-
cedure Expand, the edge {u′, v′} becomes clear during the
execution of the ‘for all’ loop in procedure ExpandLaterally.

��
In the next two lemmas we prove several properties of

graph Gk and its borders. This leads to Lemma 4 that bounds
the size of Bk . This finally lets us use induction to proveTheo-
rem 1. Recall that we focus on LL- and LR-expansions, since
the results for other types of expansions follow by symmetry.

We continue our analysis with an assumption that each
move performed by the searchers is successful, which holds
provided that enough searchers are initially present at the
homebase. This assumption is justified in the inductive proof
of Theorem 1 given at the end of this section. Informally
speaking, one could rephrase our algorithm as one that ‘calls’
for new searchers if required to avoid recontamination in the
next move and then one could bound the number of searchers
called.

Let m ≥ 1 denote the number of iterations of the ‘while’
loop of procedure CS. We denote by Ck the set of all ver-
tices cleared by searchers till the end of the kth stage,
k ∈ {0, . . . ,m}. Note that, if each move is successful, then
the explored vertices and cleared vertices are the same, i.e.,
V (Gk) = Ck for each k ∈ {0, . . . ,m}. For this reason, in
what follows we use Ck in place of V (Gk).

We start with simple observations regarding the behav-
ior of procedure CS. Informally speaking, the equality in
Lemma 2(a) implies that the border of Gk is indeed ‘pro-
tected’ by searchers at the end of the kth stage. Lemma 2(b)
says that, in casewhen the (k+1)-st stage is anLL-expansion,
the borders do not change except within Vr(Lk ) and Vr(Lk )−1

and the clear (explored) part itself changes only within
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Vr(Lk )−1. An analogous characterization for LR-expansions
is given by Lemma 2(c).

Lemma 2 Let k ∈ {0, . . . ,m − 1} and j = r(Lk). Then,

(a) Bk+1 = Lk+1 ∪ Rk+1.
If (k + 1)-st stage is an LL-expansion, then

(b) Lk+1\Lk ⊆ Ck+1\Ck ⊆ Vj−1, Rk+1 ⊆ Rk and
Vi ∩ Bk+1 = Vi ∩ Bk for each i /∈ { j, j − 1}.
If (k + 1)-st stage is an LR-expansion, then

(c) Rk+1\Rk ⊆ Ck+1\Ck ⊆ Vj+1, Lk+1 ⊆ Lk and Vi ∩
Bk+1 = Vi ∩ Bk for each i /∈ { j, j + 1}.

Proof Note that all vertices explored in the (k + 1)-st stage
are added to XV and hence

Ck+1\Ck ⊆ XV . (1)

(a) Recall that both borders are updated by procedure
UpdateBorders. First, either Lk or Rk is extendedwith all
vertices explored during an expansion phase. Then, the
vertices that do not have to be guarded (to be skipped in
Bk+1) are removed from the left and right borders. Thus,
Bk+1 = Lk+1 ∪ Rk+1 follows from a simple inductive
argument on the number of stages and from R0 = ∅
and L0 = B0. The latter is enforced by the execution of
procedures ExpandStraight and UpdateBorders in the
initialization stage of procedure CS.

(b) Since ExpandLaterally sets the variable right tofalse
in an LL-expansion, procedure UpdateBorders will not
add any vertices to the right border and hence Rk+1 ⊆
Rk . Moreover, XV ⊆ Vr(Lk )−1 which, by (1), gives
Ck+1\Ck ⊆ Vj−1. Also, the border vertices in XV , i.e.,
the vertices in Bk+1 ∩ XV , are added to the left border
by procedure UpdateBorders in an LL-expansion. The
latter in particular implies Lk+1\Lk ⊆ Ck+1\Ck . For
Vi ∩ Bk+1 = Vi ∩ Bk for each i /∈ { j, j − 1}, observe
that the only cleared edges are the oneswith one endpoint
in Vj and the other endpoint in Vj−1 or both endpoints
in Vj−1.

(c) Since ExpandLaterally sets variable right to true, no
vertex will be added to the left border by procedure
UpdateBorders and hence Lk+1 ⊆ Lk . Similarly as
in (b), Rk+1\Rk ⊆ Ck+1\Ck ⊆ Vj+1 follows from
(1) and the facts that XV ⊆ Vr(Lk )+1 and the border
vertices in XV are added to the right border by proce-
dureUpdateBorders in anLR-expansion.Also, the edges
cleared in (k+1)-st stage are the ones with one endpoint
in Vj and the other endpoint in Vj+1 or both endpoints
in Vj+1, which proves the claim. ��

See Fig. 3 for an example showing that Lk+1\Lk may be
a proper subset of Ck+1\Ck in an LL-expansion. However,

as we prove in the next lemma, Rk+1 = Rk always holds
for LL-expansions, which strengthens part of Lemma 2(b).
As to the claim in Lemma 2(c), see Fig. 4 for a case when
Rk+1\Rk is a proper subset ofCk+1\Ck and Lk+1 is a proper
subset of Lk .

In the next lemma we analyze the behavior of borders’
extremities, which depends on the type of expansion.

Lemma 3 Let k ∈ {0, . . . ,m − 1}. Then,

(a) r(Lk) < l(Rk) if Lk 	= ∅ and Rk 	= ∅.
If the (k + 1)-st stage is an LL-expansion, then

(b) r(Lk+1) < r(Lk), if Lk+1 	= ∅,
(c) l(Lk+1) = l(Lk), if Lk+1 is not contained in a single set

Vi and Lk+1 	= ∅,
(d) Rk+1 = Rk.

If the (k+1)-st stage is anLR-expansion, and Rk+1 	= ∅,
then

(e) r(Lk) < l(Rk+1).

Proof The proof is by induction on k. Assume that (a)–(e)
hold for some k − 1 ∈ {0, . . . ,m − 1} and we prove them
for k by analyzing the kth stage. Note that in case of LL- or
LR-expansions it holds that Lk 	= ∅.

(a) If the kth stage is an LL-expansion, then we use induc-
tion hypothesis (a) and (b), and inclusion Rk ⊆ Rk−1 of
Lemma 2(b), to obtain

r(Lk)
(b)
< r(Lk−1)

(a)
< l(Rk−1) ≤ l(Rk).

In case of LR-expansion, by Lemma 2(c), Lk ⊆ Lk−1.
This, and induction hypothesis (e) give

r(Lk) ≤ r(Lk−1) < l(Rk)

This completes the proof of (a).
(b) By Lemma 2(b), Lk+1\Lk ⊆ Vr(Lk )−1 and hence

r(Lk+1) ≤ r(Lk). Moreover, an LL-expansion takes
place only when no vertex in Vr(Lk ) ∩ Lk has an unex-
plored right port in Gk . Hence, no vertex in Vr(Lk ) ∩
Lk+1 has an unexplored port in Gk+1 and consequently
Vr(Lk ) ∩ Lk+1 = ∅. This implies that r(Lk+1) < r(Lk)

(see Fig. 3).
(c) First, observe that Lk � Vr(Lk ), for otherwise, by

Lemma 2(b) and induction hypothesis (b), Lk+1 would
be a subset of Vr(Lk )−1, violating our assumption. Thus,
l(Lk) ≤ r(Lk)−1. ByLemma2(b), Vi∩Lk = Vi∩Lk+1

for i < r(Lk) − 1, and Lk+1\Lk ⊆ Vr(Lk )−1. Thus, (c)
follows.

(d) By induction hypothesis (a), r(Lk) < l(Rk) and hence,
byLemma2(a),Vi∩Bk = Vi∩Rk for each i ≥ l(Rk). By
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Lk

Vr(Lk)−2 Vr(Lk)−1 Vr(Lk) Vr(Lk)+1

··· ··· ⇒
Lk+1

Vr(Lk+1)−1 Vr(Lk+1) Vr(Lk+1)+1 Vr(Lk+1)+2

··· ···

Fig. 3 A transition from Lk to Lk+1 in an LL-expansion; the dark vertices are the ones in the left border, white circles denote clear unguarded
vertices and the remaining ones are unexplored; dashed edges are contaminated

Lk

Rk

Vr(Lk)−1 Vr(Lk) Vl(Rk) Vl(Rk)+1

··· ···
v

u

w

z

⇒
Lk+1

Rk+1

Vr(Lk+1)−1 Vr(Lk+1) Vl(Rk+1) Vl(Rk+1)+1

v

u

w

z

··· ···

Fig. 4 A transition from Lk to Lk+1 in an LR-expansion; the dark circles denote vertices in the left border, while dark squares denote vertices in
the right border. White circles are clear unguarded vertices and the remaining ones are unexplored; dashed edges are contaminated

Lemma 2(b), Vi ∩ Bk = Vi ∩ Bk+1 for each i > r(Lk),
and Rk+1 ⊆ Rk . Thus, Rk+1 = Rk .

(e) Consider vertices that can be added to the right border
in LR-expansion. According to Lemma 2(c), only some
(possibly empty) subset of Vr(Lk )+1 can be added (see
e.g., vertexw in Fig. 4) and hence Rk+1 ⊆ Rk∪Vr(Lk )+1.
Note that procedure UpdateBorders can also remove
vertices from Rk but only those in Rk ∩ Vr(Lk )+1 (see
e.g., vertex z in Fig. 4). Since Rk+1 	= ∅, we get
l(Rk) ≤ l(Rk+1) (also r(Rk) = r(Rk+1) holds). By
induction hypothesis (a), r(Lk) < l(Rk) and hence by
the above inequality it follows that r(Lk) < l(Rk+1).

Though not necessary for the proof it is worth mentioning
that some vertices may be also removed from Lk in an LR-
expansion (see e.g., vertices u and v in Fig. 4). In such case,
inclusion Lk+1 ⊆ Lk in Lemma 2(c) may be proper. ��

Assume that k ∈ {0, . . . ,m − 1}. Let Dk+1 = Lk+1\Lk

if the (k + 1)-st stage is an LL-expansion and let Dk+1 =

Rk+1\Rk if the (k + 1)-st stage is an LR-expansion. By
Lemma 2, Dk+1 ⊆ Vi ′ for some i ′ ∈ {1, . . . , t}, i.e., all
vertices that become clear in the (k+1)-st stage are added to
the same border and belong to a single set Vi ′ of the grid
partition, with i ′ = r(Lk) − 1 when LL-expansion took
place and i ′ = r(Lk) + 1 for an LR-expansion. Note that
Lemma 2 also implies that for every i 	= i ′ it holds that
ω(Vi ∩ Ck+1) = ω(Vi ∩ Ck). In the sequel we use the fol-
lowing inequality that holds for all i ∈ {1, . . . , t}:

ω(Vi ∩ Ck+1) ≥ ω(Vi ∩ Ck) + ω(Dk+1 ∩ Vi ). (2)

Lemma 4 For each k ∈ {0, . . . ,m}, ω(Bk) ≤ 2 · w(G).

Proof In view of Lemma 3(a) we prove by induction on k ∈
{0, . . . ,m} that the following conditions are satisfied:

(a) for every i ∈ {l(Lk), . . . , r(Lk)},

ω(Vi ∩ Ck) ≥ ω
(
Lk ∩ (Vl(Lk ) ∪ · · · ∪ Vi )

)
,
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(b) for every i ∈ {l(Rk), . . . , r(Rk)},

ω(Vi ∩ Ck) ≥ ω
(
Rk ∩ (Vi ∪ · · · ∪ Vr(Rk ))

)
,

(c) for every i ∈ {r(Lk), . . . , l(Rk)},

ω(Vi ∩ Ck) ≥ min
{
ω(Lk), ω(Rk)

}
.

Observe that whenever Lk is empty, conditions (a) and (c)
are clearly satisfied. Similarly, if Rk = ∅, then (b) and (c)
hold.

For the base step it is enough to consider the execution of
procedure ExpandStraight in the initialization of procedure
CS. Let Vs , s ∈ {1, . . . , t}, be the set of the grid partition that
contains h. By the formulation of procedure ExpandStraight,
C0 ⊆ Vs . Since R0 = ∅, conditions (b) and (c) follow.More-
over, L0 ⊆ Vs , which implies (a).

For the induction step assume that conditions (a)–(c) are
satisfied for some k ∈ {0, . . . ,m − 1}.

Now we prove two claims; in the first one we consider an
LL-expansion and in the second one we consider an LR-
expansion. Then, as mentioned before, we conclude (see
Claim 3) that (a)–(c) hold for k + 1 for all types of expan-
sions. The following, that is due to (2) and condition (a) for
k, holds for each i ≤ r(Lk) when Lk is nonempty:

ω(Vi ∩ Ck+1) ≥ ω
(
Lk ∩ (Vl(Lk ) ∪ · · · ∪ Vi )

)

+ ω
(
(Lk+1\Lk) ∩ Vi

)

≥ ω
(
Lk ∩ (Vl(Lk ) ∪ · · · ∪ Vi−1)

)

+ ω
(
Lk+1 ∩ Vi

)
. (3)

Before proving Claim 1 we give an intuition on the con-
struction of its proof. In an LL-expansion, Rk+1 = Rk and
hence condition (b) is obtained immediately from the induc-
tion hypothesis. For condition (a) we first observe that it
follows when Lk+1 is contained in a single set Vi . Other-
wise, using Lemma 3 we argue that {l(Lk+1), . . . , r(Lk+1)}
is a subset of {l(Lk), . . . , r(Lk)}, which with a proper use
of the induction hypothesis (a) gives us (a) for k + 1.
Finally, condition (c) for k + 1 is proven by observing
that {r(Lk+1), . . . , l(Rk+1)} is contained in the union of
{r(Lk), . . . , l(Rk)} (in this case we use induction hypothesis
(c)) and {l(Lk), . . . , r(Lk)} (in this case we use induction
hypothesis (a)).

Claim 1 If the (k + 1)-st stage is an LL-expansion, then
conditions (a)–(c) are satisfied for k + 1.

Proof By Lemma 3(d), Rk+1 = Rk and hence condition (b)
for k+1 follows directly from the induction hypothesis. Since
the (k + 1)-st stage is an LL-expansion, Lk 	= ∅.

We now prove condition (a) for k + 1. Recall that (a)
trivially holds when Lk+1 is empty. Hence, let Lk+1 	= ∅.

If l(Lk+1) = r(Lk+1), i.e., Lk+1 is contained in a single
set Vi , then (a) immediately follows for k + 1.

Thus, let l(Lk+1) 	= r(Lk+1), i.e., l(Lk+1) < r(Lk+1).
Let i ∈ {l(Lk+1), . . . , r(Lk+1)} be selected arbitrarily. By
Lemma 3(b) and 3(c), i ∈ {l(Lk), . . . , r(Lk) − 1}. Hence,
by (3), Lemma 2 and Lemma 3(a),

ω(Vi ∩ Ck+1) ≥ ω
(
Lk+1 ∩ (Vl(Lk+1) ∪ · · · ∪ Vi )

)

as required by condition (a) for k + 1.
It remains to prove condition (c) for k + 1. Recall that if

Lk+1 = ∅ or Rk+1 = ∅, then (c) holds for k + 1. Hence, we
assume that Lk+1 	= ∅ and Rk+1 	= ∅. Select an index i ∈
{r(Lk+1), . . . , l(Rk+1)} arbitrarily. By Lemma 3(d), Rk+1 =
Rk . Thus, in particular, we have Rk 	= ∅ and l(Rk+1) =
l(Rk).

If i ∈ {r(Lk), . . . , l(Rk+1)}, then Lemma 2(b) implies
Vi ∩Ck+1 = Vi ∩Ck . This, induction hypothesis (c), the fact
that ω(Lk) ≥ ω(Rk) in an LL-expansion and Lemma 3(d)
(used in this order) give

ω(Vi ∩ Ck+1) = ω(Vi ∩ Ck)
(c)≥ min{ω(Lk), ω(Rk)}

= ω(Rk) = ω(Rk+1). (4)

If i ∈ {r(Lk+1), . . . , r(Lk) − 1}, then by Lemma 3(b)
and 3(c), i ∈ {l(Lk), . . . , r(Lk)} and hence (3) holds. Then,
by Lemmas 2(b), 3(a) and 3(c),

Lk∩ (Vl(Lk ) ∪ · · · ∪Vi−1)=Lk+1∩ (Vl(Lk+1) ∪ · · · ∪ Vi−1).

Thus, for our choice of i , the right hand side of (3) equals
ω(Lk+1) and therefore

ω(Vi ∩ Ck+1) ≥ ω(Lk+1). (5)

Then, from (4) and (5) it follows that condition (c) is satisfied
for k + 1. This completes the proof of Claim 1. ��

Again, we precede the proof of Claim 2 with informal
comments that provide some intuition. First, condition (a)
for k + 1 immediately follows from (a) for k, since Lk+1 ⊆
Lk in an LR-expansion. In order to prove (b) for k + 1 we
take any i ∈ {l(Rk+1), . . . , r(Rk+1)} and we consider two
subcases: if i ≤ l(Rk), then i is between r(Lk) and l(Rk)

and induction hypothesis (c) helps us to obtain (b) for k + 1;
if i > l(Rk), then i is between the ‘extremities’ of Rk and
therefore (b) for k immediately gives (b) for k+1. The proof
of (c) for k + 1 is done by considering three subcases for
i ∈ {r(Lk+1), . . . , l(Rk+1)}. The first subcase covers the
situation in which i is between r(Lk+1) and r(Lk). Note
that this case is nontrivial as an LR-expansion may result in
r(Lk+1) < r(Lk). The second subcase deals with i > l(Rk),
where we use induction hypothesis (b) for k to obtain our
claim. In the third subcase i is between r(Lk) and l(Rk)

which allows us to use induction hypothesis (c) for k to prove
(b) for k + 1.
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Claim 2 If the (k + 1)-st stage is an LR-expansion, then
conditions (a)–(c) are satisfied for k + 1.

Proof We first prove condition (a) for k+1. The fact that the
(k + 1)-st stage is an LR-expansion implies Lk 	= ∅. Note
that (a) trivially holds when Lk+1 = ∅. Hence, let Lk+1

be nonempty. By Lemma 2(c), Lk+1 ⊆ Lk . The induction
hypothesis (a) gives condition (a) for k + 1.

Inequalities (b) and (c) are trivially satisfied when Rk+1 is
empty. Hence, assume in the remaining part of this proof that
Rk+1 	= ∅.Also, since the (k+1)-st stage is anLR-expansion,
Lk 	= ∅. For i ∈ {r(Lk), . . . , l(Rk)}, by induction hypothesis
(c) and by ω(Lk) ≥ ω(Rk) we obtain

ω(Vi ∩ Ck) ≥ min{ω(Lk), ω(Rk)}
= ω(Rk)

= ω
(
Rk ∩ (Vi ∪ · · · ∪ Vr(Rk ))

)
. (6)

In order to prove (b) for k + 1 take any index i in
{l(Rk+1), . . . , r(Rk+1)}. Suppose first that Rk = ∅. Then,
Rk+1 ⊆ Vr(Lk )+1 by Lemma 2(c). By Lemma 3(a), Rk+1 ⊆
Bk+1 ⊆ Ck+1 which immediately gives

ω
(
Vr(Lk )+1 ∩ Ck+1

) ≥ ω
(
Vr(Lk )+1 ∩ Rk+1

)

that proves (b) for k + 1. Suppose now that Rk 	= ∅.
Then, by Lemmas 2(c) and 3(a), r(Rk+1) = r(Rk) and by
Lemma 3(e), it holds that l(Rk+1) > r(Lk). Therefore, if
i ∈ {l(Rk+1), . . . , l(Rk)}, then by Lemma 3(a), Dk+1 =
Rk+1\Rk in (2) and hence, by (2), (6) and Lemma 2(c), we
obtain (b) for k + 1 as follows:

ω(Vi ∩ Ck+1) ≥ ω
(
Rk ∩ (Vi ∪ · · · ∪ Vr(Rk ))

)

+ ω
(
(Rk+1\Rk) ∩ Vi

)

= ω(Rk ∩ Vi ) + ω
(
Rk ∩ (Vi+1 ∪ · · ·

∪ Vr(Rk ))
)

+ ω
(
(Rk+1\Rk) ∩ Vi

)

≥ ω(Rk+1 ∩ Vi ) + ω
(
Rk+1 ∩ (Vi+1 ∪ · · ·

∪ Vr(Rk+1))
)

= ω
(
Rk+1 ∩ (Vi ∪ · · · ∪ Vr(Rk+1))

)
.

If i ∈ {l(Rk)+1, . . . , r(Rk+1)}, then by Lemma 3(a), induc-
tion hypothesis (b) and Lemma 2(c),

ω(Vi ∩ Ck+1) = ω(Vi ∩ Ck)

≥ ω
(
Rk ∩ (Vi ∪ · · · ∪ Vr(Rk ))

)

= ω
(
Rk+1 ∩ (Vi ∪ · · · ∪ Vr(Rk+1))

)
.

This proves (b) for k + 1.
Now we prove (c) for k + 1. Recall that the condition

follows when Lk+1 = ∅. Hence, let Lk+1 be nonempty. Let
first i ∈ {r(Lk+1), . . . , r(Lk)}. This set is nonempty because

Lk+1 ⊆ Lk by Lemma 2(c). Moreover, Lk+1 ⊆ Lk and (3)
imply

ω(Vi ∩ Ck+1) ≥ ω
(
Lk+1 ∩ (Vl(Lk+1) ∪ · · · ∪ Vi )

)
.

This, together with i ≥ r(Lk+1), gives

ω(Vi ∩ Ck+1) ≥ ω(Lk+1). (7)

For i > r(Lk) we consider two cases. In the first case let
Rk+1\Rk 	= ∅. This implies by Lemma 2(c) that l(Rk+1) =
r(Lk)+1 and hence it is enough to take i = r(Lk)+1. Then,
however, (c) for k + 1 follows from (b) for k + 1.

In the second case let Rk+1\Rk = ∅. This implies that

Rk+1 ⊆ Rk and r(Rk) = r(Rk+1) (8)

and

Rk+1 = Rk+1 ∩ (Vi ∪ · · · ∪ Vr(Rk+1)) (9)

for each i ∈ {r(Lk) + 1, . . . , l(Rk+1)}. If i ∈ {l(Rk) +
1, . . . , l(Rk+1)}, then the induction hypothesis (b) and (2)
imply (note that Dk = ∅ in (2))

ω(Vi ∩ Ck+1) ≥ ω
(
Rk ∩ (Vi ∪ · · · ∪ Vr(Rk ))

)
. (10)

If i ∈ {r(Lk) + 1, . . . , l(Rk)}, then (6) and (2) (where Dk =
∅) imply (10). Hence, for each i ∈ {r(Lk)+1, . . . , l(Rk+1)}
by (8), (9) and (10) we obtain

ω(Vi ∩ Ck+1) ≥ ω
(
Rk+1 ∩ (Vi ∪ · · · ∪ Vr(Rk+1))

)

= ω(Rk+1). (11)

Thus, from (7) and (11) it follows that (c) holds for k + 1.
This completes the proof of Claim 2. ��

By symmetry, analogous arguments can be used to prove
the following claim.

Claim 3 If the (k + 1)-st stage is an RR-expansion or an
RL-expansion, then conditions (a)–(c) are satisfied for k+1.

��
Claims 1, 2 and 3 imply that conditions (a)–(c) hold for

each k ∈ {0, . . . ,m}. Hence, using inequality (a) we can eas-
ily argue that the weight of the left border is always bounded
by w(G). Indeed, for each k ∈ {0, . . . ,m} we obtain

ω(Lk) = ω
(
Lk ∩ (Vl(Lk ) ∪ · · · ∪ Vr(Lk ))

)

(a)≤ ω(Vr(Lk ) ∩ Ck) ≤ ω(Vr(Lk ))

≤ w(G).

Analogously, (b) implies ω(Rk) ≤ w(G) for each k ∈
{0, . . . ,m}. By Lemma 2(a), the proof is completed. ��

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


168 P. Borowiecki et al.

Proof of Theorem 1 Due to Lemma 1, it is enough to argue
that eachmove of the searchers is successful during execution
of procedure CS.

We prove by induction on k ∈ {0, . . . ,m} that the kth
stage is successful. Note that the 0th stage (i.e., the initial-
ization stage) is successful because, according to procedure
ExpandStraight, all vertices reached by searchers belong to
Vi , i ∈ {1, . . . , t}, such that h ∈ Vi . Thus, in each move
of the 0th stage, among 3w(G) + 1 available searchers at
most w(G) of them are guarding and thus the number of free
searchers reaching a new vertex is at least 2w(G) + 1, and
hence no recontamination occurs.

Suppose now that kth stage is successful for some k ∈
{0, . . . ,m − 1} and we prove that the (k + 1)-st stage is
successful. Note that V (Gk+1)\V (Gk) is the set of vertices
reached for the first time in the (k+1)-st stage. (This set may
be empty.) We have that

V (Gk+1)\V (Gk) ⊆ Vi , (12)

where i ∈ {r(Lk) − 1, r(Lk) + 1, l(Rk) − 1, l(Rk) + 1};
see procedures ExpandLaterally and ExpandStraight. Since
the first k stages are successful, the cleared subgraph equals
the explored subgraph, Ck = V (Gk). By Lemma 2(a) and
Lemma 4,

ω(Bk) = ω(Lk ∪ Rk) ≤ 2 · w(G). (13)

Thus, at the beginning of the (k+1)-st stage at most 2 ·w(G)

searchers are guarding the vertices in Bk .
Suppose that l clearingmoves occur in the (k+1)-st stage,

and let the r th of those moves slide some searcher along an
edge {ur , vr } from ur to vr , r ∈ {1, . . . , l}.

For each r ∈ {1, . . . , l} we consider two cases: vr has
not been reached by a searcher prior to the move that we
consider, or it has been reached before. In the former case
vr ∈ V (Gk+1)\V (Gk) and hence the number of guarding
searchers at the beginning of this r th move is, by (12) and
(13), at most

ω(Bk) + ω(V (Gk+1)\V (Gk)) − ω(vr )

≤ 2 · w(G) + ω(Vi ) − ω(vr ) ≤ 3 · w(G) − ω(vr ).

Therefore, the number of searchers reaching vr is at least
ω(vr ). In the latter case, the number of guarding searchers at
the beginning of the r th move is, again by (12) and (13), at
most

ω(Bk) + ω(V (Gk+1)\V (Gk)) ≤ 3 · w(G).

Thus, one free searcher is available and it slides from ur to
vr , and vr is already occupied by ω(vr ) guarding searchers.
Therefore, by a simple inductive argument, in both cases the
r th move is successful, and hence the (k + 1)-st stage is
successful as required. ��

4 Lower bound

Let k and t be positive integers. Define a graph Gk,t with
grid partition (V1, . . . , Vt ) such that Vi ∪ Vi+1 induces a
complete subgraph in Gk,t for each i ∈ {1, . . . , t − 1} and
|Vi | = k for each i ∈ {1, . . . , t − 1}. In other words, v ∈ Vi
is adjacent to the vertices in Vi−1 ∪ (Vi\{v})∪ Vi+1 for each
i ∈ {1, . . . , t}, where we take V0 = Vt+1 = ∅. We take
ω ≡ 1 in our example.

We prove the following lemma.

Lemma 5 Let k and (V1, . . . , V6k−1) be any positive integer
and the grid partition of Gk,6k−1, respectively. If h ∈ V3k ,
then mcs(Gk,6k−1, h) ≥ 3k − 1.

Proof Consider a monotone connected search strategy S =
(S1, . . . ,Sl) of Gk,6k−1 that uses the minimum number of
searchers. Take theminimum integer j ∈ {1, . . . , l} such that
the set X ⊆ V1∪· · ·∪V6k−1, consisting of vertices that have
been reached by a searcher in one of the moves S1, . . . ,S j ,
is of size 3k − 1. We argue that |S j | ≥ 3k − 1.

Suppose for a contradiction that |S j | < 3k−1. Thus, there
exists v ∈ X such that v is not occupied by a searcher at the
end of S j . Since S is monotone, all edges incident to v are
clear at the end ofS j .Moreover, V1∩X = ∅ and V6k−1∩X =
∅ because h ∈ V3k . Thus, v ∈ Vi for some i ∈ {2, . . . , 6k−2}
and therefore there are 3k−1 edges incident to v in Gk,6k−1.
This in particular means that Vi−1 ∪ Vi ∪ Vi+1 ⊆ X , which
contradicts |X | = 3k − 1. ��

Since each search strategy with homebase in V3k in Gk,6k−1

(regardless if it is computed in a distributed or offline set-
ting) must use at least 3k − 1 searchers, and by construction
w(Gk,6k−1) = k, we obtain the following.

Theorem 2 For each positive integer k there exists an infi-
nite class G of graphs G with grid partitions for which
w(G) = k and such that every G ∈ G has a vertex h for
which mcs(G, h) ≥ 3k − 1. ��

5 Summary

5.1 Relations to connected path decompositions

In this section we discuss an application of the algorithm
presented in this work to computation of connected path
decompositions. For the definitions of (connected) pathwidth
and (connected) path decomposition reader is referred e.g. to
[17]. More precisely, our algorithm can be turned into a pro-
cedure that converts a given path decomposition of width k
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into a connected one.The conversion ensures that thewidth of
the resulting connected path decomposition is at most 2k+1.

To state our claim more formally, we recall the following
notion of derived graph used in [17].

Definition 1 Given a graph G and its path decomposition
P = (X1, . . . , Xd), a node-weighted graph F = (V, E, ω)

derived from G and P is the graph with vertex set

V = U1 ∪ · · · ∪Ud ,

where Ui = {vi (H)
∣
∣ H is a connected component of the

subgraph of G induced by Xi }, i ∈ {1, . . . , d}, and edge set

E ={{vi (H), vi+1(H
′)} ∣

∣ V (H) ∩ V (H ′) 	= ∅,

vi (H) ∈ Ui , vi+1(H
′) ∈ Ui+1, i ∈ {1, . . . , d − 1}}.

The weight of a vertex vi (H) ∈ V , i ∈ {1, . . . , d}, is
ω(vi (H)) = |V (H)|.

In other words, we construct Ui by taking the subgraph
of G induced by the vertices in Xi and for each connected
component H of this subgraphwe add toUi a vertex, denoted
vi (H). In this construction, for the same subgraph H , wemay
have different vertices vi (H) and vi ′(H) in different sets Ui

and Ui ′ .
Suppose we are given a path decomposition P of a graph

G.Wefirst construct the derived graph F fromG andP . Note
that it is easy to fix the port numbers in F so that (U1, . . . ,Ud)

becomes its grid partition. Then, we slightly modify F by
adding for each vertex v ∈ Ui a new neighbor v′ ∈ Ui+1 with
ω(v′) = 0. Denote the new graph by F ′. Note that w(F) =
w(F ′). Then, we select any vertex of F ′ that also belongs to
F to be the homebase h, we place 3w(F) + 1 searchers on
h and we let the searchers execute procedure CS. According
to Theorem 1, this leads to a monotone connected search
strategy for F ′ with homebase h. Define C = (Z0, . . . , Zm),
where

Zk =
⋃

v(H)∈Bk
V (H), k ∈ {0, . . . ,m}.

It follows from our algorithm that (V (F ′)\V (F)) ∩ Bk = ∅
for each stage k ∈ {0, . . . ,m}. Thus, informally speaking,
Zk consists of vertices of G that ‘correspond’ to all vertices
of F that belong to the border Bk . The reason for executing
procedure CS on F ′ rather than on F is the property that
each vertex of F belongs to Bk for some k ∈ {0, . . . ,m}.
This property, by using similar arguments as in [17], allows
us to conclude that C is a connected path decomposition of
G. Thus, by Lemma 4, we obtain that for each graph G it
holds:

cpw(G) ≤ 2pw(G) + 1,

where pw(G) and cpw(G) denote the pathwidth and the con-
nected pathwidth of G, respectively.

5.2 Computations with advice

Nisse and Soguet proved in [38] that the size of advice for
monotone and connected distributed searching of a graph
is Θ(n log n), that is, O(n log n) bits are always enough
and Ω(n log n) are required for some graphs. To use the
same terminology, we described in this work an algorithm
that requires advice of size O(|E |) for the input graph
G = (V, E) with a grid partition. The main advantage, how-
ever, of our approach is the structure of the advicewe require.
Namely, it is a strong assumption, especially in more practi-
cal situations, that an advice that requires a priori knowledge
on the graph can be provided. Our advice, as suggested in
Sect. 1, can be potentially available in some practical scenar-
ioswithout any preprocessing of the graph. It is an interesting
research direction on possible types of advice that could be
practically useful in distributed agent algorithms.
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